Advances In Dna Technology

Advertisement

Advances in DNA Technology: A Revolution in Science and Society



Author: Dr. Evelyn Reed, PhD, Professor of Genomics and Bioinformatics at the University of California, Berkeley. Dr. Reed has over 20 years of experience in DNA sequencing and analysis, with a focus on the application of these technologies to human health and disease. She is a leading researcher in CRISPR-Cas9 gene editing and has published extensively in peer-reviewed journals.

Publisher: Nature Publishing Group. Nature is a highly respected scientific journal publisher known for its rigorous peer-review process and its authority on a wide range of scientific topics, including cutting-edge advances in DNA technology. Their publication standards ensure accuracy and relevance in the field.

Editor: Dr. Michael Jones, PhD, a seasoned editor with Nature Publishing Group specializing in genetics and molecular biology. His expertise in evaluating complex scientific research guarantees the article's high-quality and accessibility to a broad audience.


Keywords: advances in DNA technology, DNA sequencing, gene editing, CRISPR-Cas9, genomics, personalized medicine, genetic engineering, forensic science, biotechnology


1. A Historical Context: From Double Helix to CRISPR



The journey of advances in DNA technology began with the groundbreaking discovery of the double helix structure of DNA by Watson and Crick in 1953. This revelation laid the foundation for understanding the fundamental mechanisms of heredity and opened the doors to a wealth of possibilities in manipulating and studying DNA. Early developments focused on techniques like restriction enzyme digestion and gel electrophoresis, allowing scientists to isolate and analyze specific DNA fragments. These early methods, though rudimentary compared to today's standards, were crucial in establishing the principles of DNA manipulation.


2. The Dawn of Sequencing Technologies: Unveiling the Genetic Code



The development of DNA sequencing technologies marked a significant turning point in the history of advances in DNA technology. Sanger sequencing, developed in the 1970s, allowed researchers to determine the precise order of nucleotides in a DNA molecule. While initially laborious and time-consuming, Sanger sequencing enabled the mapping of entire genomes, ushering in the era of genomics. The advent of next-generation sequencing (NGS) technologies in the 21st century revolutionized the field further. NGS platforms, such as Illumina and PacBio, dramatically increased the speed and reduced the cost of sequencing, making it accessible for large-scale genomic studies and personalized medicine applications.


3. Gene Editing: Precision Tools for Genetic Modification



Perhaps the most impactful advances in DNA technology in recent years have been in the field of gene editing. The development of CRISPR-Cas9 technology, a revolutionary gene-editing tool, has significantly enhanced our ability to precisely modify DNA sequences. CRISPR allows scientists to target specific DNA sequences with remarkable accuracy, enabling gene knockouts, insertions, and corrections. This technology holds immense potential for treating genetic diseases, developing novel therapies, and even enhancing agricultural crops. Other gene editing tools like TALENs and ZFNs have also contributed, but CRISPR’s ease of use and precision have made it the dominant force in the field.


4. Applications of Advances in DNA Technology: Transforming Diverse Fields



The impact of advances in DNA technology extends far beyond the laboratory. These technologies are transforming various fields, including:

Medicine: Personalized medicine is rapidly emerging, tailoring treatments to individual genetic profiles. Diagnostic tests based on DNA sequencing can identify genetic predispositions to diseases, allowing for early intervention and preventative measures. Gene therapy holds the potential to cure previously incurable genetic disorders.
Forensics: DNA fingerprinting has revolutionized forensic science, providing powerful tools for identifying criminals and solving crimes. Advances in DNA analysis allow for the identification of individuals from minute samples, even degraded DNA.
Agriculture: Genetically modified crops, developed using techniques such as CRISPR, offer enhanced yields, pest resistance, and improved nutritional content. These modifications can contribute to addressing global food security challenges.
Anthropology and Evolutionary Biology: DNA sequencing is invaluable for understanding human evolution, migration patterns, and population genetics. Ancient DNA analysis allows researchers to study the genetic makeup of extinct species and gain insights into past environments.


5. Ethical Considerations and Future Directions



While the potential benefits of advances in DNA technology are immense, it’s crucial to address the ethical implications. Concerns surrounding gene editing in humans, the potential for genetic discrimination, and the responsible use of genomic data require careful consideration and robust regulatory frameworks. The future of advances in DNA technology lies in further refining existing techniques, developing novel approaches, and addressing these ethical challenges responsibly. Research into base editing, prime editing, and other sophisticated gene-editing tools promises to further enhance precision and minimize off-target effects.


6. Conclusion



Advances in DNA technology have fundamentally altered our understanding of biology and medicine. From the initial discovery of the double helix to the precision of CRISPR-Cas9, the journey has been remarkable. The applications of these technologies are vast and continue to expand, offering transformative potential in healthcare, agriculture, forensics, and beyond. However, responsible development and ethical considerations must guide the continued progress in this rapidly evolving field to ensure that the benefits are shared equitably and potential risks are mitigated.


FAQs



1. What is CRISPR-Cas9 technology? CRISPR-Cas9 is a gene-editing tool that allows for precise modification of DNA sequences. It utilizes a guide RNA to target specific DNA locations, where the Cas9 enzyme then cuts the DNA, enabling insertion or deletion of genetic material.

2. How is DNA sequencing used in personalized medicine? DNA sequencing allows for the identification of genetic variations that influence an individual’s response to medications, risk of developing diseases, and overall health outcomes. This information can guide personalized treatment plans and preventative strategies.

3. What are the ethical concerns surrounding gene editing? Ethical concerns include the potential for unintended consequences, the possibility of germline editing (changes inherited by future generations), and equitable access to gene-editing technologies.

4. How does DNA technology contribute to forensic science? DNA fingerprinting and other DNA analysis techniques allow for the identification of individuals from biological evidence found at crime scenes, linking suspects to crimes and exonerating wrongly convicted individuals.

5. What are the applications of DNA technology in agriculture? DNA technology is used to develop genetically modified crops with enhanced traits, such as pest resistance, herbicide tolerance, and improved nutritional value.

