Application Of Business Analytics

Advertisement



  application of business analytics: Business Analytics Principles, Concepts, and Applications Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 2014-04-23 Learn everything you need to know to start using business analytics and integrating it throughout your organization. Business Analytics Principles, Concepts, and Applications brings together a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. They offer a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, this text demonstrates the use of IBM's menu-based SPSS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself. A valuable resource for all beginning-to-intermediate-level business analysts and business analytics managers; for MBA/Masters' degree students in the field; and for advanced undergraduates majoring in statistics, applied mathematics, or engineering/operations research.
  application of business analytics: Application of Big Data and Business Analytics Sneha Kumari, K.K. Tripathy, Vidya Kumbhar, 2020-12-04 Application of Big Data and Business Analytics uses advanced analytic tools to explore the solutions to problems in society, environment and industry. The chapters within bring together researchers, engineers and practitioners, encompassing a wide and diverse set of topics in almost every field.
  application of business analytics: Sport Business Analytics C. Keith Harrison, Scott Bukstein, 2016-11-18 Developing and implementing a systematic analytics strategy can result in a sustainable competitive advantage within the sport business industry. This timely and relevant book provides practical strategies to collect data and then convert that data into meaningful, value-added information and actionable insights. Its primary objective is to help sport business organizations utilize data-driven decision-making to generate optimal revenue from such areas as ticket sales and corporate partnerships. To that end, the book includes in-depth case studies from such leading sports organizations as the Orlando Magic, Tampa Bay Buccaneers, Duke University, and the Aspire Group. The core purpose of sport business analytics is to convert raw data into information that enables sport business professionals to make strategic business decisions that result in improved company financial performance and a measurable and sustainable competitive advantage. Readers will learn about the role of big data and analytics in: Ticket pricing Season ticket member retention Fan engagement Sponsorship valuation Customer relationship management Digital marketing Market research Data visualization. This book examines changes in the ticketing marketplace and spotlights innovative ticketing strategies used in various sport organizations. It shows how to engage fans with social media and digital analytics, presents techniques to analyze engagement and marketing strategies, and explains how to utilize analytics to leverage fan engagement to enhance revenue for sport organizations. Filled with insightful case studies, this book benefits both sports business professionals and students. The concluding chapter on teaching sport analytics further enhances its value to academics.
  application of business analytics: Business Analytics Principles, Concepts, and Applications with SAS Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 2014-10-07 Responding to a shortage of effective content for teaching business analytics, this text offers a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. Business Analytics Principles, Concepts, and Applications with SAS offers a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, Business Analytics Principles, Concepts, and Applications with SAS demonstrates the use of SAS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself.
  application of business analytics: Applied Business Analytics Nathaniel Lin, 2015 Now that you've collected the data and crunched the numbers, what do you do with all this information? How do you take the fruit of your analytics labor and apply it to business decision making? How do you actually apply the information gleaned from quants and tech teams? Applied Business Analytics will help you find optimal answers to these questions, and bridge the gap between analytics and execution in your organization. Nathaniel Lin explains why analytics value chains often break due to organizational and cultural issues, and offers in the trenches guidance for overcoming these obstacles. You'll learn why a special breed of analytics deciders is indispensable for any organization that seeks to compete on analytics; how to become one of those deciders; and how to identify, foster, support, empower, and reward others who join you. Lin draws on actual cases and examples from his own experience, augmenting them with hands-on examples and exercises to integrate analytics at every level: from top-level business questions to low-level technical details. Along the way, you'll learn how to bring together analytics team members with widely diverse goals, knowledge, and backgrounds. Coverage includes: How analytical and conventional decision making differ -- and the challenging implications How to determine who your analytics deciders are, and ought to be Proven best practices for actually applying analytics to decision-making How to optimize your use of analytics as an analyst, manager, executive, or C-level officer
  application of business analytics: Essentials of Business Analytics Bhimasankaram Pochiraju, Sridhar Seshadri, 2019-07-10 This comprehensive edited volume is the first of its kind, designed to serve as a textbook for long-duration business analytics programs. It can also be used as a guide to the field by practitioners. The book has contributions from experts in top universities and industry. The editors have taken extreme care to ensure continuity across the chapters. The material is organized into three parts: A) Tools, B) Models and C) Applications. In Part A, the tools used by business analysts are described in detail. In Part B, these tools are applied to construct models used to solve business problems. Part C contains detailed applications in various functional areas of business and several case studies. Supporting material can be found in the appendices that develop the pre-requisites for the main text. Every chapter has a business orientation. Typically, each chapter begins with the description of business problems that are transformed into data questions; and methodology is developed to solve these questions. Data analysis is conducted using widely used software, the output and results are clearly explained at each stage of development. These are finally transformed into a business solution. The companion website provides examples, data sets and sample code for each chapter.
