Analysis Of Repeated Measures

Advertisement



  analysis of repeated measures: Statistical Methods for the Analysis of Repeated Measurements Charles S. Davis, 2008-01-10 A comprehensive introduction to a wide variety of statistical methods for the analysis of repeated measurements. It is designed to be both a useful reference for practitioners and a textbook for a graduate-level course focused on methods for the analysis of repeated measurements. The important features of this book include a comprehensive coverage of classical and recent methods for continuous and categorical outcome variables; numerous homework problems at the end of each chapter; and the extensive use of real data sets in examples and homework problems.
  analysis of repeated measures: Analysis of Repeated Measures Martin J. Crowder, David J. Hand, 2017-10-24 Repeated measures data arise when the same characteristic is measured on each case or subject at several times or under several conditions. There is a multitude of techniques available for analysing such data and in the past this has led to some confusion. This book describes the whole spectrum of approaches, beginning with very simple and crude methods, working through intermediate techniques commonly used by consultant statisticians, and concluding with more recent and advanced methods. Those covered include multiple testing, response feature analysis, univariate analysis of variance approaches, multivariate analysis of variance approaches, regression models, two-stage line models, approaches to categorical data and techniques for analysing crossover designs. The theory is illustrated with examples, using real data brought to the authors during their work as statistical consultants.
  analysis of repeated measures: Applied Statistics in Agricultural, Biological, and Environmental Sciences Barry Glaz, Kathleen M. Yeater, 2020-01-22 Better experimental design and statistical analysis make for more robust science. A thorough understanding of modern statistical methods can mean the difference between discovering and missing crucial results and conclusions in your research, and can shape the course of your entire research career. With Applied Statistics, Barry Glaz and Kathleen M. Yeater have worked with a team of expert authors to create a comprehensive text for graduate students and practicing scientists in the agricultural, biological, and environmental sciences. The contributors cover fundamental concepts and methodologies of experimental design and analysis, and also delve into advanced statistical topics, all explored by analyzing real agronomic data with practical and creative approaches using available software tools. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.
  analysis of repeated measures: ANOVA Ellen R. Girden, 1992 Focusing on situations in which analysis of variance (ANOVA) involving the repeated measurement of separate groups of individuals is needed, Girden reveals the advantages, disadvantages, and counterbalancing issues of repeated measures situations. Using additive and nonadditive models to guide the analysis in each chapter, the book covers such topics as the rationale for partitioning the sum of squares, detailed analyses to facilitate the interpretation of computer printouts, the rationale for the F ratios in terms of expected means squares, validity assumptions for sphericity or circularity and approximate tests to perform when sphericity is not met.
  analysis of repeated measures: Multivariate Analysis of Variance and Repeated Measures David J. Hand, C.C. Taylor, 1987-05-01 This book describes a practical aproach to univariate and multivariate analysis of variance. It starts with a general non-mathematical account of the fundamental theories and this is followed by a discussion of a series of examples using real data sets from the authors' own work in clinical trials, psychology and industry. Included are discussions of factorial and nested designs, structures on the multiple dependent variables measured on each subject, repeated measures analyses, covariates, choice of text statistic and simultaneous test procedures.
  analysis of repeated measures: Longitudinal Data Analysis Garrett Fitzmaurice, Marie Davidian, Geert Verbeke, Geert Molenberghs, 2008-08-11 Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
  analysis of repeated measures: Linear and Nonlinear Models for the Analysis of Repeated Measurements Edward Vonesh, Vernon M. Chinchilli, 1996-11-01 Integrates the latest theory, methodology and applications related to the design and analysis of repeated measurement. The text covers a broad range of topics, including the analysis of repeated measures design, general crossover designs, and linear and nonlinear regression models. It also contains a 3.5 IBM compatible disk, with software to implement immediately the techniques.
  analysis of repeated measures: Nonlinear Models for Repeated Measurement Data Marie Davidian, 2017-11-01 Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
  analysis of repeated measures: Experimental Design and the Analysis of Variance Robert K. Leik, 1997-04-19 Why is this Book a Useful Supplement for Your Statistics Course? Most core statistics texts cover subjects like analysis of variance and regression, but not in much detail. This book, as part of our Series in Research Methods and Statistics, provides you with the flexibility to cover ANOVA more thoroughly, but without financially overburdening your students.