6. What is next-generation sequencing (NGS)? NGS technologies are high-throughput sequencing methods that allow for rapid and cost-effective sequencing of large amounts of DNA.

7. How is ancient DNA analysis used in research? Ancient DNA analysis involves extracting and sequencing DNA from ancient remains, providing valuable insights into the evolutionary history of species and past human populations.

8. What are some limitations of current gene-editing technologies? Current gene-editing technologies can have off-target effects, meaning unintended modifications to the DNA sequence, and delivery to target cells can be challenging.

9. What is the future of advances in DNA technology? The future likely involves further refinement of existing gene-editing tools, development of novel methods, and exploration of new applications, such as synthetic biology and advanced diagnostics.


Related Articles



1. "CRISPR-Cas9: A Game Changer in Gene Editing": This article provides a detailed overview of the CRISPR-Cas9 technology, its mechanism of action, and its applications in various fields.

2. "Next-Generation Sequencing: Revolutionizing Genomics Research": This article explores the advancements in NGS technologies, their impact on genomics, and future directions.

3. "Personalized Medicine: Tailoring Treatments to Individual Genomes": This article discusses the principles of personalized medicine and the role of DNA sequencing in tailoring medical treatments.

4. "Ethical Considerations in Gene Editing: A Multifaceted Perspective": This article examines the ethical challenges associated with gene editing technologies and explores potential solutions.

5. "DNA Fingerprinting in Forensic Science: A Powerful Tool for Crime Investigation": This article focuses on the application of DNA technology in forensic science and its impact on crime solving.

6. "The Role of DNA Technology in Agriculture: Enhancing Crop Production": This article explores the use of DNA technology in developing genetically modified crops and its implications for food security.

7. "Ancient DNA: Unraveling the Mysteries of the Past": This article discusses the techniques and applications of ancient DNA analysis in understanding past environments and species.

8. "Advances in Gene Therapy: Promising Treatments for Genetic Diseases": This article reviews the progress in gene therapy and its potential to cure genetic disorders.

9. "The Future of DNA Technology: Emerging Trends and Innovations": This article looks ahead to future developments in DNA technology and their potential impact on various fields.