  application of business analytics: Data Mining for Business Analytics Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel, 2019-10-14 Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
  application of business analytics: Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence Trivedi, Shrawan Kumar, Dey, Shubhamoy, Kumar, Anil, Panda, Tapan Kumar, 2017-02-14 The development of business intelligence has enhanced the visualization of data to inform and facilitate business management and strategizing. By implementing effective data-driven techniques, this allows for advance reporting tools to cater to company-specific issues and challenges. The Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence is a key resource on the latest advancements in business applications and the use of mining software solutions to achieve optimal decision-making and risk management results. Highlighting innovative studies on data warehousing, business activity monitoring, and text mining, this publication is an ideal reference source for research scholars, management faculty, and practitioners.
  application of business analytics: Data Mining for Business Analytics Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel, 2019-11-05 Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
  application of business analytics: Competing on Analytics Thomas H. Davenport, Jeanne G. Harris, 2007-03-06 You have more information at hand about your business environment than ever before. But are you using it to “out-think” your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new tools to identify their most profitable customers and offer them the right price, to accelerate product innovation, to optimize supply chains, and to identify the true drivers of financial performance. A wealth of examples—from organizations as diverse as Amazon, Barclay’s, Capital One, Harrah’s, Procter & Gamble, Wachovia, and the Boston Red Sox—illuminate how to leverage the power of analytics.
  application of business analytics: Introduction to Business Analytics Using Simulation Jonathan P. Pinder, 2022-02-06 Introduction to Business Analytics Using Simulation, Second Edition employs an innovative strategy to teach business analytics. The book uses simulation modeling and analysis as mechanisms to introduce and link predictive and prescriptive modeling. Because managers can't fully assess what will happen in the future, but must still make decisions, the book treats uncertainty as an essential element in decision-making. Its use of simulation gives readers a superior way of analyzing past data, understanding an uncertain future, and optimizing results to select the best decision. With its focus on uncertainty and variability, this book provides a comprehensive foundation for business analytics. Students will gain a better understanding of fundamental statistical concepts that are essential to marketing research, Six-Sigma, financial analysis, and business analytics. - Teaches managers how they can use business analytics to formulate and solve business problems to enhance managerial decision-making - Explains the processes needed to develop, report and analyze business data - Describes how to use and apply business analytics software - Offers expanded coverage on the value and application of prescriptive analytics - Includes a wealth of illustrative exercises that are newly organized by difficulty level - Winner of the 2017 Textbook and Academic Authors Association's (TAA) Most Promising New Textbook Award in the prior edition
  application of business analytics: The Applied Business Analytics Casebook Matthew J. Drake, 2014 The first collection of cases on big data analytics for supply chain, operations research, and operations management, this reference puts readers in the position of the analytics professional and decision-maker. Perfect for students, practitioners, and certification candidates in SCM, OM, and OR, these short, focused, to-the-point case studies illustrate the entire decision-making process. They provide realistic opportunities to perform analyses, interpret output, and recommend an optimal course of action. Contributed by leading big data experts, the cases in The Applied Business Analytics Casebook covers: Forecasting and statistical analysis: time series forecasting models, regression models, data visualization, and hypothesis testing Optimization and simulation: linear, integer, and nonlinear programming; Monte Carlo simulation and risk analysis; and stochastic optimization Decision analysis: decision making under uncertainty; expected value of perfect information; decision trees; game theory models; AHP; and multi-criteria decision making Advanced business analytics: data warehousing/mining; text mining; neural networks; financial analytics; CRM analytics; and revenue management models
  application of business analytics: A Primer on Business Analytics Yudhvir Seetharam, 2022-01-01 This book will provide a comprehensive overview of business analytics, for those who have either a technical background (quantitative methods) or a practitioner business background. Business analytics, in the context of the 4th Industrial Revolution, is the “new normal” for businesses that operate in this digital age. This book provides a comprehensive primer and overview of the field (and related fields such as Business Intelligence and Data Science). It will discuss the field as it applies to financial institutions, with some minor departures to other industries. Readers will gain understanding and insight into the field of data science, including traditional as well as emerging techniques. Further, many chapters are dedicated to the establishment of a data-driven team – from executive buy-in and corporate governance to managing and quantifying the return of data-driven projects.