  analysis of repeated measures: Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials Toshiro Tango, 2017-09-14 Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials is the first book focused on the application of generalized linear mixed models and its related models in the statistical design and analysis of repeated measures from randomized controlled trials. The author introduces a new repeated measures design called S:T design combined with mixed models as a practical and useful framework of parallel group RCT design because of easy handling of missing data and sample size reduction. The book emphasizes practical, rather than theoretical, aspects of statistical analyses and the interpretation of results. It includes chapters in which the author describes some old-fashioned analysis designs that have been in the literature and compares the results with those obtained from the corresponding mixed models. The book will be of interest to biostatisticians, researchers, and graduate students in the medical and health sciences who are involved in clinical trials. Author Website:Data sets and programs used in the book are available at http://www.medstat.jp/downloadrepeatedcrc.html
  analysis of repeated measures: Repeated Measures Design for Empirical Researchers J. P. Verma, 2015-08-31 Introduces the applications of repeated measures design processes with the popular IBM® SPSS® software Repeated Measures Design for Empirical Researchers presents comprehensive coverage of the formation of research questions and the analysis of repeated measures using IBM SPSS and also includes the solutions necessary for understanding situations where the designs can be used. In addition to explaining the computation involved in each design, the book presents a unique discussion on how to conceptualize research problems as well as identify appropriate repeated measures designs for research purposes. Featuring practical examples from a multitude of domains including psychology, the social sciences, management, and sports science, the book helps readers better understand the associated theories and methodologies of repeated measures design processes. The book covers various fundamental concepts involved in the design of experiments, basic statistical designs, computational details, differentiating independent and repeated measures designs, and testing assumptions. Along with an introduction to IBM SPSS software, Repeated Measures Design for Empirical Researchers includes: A discussion of the popular repeated measures designs frequently used by researchers, such as one-way repeated measures ANOVA, two-way repeated measures design, two-way mixed design, and mixed design with two-way MANOVA Coverage of sample size determination for the successful implementation of designing and analyzing a repeated measures study A step-by-step guide to analyzing the data obtained with real-world examples throughout to illustrate the underlying advantages and assumptions A companion website with supplementary IBM SPSS data sets and programming solutions as well as additional case studies Repeated Measures Design for Empirical Researchers is a useful textbook for graduate- and PhD-level students majoring in biostatistics, the social sciences, psychology, medicine, management, sports, physical education, and health. The book is also an excellent reference for professionals interested in experimental designs and statistical sciences as well as statistical consultants and practitioners from other fields including biological, medical, agricultural, and horticultural sciences. J. P. Verma, PhD, is Professor of Statistics and Director of the Center for Advanced Studies at Lakshmibai National Institute of Physical Education, India. Professor Verma is an active researcher in sports modeling and data analysis and has conducted many workshops on research methodology, research designs, multivariate analysis, statistical modeling, and data analysis for students of management, physical education, social science, and economics. He is the author of Statistics for Exercise Science and Health with Microsoft® Office Excel®, also published by Wiley.
  analysis of repeated measures: Categorical Data Analysis by Example Graham J. G. Upton, 2016-11-14 Introduces the key concepts in the analysis of categoricaldata with illustrative examples and accompanying R code This book is aimed at all those who wish to discover how to analyze categorical data without getting immersed in complicated mathematics and without needing to wade through a large amount of prose. It is aimed at researchers with their own data ready to be analyzed and at students who would like an approachable alternative view of the subject. Each new topic in categorical data analysis is illustrated with an example that readers can apply to their own sets of data. In many cases, R code is given and excerpts from the resulting output are presented. In the context of log-linear models for cross-tabulations, two specialties of the house have been included: the use of cobweb diagrams to get visual information concerning significant interactions, and a procedure for detecting outlier category combinations. The R code used for these is available and may be freely adapted. In addition, this book: Uses an example to illustrate each new topic in categorical data Provides a clear explanation of an important subject Is understandable to most readers with minimal statistical and mathematical backgrounds Contains examples that are accompanied by R code and resulting output Includes starred sections that provide more background details for interested readers Categorical Data Analysis by Example is a reference for students in statistics and researchers in other disciplines, especially the social sciences, who use categorical data. This book is also a reference for practitioners in market research, medicine, and other fields.