  advances in dna technology: DNA Technology in Forensic Science National Research Council, Division on Earth and Life Studies, Commission on Life Sciences, Committee on DNA Technology in Forensic Science, 1992-02-01 Matching DNA samples from crime scenes and suspects is rapidly becoming a key source of evidence for use in our justice system. DNA Technology in Forensic Science offers recommendations for resolving crucial questions that are emerging as DNA typing becomes more widespread. The volume addresses key issues: Quality and reliability in DNA typing, including the introduction of new technologies, problems of standardization, and approaches to certification. DNA typing in the courtroom, including issues of population genetics, levels of understanding among judges and juries, and admissibility. Societal issues, such as privacy of DNA data, storage of samples and data, and the rights of defendants to quality testing technology. Combining this original volume with the new update-The Evaluation of Forensic DNA Evidence-provides the complete, up-to-date picture of this highly important and visible topic. This volume offers important guidance to anyone working with this emerging law enforcement tool: policymakers, specialists in criminal law, forensic scientists, geneticists, researchers, faculty, and students.
  advances in dna technology: Advanced Topics in Forensic DNA Typing: Interpretation John M. Butler, 2014-07-28 Advanced Topics in Forensic DNA Typing: Interpretation builds upon the previous two editions of John Butler's internationally acclaimed Forensic DNA Typing textbook with forensic DNA analysts as its primary audience. Intended as a third-edition companion to the Fundamentals of Forensic DNA Typing volume published in 2010 and Advanced Topics in Forensic DNA Typing: Methodology published in 2012, this book contains 16 chapters with 4 appendices providing up-to-date coverage of essential topics in this important field. Over 80 % of the content of this book is new compared to previous editions. - Provides forensic DNA analysts coverage of the crucial topic of DNA mixture interpretation and statistical analysis of DNA evidence - Worked mixture examples illustrate the impact of different statistical approaches for reporting results - Includes allele frequencies for 24 commonly used autosomal STR loci, the revised Quality Assurance Standards which went into effect September 2011
  advances in dna technology: Genetically Engineered Crops National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Board on Agriculture and Natural Resources, Committee on Genetically Engineered Crops: Past Experience and Future Prospects, 2017-01-28 Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
  advances in dna technology: Mapping and Sequencing the Human Genome National Research Council, Division on Earth and Life Studies, Commission on Life Sciences, Committee on Mapping and Sequencing the Human Genome, 1988-01-01 There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
  advances in dna technology: Advances in Animal Genomics Sukanta Mondal, Ram Lakhan Singh, 2020-11-25 Advances in Animal Genomics provides an outstanding collection of integrated strategies involving traditional and modern - omics (structural, functional, comparative and epigenomics) approaches and genomics-assisted breeding methods which animal biotechnologists can utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in livestock. Written by international experts on animal genomics, this book explores the recent advances in high-throughput, next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches which have enabled to produce huge genomic and transcriptomic resources globally on a genome-wide scale. This book is an important resource for researchers, students, educators and professionals in agriculture, veterinary and biotechnology sciences that enables them to solve problems regarding sustainable development with the help of current innovative biotechnologies. - Integrates basic and advanced concepts of animal biotechnology and presents future developments - Describes current high-throughput next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches for sustainable livestock production - Illustrates integrated strategies to dissect and decode the molecular and gene regulatory networks involved in complex quantitative yield and stress tolerance traits in livestock - Ensures readers will gain a strong grasp of biotechnology for sustainable livestock production with its well-illustrated discussion
  advances in dna technology: The Evaluation of Forensic DNA Evidence National Research Council, Division on Earth and Life Studies, Commission on Life Sciences, Committee on DNA Forensic Science: An Update, 1996-12-12 In 1992 the National Research Council issued DNA Technology in Forensic Science, a book that documented the state of the art in this emerging field. Recently, this volume was brought to worldwide attention in the murder trial of celebrity O. J. Simpson. The Evaluation of Forensic DNA Evidence reports on developments in population genetics and statistics since the original volume was published. The committee comments on statements in the original book that proved controversial or that have been misapplied in the courts. This volume offers recommendations for handling DNA samples, performing calculations, and other aspects of using DNA as a forensic toolâ€modifying some recommendations presented in the 1992 volume. The update addresses two major areas: Determination of DNA profiles. The committee considers how laboratory errors (particularly false matches) can arise, how errors might be reduced, and how to take into account the fact that the error rate can never be reduced to zero. Interpretation of a finding that the DNA profile of a suspect or victim matches the evidence DNA. The committee addresses controversies in population genetics, exploring the problems that arise from the mixture of groups and subgroups in the American population and how this substructure can be accounted for in calculating frequencies. This volume examines statistical issues in interpreting frequencies as probabilities, including adjustments when a suspect is found through a database search. The committee includes a detailed discussion of what its recommendations would mean in the courtroom, with numerous case citations. By resolving several remaining issues in the evaluation of this increasingly important area of forensic evidence, this technical update will be important to forensic scientists and population geneticistsâ€and helpful to attorneys, judges, and others who need to understand DNA and the law. Anyone working in laboratories and in the courts or anyone studying this issue should own this book.
  advances in dna technology: Opportunities in Biology National Research Council, Division on Earth and Life Studies, Commission on Life Sciences, Board on Biology, Committee on Research Opportunities in Biology, 1989-01-01 Biology has entered an era in which interdisciplinary cooperation is at an all-time high, practical applications follow basic discoveries more quickly than ever before, and new technologiesâ€recombinant DNA, scanning tunneling microscopes, and moreâ€are revolutionizing the way science is conducted. The potential for scientific breakthroughs with significant implications for society has never been greater. Opportunities in Biology reports on the state of the new biology, taking a detailed look at the disciplines of biology; examining the advances made in medicine, agriculture, and other fields; and pointing out promising research opportunities. Authored by an expert panel representing a variety of viewpoints, this volume also offers recommendations on how to meet the infrastructure needsâ€for funding, effective information systems, and other supportâ€of future biology research. Exploring what has been accomplished and what is on the horizon, Opportunities in Biology is an indispensable resource for students, teachers, and researchers in all subdisciplines of biology as well as for research administrators and those in funding agencies.
  advances in dna technology: DNA Technology I. Edward Alcamo, 2001 Gives the educated layperson a survey of DNA by presenting a brief history of genetics, an outline of techniques, and indications of breakthroughs in cloning and other DNA advances. This book helps students, business people, lawyers, and jurists gain confidence in their ability to understand and appreciate DNA technology and human genetics.