  application of business analytics: Customer and Business Analytics Daniel S. Putler, Robert E. Krider, 2012-05-07 Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the tex
  application of business analytics: Big Data Analytics Kiran Chaudhary, Mansaf Alam, 2022-01-19 Big Data Analytics: Applications in Business and Marketing explores the concepts and applications related to marketing and business as well as future research directions. It also examines how this emerging field could be extended to performance management and decision-making. Investment in business and marketing analytics can create value through proper allocation of resources and resource orchestration process. The use of data analytics tools can be used to diagnose and improve performance. The book is divided into five parts. The first part introduces data science, big data, and data analytics. The second part focuses on applications of business analytics including: Big data analytics and algorithm Market basket analysis Anticipating consumer purchase behavior Variation in shopping patterns Big data analytics for market intelligence The third part looks at business intelligence and features an evaluation study of churn prediction models for business Intelligence. The fourth part of the book examines analytics for marketing decision-making and the roles of big data analytics for market intelligence and of consumer behavior. The book concludes with digital marketing, marketing by consumer analytics, web analytics for digital marketing, and smart retailing. This book covers the concepts, applications and research trends of marketing and business analytics with the aim of helping organizations increase profitability by improving decision-making through data analytics.
  application of business analytics: BUSINESS ANALYTICS PURBA HALADY RAO, 2013-07-29 Business Analytics refers to various categories of analytical approaches for modelling different business situations and arriving at solutions and strategies for optimal decision-making in marketing, finance, operations, organizational behaviour and other managerial processes. Thus, Business Analytics today refers to different approaches for modelling and arriving at assessing and predicting risk, predicting market preferences, project feasibility, customer segmentation, inherent and underlying dimensions in consumer preferences, factors leading to probability of purchase, preferred segments in financial and credit card industry, probability of attrition in large organizations, etc.The myriad of modelling and other analytical approaches which constitute Business Analytical applications in Indian Industry today include predominantly:• Determining which attributes in a product are considered significant by the market and which are found to be significantly satisfactory—Gap Analysis.• Analytical Modelling by Factor and Cluster Analysis.• Analytical Modelling by Logistics Regression and Discriminant Analysis.• Segmentation of primary target market by Heuristic Modelling such as RFM (recency, frequency, monetary) analysis.• Segmentation of target market based on large databases using Decision Tree approaches such as CHAID (Chi-square Automatic Interaction Detection) and other Classification and Regression Trees.• Determining Linkages between unobserved constructs such as customer satisfaction and factors leading to it, using Structural Equation Modelling (SEM).• Determining relative preferences in consumer perceptions by Conjoint Analysis.In this book, the author has discussed these analytical approaches following a classroom teaching format, drawing from her extensive teaching experience spanning over 30 years. The book first discusses all important concepts and then case studies are discussed which emulate real-life managerial situations.This textbook is designed to serve the needs of management students for a course in Business Analytics.
  application of business analytics: Business Analytics: Progress On Applications In Asia Pacific Jorge L C Sanz, 2016-09-29 Technological advances in the last five years have allowed organizations to use Business Analytics to provide insights, increase understanding and it is hoped, gain the elusive 'competitive edge'. The rapid development of Business Analytics is impacting all enterprise competences profoundly and classical business professions are being redefined by a much deeper interplay between business and information systems.As computing capabilities for analysis has moved outside the IT glass-house and into the sphere of individual workers, they are no longer the exclusive domain of IT professionals but rather accessible to all employees. Complex open-source data analytics packages and client-level visualization tools deployed in desktops and laptops equip virtually any end-user with the instruments to carry out significant analytical tasks. All the while, the drive to improve 'customer experience' has heightened the demand for data involving customers, providers and entire ecosystems.In response to the proliferation of Business Analytics, a new Center and Masters of Science Program was introduced at the National University of Singapore (NUS). The Center collaborates with over 40 different external partner organizations in Asia-Pacific with which all MSBA students undertake individual projects. Business Analytics: Progress on Applications in Asia Pacific provides a useful picture of the maturity of the Business Analytics domain in Asia Pacific. For more information about the Business Analytics Center at NUS, visit the website at: msba.nus.edu/
  application of business analytics: Behind Every Good Decision Piyanka Jain, Puneet Sharma, 2014-11-05 There is a misconception in business that the only data that matters is BIG data, and that elaborate tools and data scientists are required to extract any practical information. However, nothing could be further from the truth. If you feel that you can’t understand how to read, let alone implement, these complex software programs that crunch the data and spit out more data, that will no longer be a problem! Authors and analytics experts Piyanka Jain and Puneet Sharma demystify the process of business analytics and demonstrate how professionals at any level can take the information at their disposal and in only five simple steps--using only Excel as a tool--make the decision necessary to increase revenue, decrease costs, improve product, or whatever else is being asked of them at that time. In Behind Every Good Decision, you will learn how to: Clarify the business question Lay out a hypothesis-driven plan Pull relevant data Convert it to insights Make decisions that make an impact Packed with examples and exercises, this refreshingly accessible book explains the four fundamental analytic techniques that can help solve a surprising 80 percent of all business problems. It doesn’t take a numbers person to know that is a formula you need!