  analysis of repeated measures: Modeling Intraindividual Variability With Repeated Measures Data Scott L. Hershberger, D.S. Moskowitz, 2013-06-17 This book examines how individuals behave across time and to what degree that behavior changes, fluctuates, or remains stable. It features the most current methods on modeling repeated measures data as reported by a distinguished group of experts in the field. The goal is to make the latest techniques used to assess intraindividual variability accessible to a wide range of researchers. Each chapter is written in a user-friendly style such that even the novice data analyst can easily apply the techniques. Each chapter features: a minimum discussion of mathematical detail; an empirical example applying the technique; and a discussion of the software related to that technique. Content highlights include analysis of mixed, multi-level, structural equation, and categorical data models. It is ideal for researchers, professionals, and students working with repeated measures data from the social and behavioral sciences, business, or biological sciences.
  analysis of repeated measures: Bayesian Methods for Repeated Measures Lyle D. Broemeling, 2018-04 Analyze Repeated Measures Studies Using Bayesian Techniques Going beyond standard non-Bayesian books, Bayesian Methods for Repeated Measures presents the main ideas for the analysis of repeated measures and associated designs from a Bayesian viewpoint. It describes many inferential methods for analyzing repeated measures in various scientific areas, especially biostatistics. The author takes a practical approach to the analysis of repeated measures. He bases all the computing and analysis on the WinBUGS package, which provides readers with a platform that efficiently uses prior information. The book includes the WinBUGS code needed to implement posterior analysis and offers the code for download online. Accessible to both graduate students in statistics and consulting statisticians, the book introduces Bayesian regression techniques, preliminary concepts and techniques fundamental to the analysis of repeated measures, and the most important topic for repeated measures studies: linear models. It presents an in-depth explanation of estimating the mean profile for repeated measures studies, discusses choosing and estimating the covariance structure of the response, and expands the representation of a repeated measure to general mixed linear models. The author also explains the Bayesian analysis of categorical response data in a repeated measures study, Bayesian analysis for repeated measures when the mean profile is nonlinear, and a Bayesian approach to missing values in the response variable.
  analysis of repeated measures: Encyclopedia of Research Design Neil J. Salkind, 2010-06-22 Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases.--Publisher's description.
  analysis of repeated measures: Research Methods and Statistics Janie H. Wilson, Shauna W. Joye, 2016-07-21 This innovative text offers a completely integrated approach to teaching research methods and statistics by presenting a research question accompanied by the appropriate methods and statistical procedures needed to address it. Research questions and designs become more complex as chapters progress, building on simpler questions to reinforce student learning. Using a conversational style and research examples from published works, this comprehensive book walks readers through the entire research process and includes ample pedagogical support for SPSS, Excel, and APA style.
  analysis of repeated measures: Methods and Applications of Longitudinal Data Analysis Xian Liu, 2015-09-01 Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.
  analysis of repeated measures: Longitudinal Analysis Lesa Hoffman, 2015-01-30 Longitudinal Analysis provides an accessible, application-oriented treatment of introductory and advanced linear models for within-person fluctuation and change. Organized by research design and data type, the text uses in-depth examples to provide a complete description of the model-building process. The core longitudinal models and their extensions are presented within a multilevel modeling framework, paying careful attention to the modeling concerns that are unique to longitudinal data. Written in a conversational style, the text provides verbal and visual interpretation of model equations to aid in their translation to empirical research results. Overviews and summaries, boldfaced key terms, and review questions will help readers synthesize the key concepts in each chapter. Written for non-mathematically-oriented readers, this text features: A description of the data manipulation steps required prior to model estimation so readers can more easily apply the steps to their own data An emphasis on how the terminology, interpretation, and estimation of familiar general linear models relates to those of more complex models for longitudinal data Integrated model comparisons, effect sizes, and statistical inference in each example to