  advances in dna technology: DNA James D. Watson, Andrew Berry, 2009-01-21 Fifty years ago, James D. Watson, then just twentyfour, helped launch the greatest ongoing scientific quest of our time. Now, with unique authority and sweeping vision, he gives us the first full account of the genetic revolution—from Mendel’s garden to the double helix to the sequencing of the human genome and beyond. Watson’s lively, panoramic narrative begins with the fanciful speculations of the ancients as to why “like begets like” before skipping ahead to 1866, when an Austrian monk named Gregor Mendel first deduced the basic laws of inheritance. But genetics as we recognize it today—with its capacity, both thrilling and sobering, to manipulate the very essence of living things—came into being only with the rise of molecular investigations culminating in the breakthrough discovery of the structure of DNA, for which Watson shared a Nobel prize in 1962. In the DNA molecule’s graceful curves was the key to a whole new science. Having shown that the secret of life is chemical, modern genetics has set mankind off on a journey unimaginable just a few decades ago. Watson provides the general reader with clear explanations of molecular processes and emerging technologies. He shows us how DNA continues to alter our understanding of human origins, and of our identities as groups and as individuals. And with the insight of one who has remained close to every advance in research since the double helix, he reveals how genetics has unleashed a wealth of possibilities to alter the human condition—from genetically modified foods to genetically modified babies—and transformed itself from a domain of pure research into one of big business as well. It is a sometimes topsy-turvy world full of great minds and great egos, driven by ambitions to improve the human condition as well as to improve investment portfolios, a world vividly captured in these pages. Facing a future of choices and social and ethical implications of which we dare not remain uninformed, we could have no better guide than James Watson, who leads us with the same bravura storytelling that made The Double Helix one of the most successful books on science ever published. Infused with a scientist’s awe at nature’s marvels and a humanist’s profound sympathies, DNA is destined to become the classic telling of the defining scientific saga of our age.
  advances in dna technology: Mammography and Beyond National Research Council, Division on Earth and Life Studies, Institute of Medicine, National Cancer Policy Board, Committee on Technologies for the Early Detection of Breast Cancer, 2001-07-23 Each year more than 180,000 new cases of breast cancer are diagnosed in women in the U.S. If cancer is detected when small and local, treatment options are less dangerous, intrusive, and costly-and more likely to lead to a cure. Yet those simple facts belie the complexity of developing and disseminating acceptable techniques for breast cancer diagnosis. Even the most exciting new technologies remain clouded with uncertainty. Mammography and Beyond provides a comprehensive and up-to-date perspective on the state of breast cancer screening and diagnosis and recommends steps for developing the most reliable breast cancer detection methods possible. This book reviews the dramatic expansion of breast cancer awareness and screening, examining the capabilities and limitations of current and emerging technologies for breast cancer detection and their effectiveness at actually reducing deaths. The committee discusses issues including national policy toward breast cancer detection, roles of public and private agencies, problems in determining the success of a technique, availability of detection methods to specific populations of women, women's experience during the detection process, cost-benefit analyses, and more. Examining current practices and specifying research and other needs, Mammography and Beyond will be an indispensable resource to policy makers, public health officials, medical practitioners, researchers, women's health advocates, and concerned women and their families.
  advances in dna technology: Forensic DNA Applications Dragan Primorac, Moses Schanfield, 2014-01-29 Forensic DNA Applications: An Interdisciplinary Perspective was developed as an outgrowth of a conference held by the International Society of Applied Biological Sciences. The topic was human genome–based applications in forensic science, anthropology, and individualized medicine. Assembling the contributions of contributors from numerous regions around the world, this volume is designed as both a textbook for forensic molecular biology students and a reference for practitioners and those in the legal system. The book begins with the history and development of DNA typing and profiling for criminal and civil purposes. It discusses the statistical interpretation of results with case examples, mitochondrial DNA testing, Y single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs), and X SNP and STR testing. It also explores low copy number DNA typing, mixtures, and quality assurance and control. The second section examines the collection and preservation of biological evidence under a variety of different circumstances and the identification of human remains—including in mass disaster settings. It discusses applications to bioterrorism investigations, animal DNA testing in criminal cases, pedigree questions and wildlife forensic problems, applications in forensic entomology, and forensic botany. The third section explores recent developments and new technologies, including the rigorous identification of tissue of origin, mtDNA profiling using immobilized probe strips, chips and next-generation sequencing, the use of SNPs to ascertain phenotypic characteristics, and the molecular autopsy that looks at aspects of toxicogenetics and pharmacogenetics. The book concludes with a discussion on law, ethics, and policy. It examines the use of DNA evidence in the criminal justice system in both the United States and Europe, ethical issues in forensic laboratory practices, familial searches, DNA databases, ancestry searches, physical phenotyping, and report writing. The contributors also examine DNA applications in immigration and human trafficking cases and international perspectives on DNA databases.
  advances in dna technology: Biodefense in the Age of Synthetic Biology National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Board on Life Sciences, Board on Chemical Sciences and Technology, Committee on Strategies for Identifying and Addressing Potential Biodefense Vulnerabilities Posed by Synthetic Biology, 2019-01-05 Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.
  advances in dna technology: Human Genome Editing National Academies of Sciences, Engineering, and Medicine, National Academy of Medicine, National Academy of Sciences, Committee on Human Gene Editing: Scientific, Medical, and Ethical Considerations, 2017-08-13 Genome editing is a powerful new tool for making precise alterations to an organism's genetic material. Recent scientific advances have made genome editing more efficient, precise, and flexible than ever before. These advances have spurred an explosion of interest from around the globe in the possible ways in which genome editing can improve human health. The speed at which these technologies are being developed and applied has led many policymakers and stakeholders to express concern about whether appropriate systems are in place to govern these technologies and how and when the public should be engaged in these decisions. Human Genome Editing considers important questions about the human application of genome editing including: balancing potential benefits with unintended risks, governing the use of genome editing, incorporating societal values into clinical applications and policy decisions, and respecting the inevitable differences across nations and cultures that will shape how and whether to use these new technologies. This report proposes criteria for heritable germline editing, provides conclusions on the crucial need for public education and engagement, and presents 7 general principles for the governance of human genome editing.
  advances in dna technology: The Gene Wars Robert M. Cook-Deegan, 1994 Cook-Deegan, a former director of the Biomedical Ethics Advisory Committee of the US Congress and an advisor to the National Center for Human Genome Research, gives a firsthand account of the struggle to launch the Human Genome Project. Using primary documents and interviews, Cook-Deegan explains scientific details, chronicles the origins of the project, covers the conflicts and partnerships between the organizations involved, and examines ethical, legal, and social issues of DNA research. Includes bandw photos. Annotation copyright by Book News, Inc., Portland, OR
  advances in dna technology: Advances in Synthetic Biology Vijai Singh, 2020-04-13 This book addresses the design of emerging conceptual tools, technologies and systems including novel synthetic parts, devices, circuits, oscillators, biological gates, and small regulatory RNAs (riboregulators and riboswitches), which serve as versatile control elements for regulating gene expression. Synthetic biology, a rapidly growing field that involves the application of engineering principles in biology, is now being used to develop novel systems for a wide range of applications including diagnostics, cell reprogramming, therapeutics, enzymes, vaccines, biomaterials, biofuels, fine chemicals and many more. The book subsequently summarizes recent developments in technologies for assembling synthetic genomes, minimal genomes, synthetic biology toolboxes, CRISPR-Cas systems, cell-free protein synthesis systems and microfluidics. Accordingly, it offers a valuable resource not only for beginners in synthetic biology, but also for researchers, students, scientists, clinicians, stakeholders and policymakers interested in the potential held by synthetic biology.