  application of business analytics: Predictive Business Analytics Lawrence Maisel, Gary Cokins, 2013-09-26 Discover the breakthrough tool your company can use to make winning decisions This forward-thinking book addresses the emergence of predictive business analytics, how it can help redefine the way your organization operates, and many of the misconceptions that impede the adoption of this new management capability. Filled with case examples, Predictive Business Analytics defines ways in which specific industries have applied these techniques and tools and how predictive business analytics can complement other financial applications such as budgeting, forecasting, and performance reporting. Examines how predictive business analytics can help your organization understand its various drivers of performance, their relationship to future outcomes, and improve managerial decision-making Looks at how to develop new insights and understand business performance based on extensive use of data, statistical and quantitative analysis, and explanatory and predictive modeling Written for senior financial professionals, as well as general and divisional senior management Visionary and effective, Predictive Business Analytics reveals how you can use your business's skills, technologies, tools, and processes for continuous analysis of past business performance to gain forward-looking insight and drive business decisions and actions.
  application of business analytics: Data Mining and Business Analytics with R Johannes Ledolter, 2013-05-28 Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.
  application of business analytics: Data Mining for Business Analytics Galit Shmueli, Peter C. Bruce, Nitin R. Patel, 2016-04-18 An applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition ...full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing.– Research Magazine Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature. – ComputingReviews.com Excellent choice for business analysts...The book is a perfect fit for its intended audience. – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.
  application of business analytics: Analytics Across the Enterprise Brenda L. Dietrich, Emily C. Plachy, Maureen F. Norton, 2014-05-15 How to Transform Your Organization with Analytics: Insider Lessons from IBM’s Pioneering Experience Analytics is not just a technology: It is a better way to do business. Using analytics, you can systematically inform human judgment with data-driven insight. This doesn’t just improve decision-making: It also enables greater innovation and creativity in support of strategy. Your transformation won’t happen overnight; however, it is absolutely achievable, and the rewards are immense. This book demystifies your analytics journey by showing you how IBM has successfully leveraged analytics across the enterprise, worldwide. Three of IBM’s pioneering analytics practitioners share invaluable real-world perspectives on what does and doesn’t work and how you can start or accelerate your own transformation. This book provides an essential framework for becoming a smarter enterprise and shows through 31 case studies how IBM has derived value from analytics throughout its business. Coverage Includes Creating a smarter workforce through big data and analytics More effectively optimizing supply chain processes Systematically improving financial forecasting Managing financial risk, increasing operational efficiency, and creating business value Reaching more B2B or B2C customers and deepening their engagement Optimizing manufacturing and product management processes Deploying your sales organization to increase revenue and effectiveness Achieving new levels of excellence in services delivery and reducing risk Transforming IT to enable wider use of analytics “Measuring the immeasurable” and filling gaps in imperfect data Whatever your industry or role, whether a current or future leader, analytics can make you smarter and more competitive. Analytics Across the Enterprise shows how IBM did it--and how you can, too. Learn more about IBM Analytics
  application of business analytics: RapidMiner Markus Hofmann, Ralf Klinkenberg, 2016-04-19 Powerful, Flexible Tools for a Data-Driven WorldAs the data deluge continues in today's world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of incre
  application of business analytics: Challenges and Applications of Data Analytics in Social Perspectives Sathiyamoorthi, V., Elci, Atilla, 2020-12-04 With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.