strengthen readers’ understanding of the overall model-building process Sample results sections for each example to provide useful templates for published reports Examples using both real and simulated data in the text, along with syntax and output for SPSS, SAS, STATA, and Mplus at www.PilesOfVariance.com to help readers apply the models to their own data The book opens with the building blocks of longitudinal analysis—general ideas, the general linear model for between-person analysis, and between- and within-person models for the variance and the options within repeated measures analysis of variance. Section 2 introduces unconditional longitudinal models including alternative covariance structure models to describe within-person fluctuation over time and random effects models for within-person change. Conditional longitudinal models are presented in section 3, including both time-invariant and time-varying predictors. Section 4 reviews advanced applications, including alternative metrics of time in accelerated longitudinal designs, three-level models for multiple dimensions of within-person time, the analysis of individuals in groups over time, and repeated measures designs not involving time. The book concludes with additional considerations and future directions, including an overview of sample size planning and other model extensions for non-normal outcomes and intensive longitudinal data. Class-tested at the University of Nebraska-Lincoln and in intensive summer workshops, this is an ideal text for graduate-level courses on longitudinal analysis or general multilevel modeling taught in psychology, human development and family studies, education, business, and other behavioral, social, and health sciences. The book’s accessible approach will also help those trying to learn on their own. Only familiarity with general linear models (regression, analysis of variance) is needed for this text.
  analysis of repeated measures: Intermediate Statistics Using SPSS Herschel Knapp, 2017-09-14 What statistical test should I use for this kind of data? How do I set up the data? What parameters should I specify when ordering the test? How do I interpret the results? Herschel Knapp′s friendly and approachable guide to real-world statistics answers these questions. Intermediate Statistics Using SPSS is not about abstract statistical theory or the derivation or memorization of statistical formulas–it is about applied statistics. With jargon-free language and clear processing instructions, this text covers the most common statistical functions–from basic to more advanced. Practical exercises at the conclusion of each chapter offer students an opportunity to process viable data sets, write cohesive abstracts in APA style, and build a thorough comprehension of the statistical process. Students will learn by doing with this truly practical approach to statistics.
  analysis of repeated measures: Analysis of Repeated Measures Data M. Ataharul Islam, Rafiqul I Chowdhury, 2017-07-06 This book presents a broad range of statistical techniques to address emerging needs in the field of repeated measures. It also provides a comprehensive overview of extensions of generalized linear models for the bivariate exponential family of distributions, which represent a new development in analysing repeated measures data. The demand for statistical models for correlated outcomes has grown rapidly recently, mainly due to presence of two types of underlying associations: associations between outcomes, and associations between explanatory variables and outcomes. The book systematically addresses key problems arising in the modelling of repeated measures data, bearing in mind those factors that play a major role in estimating the underlying relationships between covariates and outcome variables for correlated outcome data. In addition, it presents new approaches to addressing current challenges in the field of repeated measures and models based on conditional and joint probabilities. Markov models of first and higher orders are used for conditional models in addition to conditional probabilities as a function of covariates. Similarly, joint models are developed using both marginal-conditional probabilities as well as joint probabilities as a function of covariates. In addition to generalized linear models for bivariate outcomes, it highlights extended semi-parametric models for continuous failure time data and their applications in order to include models for a broader range of outcome variables that researchers encounter in various fields. The book further discusses the problem of analysing repeated measures data for failure time in the competing risk framework, which is now taking on an increasingly important role in the field of survival analysis, reliability and actuarial science. Details on how to perform the analyses are included in each chapter and supplemented with newly developed R packages and functions along with SAS codes and macro/IML. It is a valuable resource for researchers, graduate students and other users of statistical techniques for analysing repeated measures data.
  analysis of repeated measures: Mixed-Effects Models in S and S-PLUS José C. Pinheiro, Douglas Bates, 2009-04-15 R, linear models, random, fixed, data, analysis, fit.
  analysis of repeated measures: Research Design & Statistical Analysis Arnold D. Well, Jerome L. Myers, 2003-01-30 Free CD contains several real and artificial data sets used in the book in SPSS, SYSTAT, and ASCII formats--Cover