  advances in dna technology: Forensic Genetics in the Governance of Crime Helena Machado, Rafaela Granja, 2020-01-28 This open access book uses a critical sociological perspective to explore contemporary ways of reformulating the governance of crime through genetics. Through the lens of scientific knowledge and genetic technology, Machado and Granja offer a unique perspective on current trends in crime governance. They explore the place and role of genetics in criminal justice systems, and show how classical and contemporary social theory can help address challenges posed by social processes and interactions generated by the uses, meanings, and expectations attributed to genetics in the governance of crime. Cutting-edge methods and research techniques are also integrated to address crucial aspects of this social reality. Finally, the authors examine new challenges emerging from recent paradigm shifts within forensic genetics, moving away from the construction of evidence as presented in court to the production of intelligence guiding criminal investigations.
  advances in dna technology: DNA polymerases in Biotechnology Zvi Kelman, Andrew F Gardner, 2015-03-18 DNA polymerases are core tools for molecular biology including PCR, whole genome amplification, DNA sequencing and genotyping. Research has focused on discovery of novel DNA polymerases, characterization of DNA polymerase biochemistry and development of new replication assays. These studies have accelerated DNA polymerase engineering for biotechnology. For example, DNA polymerases have been engineered for increased speed and fidelity in PCR while lowering amplification sequence bias. Inhibitor resistant DNA polymerase variants enable PCR directly from tissue (i.e. blood). Design of DNA polymerases that efficiently incorporate modified nucleotide have been critical for development of next generation DNA sequencing, synthetic biology and other labeling and detection technologies. The Frontiers in Microbiology Research Topic on DNA polymerases in Biotechnology aims to capture current research on DNA polymerases and their use in emerging technologies.
  advances in dna technology: Forensic DNA Typing John M. Butler, 2005-02-08 Forensic DNA Typing, Second Edition, is the only book available that specifically covers detailed information on mitochondrial DNA and the Y chromosome. It examines the science of current forensic DNA typing methods by focusing on the biology, technology, and genetic interpretation of short tandem repeat (STR) markers, which encompass the most common forensic DNA analysis methods used today. The book covers topics from introductory level right up to cutting edge research. High-profile cases are addressed throughout the text, near the sections dealing with the science or issues behind these cases. Ten new chapters have been added to accommodate the explosion of new information since the turn of the century. These additional chapters cover statistical genetic analysis of DNA data, an emerging field of interest to DNA research. Several chapters on statistical analysis of short tandem repeat (STR) typing data have been contributed by Dr. George Carmody, a well-respected professor in forensic genetics. Specific examples make the concepts of population genetics more understandable. This book will be of interest to researchers and practitioners in forensic DNA analysis, forensic scientists, population geneticists, military and private and public forensic laboratories (for identifying individuals through remains), and students of forensic science. *The only book available that specifically covers detailed information on mitochondrial DNA and the Y chromosome*Chapters cover the topic from introductory level right up to cutting edge research*High-profile cases are addressed throughout the book, near the sections dealing with the science or issues behind these cases*NEW TO THIS EDITION: D.N.A. Boxes--boxed Data, Notes & Applications sections throughout the book offer higher levels of detail on specific questions
  advances in dna technology: Fundamentals of Forensic DNA Typing John M. Butler, 2009-09-30 Fundamentals of Forensic DNA Typing is written with a broad viewpoint. It examines the methods of current forensic DNA typing, focusing on short tandem repeats (STRs). It encompasses current forensic DNA analysis methods, as well as biology, technology and genetic interpretation. This book reviews the methods of forensic DNA testing used in the first two decades since early 1980's, and it offers perspectives on future trends in this field, including new genetic markers and new technologies. Furthermore, it explains the process of DNA testing from collection of samples through DNA extraction, DNA quantitation, DNA amplification, and statistical interpretation. The book also discusses DNA databases, which play an important role in law enforcement investigations. In addition, there is a discussion about ethical concerns in retaining DNA profiles and the issues involved when people use a database to search for close relatives. Students of forensic DNA analysis, forensic scientists, and members of the law enforcement and legal professions who want to know more about STR typing will find this book invaluable. - Includes a glossary with over 400 terms for quick reference of unfamiliar terms as well as an acronym guide to decipher the DNA dialect - Continues in the style of Forensic DNA Typing, 2e, with high-profile cases addressed in D.N.A.Boxes-- Data, Notes & Applications sections throughout - Ancillaries include: instructor manual Web site, with tailored set of 1000+ PowerPoint slides (including figures), links to online training websites and a test bank with key
  advances in dna technology: Gene Drives on the Horizon National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Board on Life Sciences, Committee on Gene Drive Research in Non-Human Organisms: Recommendations for Responsible Conduct, 2016-08-28 Research on gene drive systems is rapidly advancing. Many proposed applications of gene drive research aim to solve environmental and public health challenges, including the reduction of poverty and the burden of vector-borne diseases, such as malaria and dengue, which disproportionately impact low and middle income countries. However, due to their intrinsic qualities of rapid spread and irreversibility, gene drive systems raise many questions with respect to their safety relative to public and environmental health. Because gene drive systems are designed to alter the environments we share in ways that will be hard to anticipate and impossible to completely roll back, questions about the ethics surrounding use of this research are complex and will require very careful exploration. Gene Drives on the Horizon outlines the state of knowledge relative to the science, ethics, public engagement, and risk assessment as they pertain to research directions of gene drive systems and governance of the research process. This report offers principles for responsible practices of gene drive research and related applications for use by investigators, their institutions, the research funders, and regulators.
  advances in dna technology: Safety of Genetically Engineered Foods National Research Council, Institute of Medicine, Board on Agriculture and Natural Resources, Food and Nutrition Board, Board on Life Sciences, Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health, 2004-07-08 Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
  advances in dna technology: From Genes to Genomes Jeremy W. Dale, Malcolm von Schantz, 2002-10-08 Rapid advances in our understanding of genetics have required that new books contain topics such as the concept and theory of gene cloning, transgenics, genomics, and various other coverage of traditional and contemporary subjects. Although there is an abundance of textbooks that cover introductory genetics and advanced courses in genetics, there is a noticeable gap at the intermediate (second year) level. In the past gene structure, function and expression were taught at final year /postgraduate level, but the rapid advances in our understanding of genetics has encouraged courses to change considerably. Over recent years these topics have filtered down the curriculum and are currently taught as core topics at second year, with a corresponding change in textbook requirements. Where once second year students were restricted to learning about the concept and theory of gene cloning, now they routinely clone genes for themselves as part of their practical assignments. Genes to Genomics will fill the gap, cover much of the same ground as previous titles, but go further on contemporary topics like transgenics, sequence comparison and analysis of variation. * A concise, up to date textbook that provides a balanced coverage of traditional and contemporary topics taught within intermediate courses in molecular genetics * Jeremy Dale has a proven track record as the successful author of Molecular Genetics of Bacteria * Genes to Genomics will include a series of feature box-outs that will examine some of the topical issues related to the scientific concepts and examples explored within the text * A range of questions and exercises including worked examples and web-based practicals * An accompanying web site will allow the authors to keep their audience up to date in the areas that are prone to date most rapidly between successive editions of the textbook. It will also include the illustrations and images from the textbook, in addition to worked examples, answers to questions within the book, and links to related websites of key interest.