  application of business analytics: Business Analytics with Management Science Models and Methods Arben Asllani, 2015 This book is about prescriptive analytics. It provides business practitioners and students with a selected set of management science and optimization techniques and discusses the fundamental concepts, methods, and models needed to understand and implement these techniques in the era of Big Data. A large number of management science models exist in the body of literature today. These models include optimization techniques or heuristics, static or dynamic programming, and deterministic or stochastic modeling. The topics selected in this book, mathematical programming and simulation modeling, are believed to be among the most popular management science tools, as they can be used to solve a majority of business optimization problems. Over the years, these techniques have become the weapon of choice for decision makers and practitioners when dealing with complex business systems.
  application of business analytics: International Journal of Business Analytics (IJBAN). John Wang, 2015
  application of business analytics: Getting Started with Business Analytics David Roi Hardoon, Galit Shmueli, 2013-03-26 Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications. The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics. The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data. The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data. Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.
  application of business analytics: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.
  application of business analytics: Guide to Business Data Analytics Iiba, 2020-08-07 The Guide to Business Data Analytics provides a foundational understanding of business data analytics concepts and includes how to develop a framework; key techniques and application; how to identify, communicate and integrate results; and more. This guide acts as a reference for the practice of business data analytics and is a companion resource for the Certification in Business Data Analytics (IIBA(R)- CBDA). Explore more information about the Certification in Business Data Analytics at IIBA.org/CBDA. About International Institute of Business Analysis International Institute of Business Analysis(TM) (IIBA(R)) is a professional association dedicated to supporting business analysis professionals deliver better business outcomes. IIBA connects almost 30,000 Members, over 100 Chapters, and more than 500 training, academic, and corporate partners around the world. As the global voice of the business analysis community, IIBA supports recognition of the profession, networking and community engagement, standards and resource development, and comprehensive certification programs. IIBA Publications IIBA publications offer a wide variety of knowledge and insights into the profession and practice of business analysis for the entire business community. Standards such as A Guide to the Business Analysis Body of Knowledge(R) (BABOK(R) Guide), the Agile Extension to the BABOK(R) Guide, and the Global Business Analysis Core Standard represent the most commonly accepted practices of business analysis around the globe. IIBA's reports, research, whitepapers, and studies provide guidance and best practices information to address the practice of business analysis beyond the global standards and explore new and evolving areas of practice to deliver better business outcomes. Learn more at iiba.org.
  application of business analytics: Applied Sport Business Analytics Christopher Atwater, Robert E. Baker, Ted Kwartler, 2022-03-17 This book addresses the fundamental use of analytical metrics to inform sport managers, framing sport analytics for practical use within organizations. The book is organized to present the background of sport analytics, why it is useful, selected techniques and tools employed, and its applications in sport organizations. The text guides the reader in selecting and communicating information in a useable format, and the translation of metrics in informing managers, guiding decisions, and maximizing efficiency in achieving desired outcomes--
  application of business analytics: Business Analysis For Dummies Kupe Kupersmith, Paul Mulvey, Kate McGoey, 2013-07-01 Your go-to guide on business analysis Business analysis refers to the set of tasks and activities that help companies determine their objectives for meeting certain opportunities or addressing challenges and then help them define solutions to meet those objectives. Those engaged in business analysis are charged with identifying the activities that enable the company to define the business problem or opportunity, define what the solutions looks like, and define how it should behave in the end. As a BA, you lay out the plans for the process ahead. Business Analysis For Dummies is the go to reference on how to make the complex topic of business analysis easy to understand. Whether you are new or have experience with business analysis, this book gives you the tools, techniques, tips and tricks to set your project’s expectations and on the path to success. Offers guidance on how to make an impact in your organization by performing business analysis Shows you the tools and techniques to be an effective business analysis professional Provides a number of examples on how to perform business analysis regardless of your role If you're interested in learning about the tools and techniques used by successful business analysis professionals, Business Analysis For Dummies has you covered.