  analysis of repeated measures: Regression Methods in Biostatistics Eric Vittinghoff, David V. Glidden, Stephen C. Shiboski, Charles E. McCulloch, 2012 This fresh edition, substantially revised and augmented, provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics. The examples used, analyzed using Stata, can be applied to other areas.
  analysis of repeated measures: The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation Bruce B. Frey, 2018-01-29 This encyclopedia is the first major reference guide for students new to the field, covering traditional areas while pointing the way to future developments.
  analysis of repeated measures: Experimental Design and Analysis Steven R. Brown, Lawrence E. Melamed, 1990 Experimental design is one of the most fundamental topics in social science statistics. This book introduces the reader to the elements of experimental design and analysis through careful explanations of the procedures as well as through illustrations using actual examples.
  analysis of repeated measures: Analysis of Longitudinal Data Peter Diggle, Patrick Heagerty, Kung-Yee Liang, Scott Zeger, 2013-03-14 This second edition has been completely revised and expanded to become the most up-to-date and thorough professional reference text in this fast-moving area of biostatistics. It contains an additional two chapters on fully parametric models for discrete repeated measures data and statistical models for time-dependent predictors.
  analysis of repeated measures: Repeated Measures Design for Empirical Researchers J. P. Verma, 2015-08-21 Introduces the applications of repeated measures design processes with the popular IBM® SPSS® software Repeated Measures Design for Empirical Researchers presents comprehensive coverage of the formation of research questions and the analysis of repeated measures using IBM SPSS and also includes the solutions necessary for understanding situations where the designs can be used. In addition to explaining the computation involved in each design, the book presents a unique discussion on how to conceptualize research problems as well as identify appropriate repeated measures designs for research purposes. Featuring practical examples from a multitude of domains including psychology, the social sciences, management, and sports science, the book helps readers better understand the associated theories and methodologies of repeated measures design processes. The book covers various fundamental concepts involved in the design of experiments, basic statistical designs, computational details, differentiating independent and repeated measures designs, and testing assumptions. Along with an introduction to IBM SPSS software, Repeated Measures Design for Empirical Researchers includes: A discussion of the popular repeated measures designs frequently used by researchers, such as one-way repeated measures ANOVA, two-way repeated measures design, two-way mixed design, and mixed design with two-way MANOVA Coverage of sample size determination for the successful implementation of designing and analyzing a repeated measures study A step-by-step guide to analyzing the data obtained with real-world examples throughout to illustrate the underlying advantages and assumptions A companion website with supplementary IBM SPSS data sets and programming solutions as well as additional case studies Repeated Measures Design for Empirical Researchers is a useful textbook for graduate- and PhD-level students majoring in biostatistics, the social sciences, psychology, medicine, management, sports, physical education, and health. The book is also an excellent reference for professionals interested in experimental designs and statistical sciences as well as statistical consultants and practitioners from other fields including biological, medical, agricultural, and horticultural sciences. J. P. Verma, PhD, is Professor of Statistics and Director of the Center for Advanced Studies at Lakshmibai National Institute of Physical Education, India. Professor Verma is an active researcher in sports modeling and data analysis and has conducted many workshops on research methodology, research designs, multivariate analysis, statistical modeling, and data analysis for students of management, physical education, social science, and economics. He is the author of Statistics for Exercise Science and Health with Microsoft® Office Excel®, also published by Wiley.
  analysis of repeated measures: The Reviewer’s Guide to Quantitative Methods in the Social Sciences Gregory R. Hancock, Ralph O. Mueller, Laura M. Stapleton, 2010-04-26 Designed for reviewers of research manuscripts and proposals in the social and behavioral sciences, and beyond, this title includes chapters that address traditional and emerging quantitative methods of data analysis.
  analysis of repeated measures: Practical Longitudinal Data Analysis David J. Hand, 2017-10-06 This text describes regression-based approaches to analyzing longitudinal and repeated measures data. It emphasizes statistical models, discusses the relationships between different approaches, and uses real data to illustrate practical applications. It uses commercially available software when it exists and illustrates the program code and output. The data appendix provides many real data sets-beyond those used for the examples-which can serve as the basis for exercises.