  advances in dna technology: Einstein's Clocks and Poincare's Maps: Empires of Time Peter Galison, 2004-09-14 In Galison's telling of science, the meters and wires and epoxy and solder come alive as characters, along with physicists, engineers, technicians and others . . . Galison has unearthed fascinating material. (New York Times).
  advances in dna technology: Oversight and Review of Clinical Gene Transfer Protocols Institute of Medicine, Board on Health Sciences Policy, Committee on the Independent Review and Assessment of the Activities of the NIH Recombinant DNA Advisory Committee, 2014-03-27 Gene transfer research is a rapidly advancing field that involves the introduction of a genetic sequence into a human subject for research or diagnostic purposes. Clinical gene transfer trials are subject to regulation by the U.S. Food and Drug Administration (FDA) at the federal level and to oversight by institutional review boards (IRBs) and institutional biosafety committees (IBCs) at the local level before human subjects can be enrolled. In addition, at present all researchers and institutions funded by the National Institutes of Health (NIH) are required by NIH guidelines to submit human gene transfer protocols for advisory review by the NIH Recombinant DNA Advisory Committee (RAC). Some protocols are then selected for individual review and public discussion. Oversight and Review of Clinical Gene Transfer Protocols provides an assessment of the state of existing gene transfer science and the current regulatory and policy context under which research is investigated. This report assesses whether the current oversight of individual gene transfer protocols by the RAC continues to be necessary and offers recommendations concerning the criteria the NIH should employ to determine whether individual protocols should receive public review. The focus of this report is on the standards the RAC and NIH should use in exercising its oversight function. Oversight and Review of Clinical Gene Transfer Protocols will assist not only the RAC, but also research institutions and the general public with respect to utilizing and improving existing oversight processes.
  advances in dna technology: DNA Recombination and Repair Paul James Smith, Christopher John Jones, 1999 The processes of DNA recombination and repair are vital to cell integrity - an error can lead to disease such as cancer. It is therefore a large and exciting area of research and is also taught on postgraduate and undergraduate courses. This book is not a comprehensive view of the field, but a selection of the issues currently at the forefront of knowledge.
  advances in dna technology: Advances in Biotechnology Indu Ravi, Mamta Baunthiyal, Jyoti Saxena, 2013-10-21 The book “Advances in Biotechnology” is about recent advances in some of the important fields that are ongoing in certain biotechnological applications. Biotechnology has been quite helpful in keeping pace with the demands of every increasing human population and in improving the quality of human life. Major biotechnological achievements associated with human welfare have been from the fields like genetic engineering; transgenic plants and animals; genomics, proteomics, monoclonal antibodies for the diagnosis of disease, gene therapy etc. Fourteen authoritative chapters written by experts having experience in academics and research on current developments and future trends in biotechnology have been empathized. The book provides a detailed account of various methodologies used in biotechnology i.e. High capacity vectors, DNA sequencing dealing with next generation sequencing, Molecular markers, DNA microarray technology, as well as Proteomics that have revolutionized biotechnology with a wide array of applications. The book not only presents a well-founded explanation of the topics but also aims to present up-to-date reviews of current research efforts, some thoughtful discussions on the potential benefits and risks involved in producing biotechnological products and the challenges of bringing such products to market. It will prove to be an excellent reference work for both academicians and researchers, indicating new starting points to young researchers for new projects in the field. The book is intended for biotechnologist, biologist, researchers, teachers and students of Biosciences and Biotechnology.
  advances in dna technology: Using DNA to Solve Cold Cases U.s. Department of Justice, Office of Justice Programs, National Institute of Justice, 2012-07-18 DNA has proven to be a powerful tool in the fight against crime. DNA evidence can identify suspects, convict the guilty, and exonerate the innocent. Throughout the Nation, criminal justice professionals are discovering that advancements in DNA technology are breathing new life into old, cold, or unsolved criminal cases. Evidence that was previously unsuitable for DNA testing because a biological sample was too small or degraded may now yield a DNA profile. Development of the Combined DNA Index System (CODIS) at the State and national levels enables law enforcement to aid investigations by effectively and efficiently identifying suspects and linking serial crimes to each other. The National Commission on the Future of DNA Evidence made clear, however, that we must dedicate more resources to empower law enforcement to use this technology quickly and effectively. Using DNA to Solve Cold Cases is intended for use by law enforcement and other criminal justice professionals who have the responsibility for reviewing and investigating unsolved cases. This report will provide basic information to assist agencies in the complex process of case review with a specific emphasis on using DNA evidence to solve previously unsolvable crimes. Although DNA is not the only forensic tool that can be valuable to unsolved case investigations, advancements in DNA technology and the success of DNA database systems have inspired law enforcement agencies throughout the country to reevaluate cold cases for DNA evidence. As law enforcement professionals progress through investigations, however, they should keep in mind the array of other technology advancements, such as improved ballistics and fingerprint databases, which may substantially advance a case beyond its original level.
  advances in dna technology: Portable Spectroscopy and Spectrometry, Applications Richard A. Crocombe, Pauline E. Leary, Brooke W. Kammrath, 2021-04-28 The most comprehensive resource available on the many applications of portable spectrometers, including material not found in any other published work Portable Spectroscopy and Spectrometry: Volume Two is an authoritative and up-to-date compendium of the diverse applications for portable spectrometers across numerous disciplines. Whereas Volume One focuses on the specific technologies of the portable spectrometers themselves, Volume Two explores the use of portable instruments in wide range of fields, including pharmaceutical development, clinical research, food analysis, forensic science, geology, astrobiology, cultural heritage and archaeology. Volume Two features contributions by a multidisciplinary team of experts with hands-on experience using portable instruments in their respective areas of expertise. Organized both by instrumentation type and by scientific or technical discipline, 21 detailed chapters cover various applications of portable ion mobility spectrometry (IMS), infrared and near-infrared (NIR) spectroscopy, Raman and x-ray fluorescence (XRF) spectroscopy, smartphone spectroscopy, and many others. Filling a significant gap in literature on the subject, the second volume of Portable Spectroscopy and Spectrometry: Features a significant amount of content published for the first time, or not available in existing literature Brings together work by authors with assorted backgrounds and fields of study Discusses the central role of applications in portable instrument development Covers the algorithms, calibrations, and libraries that are of critical importance to successful applications of portable instruments Includes chapters on portable spectroscopy applications in areas such as the military, agriculture and feed, hazardous materials (HazMat), art conservation, and environmental science Portable Spectroscopy and Spectrometry: Volume Two is an indispensable resource for developers of portable instruments in universities, research institutes, instrument companies, civilian and government purchasers, trainers, operators of portable instruments, and educators and students in portable spectroscopy courses.
  advances in dna technology: New Frontiers and Applications of Synthetic Biology Vijai Singh, 2022-01-12 New Frontiers and Applications of Synthetic Biology presents a collection of chapters from eminent synthetic biologists across the globe who have established experience and expertise working with synthetic biology. This book offers several important areas of synthetic biology which allow us to read and understand easily. It covers the introduction of synthetic biology and design of promoter, new DNA synthesis and sequencing technology, genome assembly, minimal cells, small synthetic RNA, directed evolution, protein engineering, computational tools, de novo synthesis, phage engineering, a sensor for microorganisms, next-generation diagnostic tools, CRISPR-Cas systems, and more. This book is a good source for not only researchers in designing synthetic biology, but also for researchers, students, synthetic biologists, metabolic engineers, genome engineers, clinicians, industrialists, stakeholders and policymakers interested in harnessing the potential of synthetic biology in many areas. - Offers basic understanding and knowledge in several aspects of synthetic biology - Covers state-of-the-art tools and technologies of synthetic biology, including promoter design, DNA synthesis, DNA sequencing, genome design, directed evolution, protein engineering, computational tools, phage design, CRISPR-Cas systems, and more - Discusses the applications of synthetic biology for smart drugs, vaccines, therapeutics, drug discovery, self-assembled materials, cell free systems, microfluidics, and more