  analysis of repeated measures: Statistical Analysis Quick Reference Guidebook Alan C. Elliott, Wayne A. Woodward, 2007 A practical `cut to the chase′ handbook that quickly explains the when, where, and how of statistical data analysis as it is used for real-world decision-making in a wide variety of disciplines. In this one-stop reference, the authors provide succinct guidelines for performing an analysis, avoiding pitfalls, interpreting results and reporting outcomes.
  analysis of repeated measures: The Prevention and Treatment of Missing Data in Clinical Trials National Research Council, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Panel on Handling Missing Data in Clinical Trials, 2010-12-21 Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
  analysis of repeated measures: Linear and Nonlinear Models for the Analysis of Repeated Measurements Edward Vonesh, Vernon M Chinchilli, 2020-07-02 Integrates the latest theory, methodology and applications related to the design and analysis of repeated measurement. The text covers a broad range of topics, including the analysis of repeated measures design, general crossover designs, and linear and nonlinear regression models. It also contains a 3.5 IBM compatible disk, with software to implement immediately the techniques.
  analysis of repeated measures: Statistical Methods in Psychiatry and Related Fields Ralitza Gueorguieva, 2020-09-30 Data collected in psychiatry and related fields are complex because outcomes are rarely directly observed, there are multiple correlated repeated measures within individuals, there is natural heterogeneity in treatment responses and in other characteristics in the populations. Simple statistical methods do not work well with such data. More advanced statistical methods capture the data complexity better, but are difficult to apply appropriately and correctly by investigators who do not have advanced training in statistics. This book presents, at a non-technical level, several approaches for the analysis of correlated data: mixed models for continuous and categorical outcomes, nonparametric methods for repeated measures and growth mixture models for heterogeneous trajectories over time. Separate chapters are devoted to techniques for multiple comparison correction, analysis in the presence of missing data, adjustment for covariates, assessment of mediator and moderator effects, study design and sample size considerations. The focus is on the assumptions of each method, applicability and interpretation rather than on technical details. Features Provides an overview of intermediate to advanced statistical methods applied to psychiatry. Takes a non-technical approach with mathematical details kept to a minimum. Includes lots of detailed examples from published studies in psychiatry and related fields. Software programs, data sets and output are available on a supplementary website. The intended audience are applied researchers with minimal knowledge of statistics, although the book could also benefit collaborating statisticians. The book, together with the online materials, is a valuable resource aimed at promoting the use of appropriate statistical methods for the analysis of repeated measures data. Ralitza Gueorguieva is a Senior Research Scientist at the Department of Biostatistics, Yale School of Public Health. She has more than 20 years experience in statistical methodology development and collaborations with psychiatrists and other researchers, and is the author of over 130 peer-reviewed publications.
  analysis of repeated measures: Applied Longitudinal Data Analysis Judith D. Singer, John B. Willett, 2003-03-27 By charting changes over time and investigating whether and when events occur, researchers reveal the temporal rhythms of our lives.
  analysis of repeated measures: SAS for Mixed Models Walter W. Stroup, George A. Milliken, Elizabeth A. Claassen, Russell D. Wolfinger, 2018-12-12 Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.
  analysis of repeated measures: Analysis of Observational Health Care Data Using SAS Douglas E. Faries, Andrew C. Leon, Josep Maria Haro, Robert L. Obenchain, 2010 This book guides researchers in performing and presenting high-quality analyses of all kinds of non-randomized studies, including analyses of observational studies, claims database analyses, assessment of registry data, survey data, pharmaco-economic data, and many more applications. The text is sufficiently detailed to provide not only general guidance, but to help the researcher through all of the standard issues that arise in such analyses. Just enough theory is included to allow the reader to understand the pros and cons of alternative approaches and when to use each method. The numerous contributors to this book illustrate, via real-world numerical examples and SAS code, appropriate implementations of alternative methods. The end result is that researchers will learn how to present high-quality and transparent analyses that will lead to fair and objective decisions from observational data. This book is part of the SAS Press program.
  analysis of repeated measures: JMP for Basic Univariate and Multivariate Statistics Ann Lehman, Norm O'Rourke, Larry Hatcher, Edward Stepanski, 2013 Learn how to manage JMP data and perform the statistical analyses most commonly used in research in the social sciences and other fields with JMP for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists, Second Edition. Updated for JMP 10 and including new features on the statistical platforms, this book offers clearly written instructions to guide you through the basic concepts of research and data analysis, enabling you to easily perform statistical analyses and solve problems in real-world research. Step by step, you'll discover how to obtain descriptive and inferential statistics, summarize results clearly in a way that is suitable for publication, perform a wide range of JMP analyses, interpret the results, and more. Topics include screening data for errors selecting subsets computing the coefficient alpha reliability index (Cronbach's alpha) for a multiple-item scale performing bivariate analyses for all types of variables performing a one-way analysis of variance (ANOVA), multiple regression, and a one-way multivariate analysis of variance (MANOVA) Advanced topics include analyzing models with interactions and repeated measures. There is also comprehensive coverage of principle components with emphasis on graphical interpretation. This user-friendly book introduces researchers and students of the social sciences to JMP and to elementary statistical procedures, while the more advanced statistical procedures that are presented make it an invaluable reference guide for experienced researchers as well.
  analysis of repeated measures: Stochastic Models, Statistics and Their Applications Ansgar Steland, Ewaryst Rafajłowicz, Ostap Okhrin, 2019-10-15 This volume presents selected and peer-reviewed contributions from the 14th Workshop on Stochastic Models, Statistics and Their Applications, held in Dresden, Germany, on March 6-8, 2019. Addressing the needs of theoretical and applied researchers alike, the contributions provide an overview of the latest advances and trends in the areas of mathematical statistics and applied probability, and their applications to high-dimensional statistics, econometrics and time series analysis, statistics for stochastic processes, statistical machine learning, big data and data science, random matrix theory, quality control, change-point analysis and detection, finance, copulas, survival analysis and reliability, sequential experiments, empirical processes, and microsimulations. As the book demonstrates, stochastic models and related statistical procedures and algorithms are essential to more comprehensively understanding and solving present-day problems arising in e.g. the natural sciences, machine learning, data science, engineering, image analysis, genetics, econometrics and finance.
  analysis of repeated measures: The SAGE Encyclopedia of Communication Research Methods Mike Allen, 2017-04-11 Communication research is evolving and changing in a world of online journals, open-access, and new ways of obtaining data and conducting experiments via the Internet. Although there are generic encyclopedias describing basic social science research methodologies in general, until now there has been no comprehensive A-to-Z reference work exploring methods specific to communication and media studies. Our entries, authored by key figures in the field, focus on special considerations when applied specifically to communication research, accompanied by engaging examples from the literature of communication, journalism, and media studies. Entries cover every step of the research process, from the creative development of research topics and questions to literature reviews, selection of best methods (whether quantitative, qualitative, or mixed) for analyzing research results and publishing research findings, whether in traditional media or via new media outlets. In addition to expected entries covering the basics of theories and methods traditionally used in communication research, other entries discuss important trends influencing the future of that research, including contemporary practical issues students will face in communication professions, the influences of globalization on research, use of new recording technologies in fieldwork, and the challenges and opportunities related to studying online multi-media environments. Email, texting, cellphone video, and blogging are shown not only as topics of research but also as means of collecting and analyzing data. Still other entries delve into considerations of accountability, copyright, confidentiality, data ownership and security, privacy, and other aspects of conducting an ethical research program. Features: 652 signed entries are contained in an authoritative work spanning four volumes available in choice of electronic or print formats. Although organized A-to-Z, front matter includes a Reader’s Guide grouping entries thematically to help students interested in a specific aspect of communication research to more easily locate directly related entries. Back matter includes a Chronology of the development of the field of communication research; a Resource Guide to classic books, journals, and associations; a Glossary introducing the terminology of the field; and a detailed Index. Entries conclude with References/Further Readings and Cross-References to related entries to guide students further in their research journeys. The Index, Reader’s Guide themes, and Cross-References combine to provide robust search-and-browse in the e-version.
  analysis of repeated measures: Linear Mixed Models Brady T. West, Kathleen B. Welch, Andrzej T Galecki, 2006-11-22 Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav
analysis 与 analyses 有什么区别? - 知乎
也就是说,当analysis 在具体语境中表示抽象概念时,它就成为了不可数名词,本身就没有analyses这个复数形式,二者怎么能互换呢? 当analysis 在具体语境中表示可数名词概念时(有复数形 …