  advances in dna technology: Globalization, Biosecurity, and the Future of the Life Sciences National Research Council, Institute of Medicine, Board on Global Health, Policy and Global Affairs, Development, Security, and Cooperation, Committee on Advances in Technology and the Prevention of Their Application to Next Generation Biowarfare Threats, 2006-06-07 Biomedical advances have made it possible to identify and manipulate features of living organisms in useful ways-leading to improvements in public health, agriculture, and other areas. The globalization of scientific and technical expertise also means that many scientists and other individuals around the world are generating breakthroughs in the life sciences and related technologies. The risks posed by bioterrorism and the proliferation of biological weapons capabilities have increased concern about how the rapid advances in genetic engineering and biotechnology could enable the production of biological weapons with unique and unpredictable characteristics. Globalization, Biosecurity, and the Future of Life Sciences examines current trends and future objectives of research in public health, life sciences, and biomedical science that contain applications relevant to developments in biological weapons 5 to 10 years into the future and ways to anticipate, identify, and mitigate these dangers.
  advances in dna technology: Molecular Biotechnology Bernard R. Glick, Jack J. Pasternak, 1998 The second edition explains the principles of recombinant DNA technology as well as other important techniques such as DNA sequencing, the polymerase chain reaction, and the production of monclonal antibodies.
  advances in dna technology: Assessing Genetic Risks Institute of Medicine, Committee on Assessing Genetic Risks, 1994-01-01 Raising hopes for disease treatment and prevention, but also the specter of discrimination and designer genes, genetic testing is potentially one of the most socially explosive developments of our time. This book presents a current assessment of this rapidly evolving field, offering principles for actions and research and recommendations on key issues in genetic testing and screening. Advantages of early genetic knowledge are balanced with issues associated with such knowledge: availability of treatment, privacy and discrimination, personal decision-making, public health objectives, cost, and more. Among the important issues covered: Quality control in genetic testing. Appropriate roles for public agencies, private health practitioners, and laboratories. Value-neutral education and counseling for persons considering testing. Use of test results in insurance, employment, and other settings.
  advances in dna technology: Green Gene Technology Armin Fiechter, Christof Sautter, 2007-06-12 With contributions by numerous experts
  advances in dna technology: A Crack In Creation Jennifer A. Doudna, Samuel H. Sternberg, 2017-06-13 BY THE WINNER OF THE 2020 NOBEL PRIZE IN CHEMISTRY | Finalist for the Los Angeles Times Book Prize “A powerful mix of science and ethics . . . This book is required reading for every concerned citizen—the material it covers should be discussed in schools, colleges, and universities throughout the country.”— New York Review of Books Not since the atomic bomb has a technology so alarmed its inventors that they warned the world about its use. That is, until 2015, when biologist Jennifer Doudna called for a worldwide moratorium on the use of the gene-editing tool CRISPR—a revolutionary new technology that she helped create—to make heritable changes in human embryos. The cheapest, simplest, most effective way of manipulating DNA ever known, CRISPR may well give us the cure to HIV, genetic diseases, and some cancers. Yet even the tiniest changes to DNA could have myriad, unforeseeable consequences, to say nothing of the ethical and societal repercussions of intentionally mutating embryos to create “better” humans. Writing with fellow researcher Sam Sternberg, Doudna—who has since won the Nobel Prize for her CRISPR research—shares the thrilling story of her discovery and describes the enormous responsibility that comes with the power to rewrite the code of life. “The future is in our hands as never before, and this book explains the stakes like no other.” — George Lucas “An invaluable account . . . We owe Doudna several times over.” — Guardian
  advances in dna technology: Protocols in Advanced Genomics and Allied Techniques Aruna Pal, 2021-11-16 This laboratory manual includes the latest tools and techniques involved in genomic research. It starts with an introductory chapter on genomics and the various tools and applications involved. The initial chapters present protocols for basic techniques such as DNA isolation, electrophoresis, PCR, cDNA synthesis etc. The book then goes on to describe more advanced techniques such as next-generation sequencing, exome sequencing, use of RNAi, RNAseq, genome editing, single cell genomics etc. Each topic includes a brief description, information on the principles involved, materials & methods, protocol, and expected results, with diagrams and graphs. All protocols are presented in a very lucid and precise way, to make it easy for readers to follow and replicate them.
  advances in dna technology: Biohazards in Biological Research Alfred Hellman, M. N. Oxman, Robert Pollack, 1973
  advances in dna technology: PCR Technology Henry Erlich, 2015-12-31 This is an introduction to the methods and applications of polymerase chain reaction (PCR) technology, a technology developed by Erlich's group at Cetus and Cetus, and is expected to be used in all biology laboratories worldwide within the next few years.
  advances in dna technology: Review of the Department of Energy's Genomics: GTL Program National Research Council, Division on Earth and Life Studies, Board on Life Sciences, Committee on Review of the Department of Energy's Genomics: GTL Program, 2006-04-19 The U.S. Department of Energy (DOE) promotes scientific and technological innovation to advance the national, economic, and energy security of the United States. Recognizing the potential of microorganisms to offer new energy alternatives and remediate environmental contamination, DOE initiated the Genomes to Life program, now called Genomics: GTL, in 2000. The program aims to develop a predictive understanding of microbial systems that can be used to engineer systems for bioenergy production and environmental remediation, and to understand carbon cycling and sequestration. This report provides an evaluation of the program and its infrastructure plan. Overall, the report finds that GTL's research has resulted in and promises to deliver many more scientific advancements that contribute to the achievement of DOE's goals. However, the DOE's current plan for building four independent facilities for protein production, molecular imaging, proteome analysis, and systems biology sequentially may not be the most cost-effective, efficient, and scientifically optimal way to provide this infrastructure. As an alternative, the report suggests constructing up to four institute-like facilities, each of which integrates the capabilities of all four of the originally planned facility types and focuses on one or two of DOE's mission goals. The alternative infrastructure plan could have an especially high ratio of scientific benefit to cost because the need for technology will be directly tied to the biology goals of the program.
  advances in dna technology: Strengthening Forensic Science in the United States National Research Council, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Policy and Global Affairs, Committee on Science, Technology, and Law, Committee on Identifying the Needs of the Forensic Sciences Community, 2009-07-29 Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.
  advances in dna technology: Advances of DNA Computing in Cryptography Suyel Namasudra, Ganesh Chandra Deka, 2018-09-03 This book discusses the current technologies of cryptography using DNA computing. Various chapters of the book will discuss the basic concepts of cryptography, steganography, basic concepts of DNA and DNA computing, approaches of DNA computing in cryptography, security attacks, practical implementaion of DNA computing, applications of DNA computing in the cloud computing environment, applications of DNA computing for big data, etc. It provides a judicious mix of concepts, solved examples and real life case studies.
Here are 12 new advances in the battle to beat cancer | World …
Feb 27, 2025 · Scientists working to improve the treatment and diagnosis of cancer are beginning to use AI, DNA sequencing and precision oncology among other techniques.