Geopolitics: Geopolitical news, analysis, & discussion - Reddit
Geopolitics is focused on the relationship between politics and territory. Through geopolitics we attempt to analyze and predict the actions and decisions of nations, or other forms of political …

r/StockMarket - Reddit's Front Page of the Stock Market
Welcome to /r/StockMarket! Our objective is to provide short and mid term trade ideas, market analysis & commentary for active traders and investors. Posts about equities, options, forex, …

Alternate Recipes In-Depth Analysis - An Objective Follow-up
Sep 14, 2021 · This analysis in the spreadsheet is completely objective. The post illustrates only one of the many playing styles, the criteria of which are clearly defined in the post - a middle of the …

What is the limit for number of files and data analysis for ... - Reddit
Jun 19, 2024 · Number of Files: You can upload up to 25 files concurrently for analysis. This includes a mix of different types, such as documents, images, and spreadsheets. Data Analysis …

为什么很多人认为TPAMI是人工智能所有领域的顶刊? - 知乎
Dec 15, 2024 · TPAMI全称是IEEE Transactions on Pattern Analysis and Machine Intelligence,从名字就能看出来,它关注的是"模式分析"和"机器智能"这两个大方向。这两个方向恰恰是人工智能最核心 …

The UFO reddit
Aug 31, 2022 · We have declassified documents about anomalous incidents that directly conflict the new AARO report to a point it makes me wonder what they are even doing.

origin怎么进行线性拟合 求步骤和过程? - 知乎
在 Graph 1 为当前激活窗口时,点击 Origin 菜单栏上的 Analysis ——> Fitting ——> Linear Fit ——> Open Dialog。直接点 OK 就可以了。 完成之后,你会在 Graph 1 中看到一条红色的直线 穿过原先的 …

X射线光电子能谱(XPS)
X射线光电子能谱(XPS)是一种用于分析材料表面化学成分和电子状态的先进技术。

Do AI-Based Trading Bots Actually Work for Consistent Profit?
Sep 18, 2023 · Statisitical analysis of human trends in sentiment seems to be a reasonable approach to anticipating changes in sentiment which drives some amount of trading behaviors. Statistics …

analysis 与 analyses 有什么区别? - 知乎
也就是说,当analysis 在具体语境中表示抽象概念时,它就成为了不可数名词,本身就没有analyses这个复数形式,二者怎么能互换呢? 当analysis 在具体语境中表示可数名词概念时(有复数形式analyses),也不是随便能 …

Geopolitics: Geopolitical news, analysis, & discussion - Reddit
Geopolitics is focused on the relationship between politics and territory. Through geopolitics we attempt to analyze and predict the actions and decisions of nations, or …

r/StockMarket - Reddit's Front Page of the Stock Market
Welcome to /r/StockMarket! Our objective is to provide short and mid term trade ideas, market analysis & commentary for active traders and investors. Posts about equities, …

Alternate Recipes In-Depth Analysis - An Objective Follow …
Sep 14, 2021 · This analysis in the spreadsheet is completely objective. The post illustrates only one of the many playing styles, the criteria of which are clearly defined in the post …

What is the limit for number of files and data analysis for
Jun 19, 2024 · Number of Files: You can upload up to 25 files concurrently for analysis. This includes a mix of different types, such as documents, images, and spreadsheets. Data Analysis Limit: …