These are the Top 10 Emerging Technologies of 2024 - The …
Jun 25, 2024 · The Forum’s pick of the Top 10 Emerging Technologies of 2024 range from microbial carbon capture to high altitude platform station systems. Here’s what you need to know.

The current state of AI, according to Stanford's AI Index | World ...
Apr 26, 2024 · The report, which is in its seventh edition, covers trends such as technical advancements in AI, public perceptions of the technology and the geopolitical dynamics …

5 innovations that are revolutionizing global healthcare
Feb 22, 2023 · Healthcare innovation is accelerating at an unprecedented scale, particularly in the digital sphere, the World Health Organization says. Advances such as artificial intelligence and …

1. AI for scientific discovery - The World Economic Forum
Jun 25, 2024 · The report highlights breakthroughs in AI, connectivity, and sustainability, such as deep learning, reconfigurable intelligent surfaces, and engineered organisms to combat …

How technology advances corporate sustainability | World …
Sep 24, 2024 · Innovation in sustainability in the corporate sphere use AI, digital integration and biotech, driving transparency, collaboration and environmental goals.

Top 10 tech trends for next 10 years (according to McKinsey)
Oct 12, 2021 · We’ll experience more technological progress in the coming decade than we did in the preceding 100 years put together, says McKinsey. And 10 tech trends will dominate this …

How technology convergence is redefining the future
Jan 21, 2025 · Innovation thrives on technology convergence or combination, convergence and compounding. Mastering these can tackle global challenges and shape technology.

How AI and other technology changed our lives – a timeline
Mar 14, 2024 · Here are some of the top technological advancements that have shaped our world in just the past four decades -- from the world wide web to AI.

Technological advancements and human development: A tale of …
Jan 6, 2025 · Technological advancements and human development are reshaping industries and daily life, but its benefits are unevenly distributed, exemplified by the global digital divide.

Here are 12 new advances in the battle to beat cancer | World …
Feb 27, 2025 · Scientists working to improve the treatment and diagnosis of cancer are beginning to use AI, DNA sequencing and precision oncology among other techniques.

These are the Top 10 Emerging Technologies of 2024 - The World …
Jun 25, 2024 · The Forum’s pick of the Top 10 Emerging Technologies of 2024 range from microbial carbon capture to high altitude platform station systems. Here’s what you need to know.

The current state of AI, according to Stanford's AI Index | World ...
Apr 26, 2024 · The report, which is in its seventh edition, covers trends such as technical advancements in AI, public perceptions of the technology and the geopolitical dynamics …

5 innovations that are revolutionizing global healthcare
Feb 22, 2023 · Healthcare innovation is accelerating at an unprecedented scale, particularly in the digital sphere, the World Health Organization says. Advances such as artificial intelligence and …

1. AI for scientific discovery - The World Economic Forum
Jun 25, 2024 · The report highlights breakthroughs in AI, connectivity, and sustainability, such as deep learning, reconfigurable intelligent surfaces, and engineered organisms to combat …

How technology advances corporate sustainability | World …
Sep 24, 2024 · Innovation in sustainability in the corporate sphere use AI, digital integration and biotech, driving transparency, collaboration and environmental goals.

Top 10 tech trends for next 10 years (according to McKinsey)
Oct 12, 2021 · We’ll experience more technological progress in the coming decade than we did in the preceding 100 years put together, says McKinsey. And 10 tech trends will dominate this …

How technology convergence is redefining the future
Jan 21, 2025 · Innovation thrives on technology convergence or combination, convergence and compounding. Mastering these can tackle global challenges and shape technology.

How AI and other technology changed our lives – a timeline
Mar 14, 2024 · Here are some of the top technological advancements that have shaped our world in just the past four decades -- from the world wide web to AI.

Technological advancements and human development: A tale of …
Jan 6, 2025 · Technological advancements and human development are reshaping industries and daily life, but its benefits are unevenly distributed, exemplified by the global digital divide.