  application of business analytics: The Value of Business Analytics Evan Stubbs, 2011-07-26 TURN YOUR CHALLENGES INTO SUCCESSES – LEARN HOW AND WHY SOME TEAM STRUGGLE AND SOME SUCCEED This groundbreaking resource defines what business analytics is, the immense value it brings to an organization, and how to harness its power to gain a competitive edge in the marketplace. Author Evan Stubbs provides managers with the tools, knowledge, and strategies to get the organizational commitment you need to get business analytics up and running in your company. Drawing from numerous practical examples, The Value of Business Analytics provides an overview of how business analytics maps to organizational strategy and through examining the mistakes teams commonly make that prevent their success, author Evan Stubbs uncovers a four-step framework which helps improve the odds of success. Built on field-tested experience, The Value of Business Analytics explains the importance of and how to: Define the Value: Link analytics outcomes to business value, thereby helping build a sense of urgency and a need for change. Communicate the Value: Persuade the right people by understanding what motivates them. Deliver the Value: Link tactical outcomes to long-term strategic differentiation. Measure the Value: Validate wins and deliver continuous improvement to help drive ongoing transformation. Translating massive amounts of data into real insight is beyond magic—it’s competitive advantage distilled. Nothing else offers an equivalent level of agility, productivity improvement, or renewable value. Whether you’re looking to quantify the value of your work or generate organizational support, learn how to leverage advanced business analytics with the hands-on guidance found in The Value of Business Analytics. Drawing on the successes and failures of countless organizations, author Evan Stubbs provides a reference rich in content that spans everything from hiring the right people, understanding technical maturity, assessing culture, and structuring strategic planning. A must-read for any business analytics leader and an essential reference in shifting the perspective of business analytics away from algorithms towards outcomes. Learn how to increase the odds of successful value creation with The Value of Business Analytics.
  application of business analytics: Business Analytics Dinabandhu Bag, 2016-11-10 This book provides a first-hand account of business analytics and its implementation, and an account of the brief theoretical framework underpinning each component of business analytics. The themes of the book include (1) learning the contours and boundaries of business analytics which are in scope; (2) understanding the organization design aspects of an analytical organization; (3) providing knowledge on the domain focus of developing business activities for financial impact in functional analysis; and (4) deriving a whole gamut of business use cases in a variety of situations to apply the techniques. The book gives a complete, insightful understanding of developing and implementing analytical solution.
  application of business analytics: Insights, Strategies, and Applications of Business Analytics A. Arun Kumar, 2024-03-06 This book is a transformative guide catering to undergraduate and graduate students and research scholars, providing a comprehensive understanding of critical concepts in modern analytics. In today’s fast-paced business landscape, data utilization is paramount for success. This book delves into tools and techniques facilitating the conversion of raw data into actionable insights, covering descriptive, predictive, and prescriptive analytics. Beginning with foundational principles, it ensures accessibility for readers of all backgrounds. Real-world case studies seamlessly woven throughout the text illustrate successful business analytics implementations, showcasing how organizations make strategic decisions. This precise and insightful guide equips readers with the knowledge to optimize processes, making it an indispensable resource for navigating the dynamic realm of business analytics.
  application of business analytics: Business Analytics Principles, Concepts, and Applications with SAS Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 2014-09-12 Learn everything you need to know to start using business analytics and integrating it throughout your organization. Business Analytics Principles, Concepts, and Applications with SAS brings together a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. They offer a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, this text demonstrates the use of SAS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself. Business Analytics Principles, Concepts, and Applications with SAS will be a valuable resource for all beginning-to-intermediate level business analysts and business analytics managers; for MBA/Masters' degree students in the field; and for advanced undergraduates majoring in statistics, applied mathematics, or engineering/operations research.
  application of business analytics: 5 Keys to Business Analytics Program Success John Boyer, Bill Frank, Brian Green, Tracy Harris, Kay Van De Vanter, 2012-11-15 A roadmap to understanding and achieving excellence in business analytics initiatives With business analytics is becoming increasingly strategic to all types of organizations and with many companies struggling to create a meaningful impact with this emerging technology, this book based on the combined experience of 10 organizations that display excellence and expertise on the subject shares the best practices, discusses the management aspects and sociology that drives success, and uncovers the five key aspects behind the success of some of the top business analytics programs in the industry. Readers will learn about numerous topics, including how to create and manage a changing business analytics strategy; align business priorities to technological innovation; quantify and demonstrate tangible business value; implement program processes that balance agility, empowerment, and control; and architecting a business analytics technology solution with future innovation in mind.This is the ideal resource for any organization that wants to learn how a business analytics program can help manage value, employees, and technology to translate strategies into actionable insight and achievement.
  application of business analytics: An Introduction to Business Analytics Ger Koole, 2019 Business Analytics (BA) is about turning data into decisions. This book covers the full range of BA topics, including statistics, machine learning and optimization, in a way that makes them accessible to a broader audience. Decision makers will gain enough insight into the subject to have meaningful discussions with machine learning specialists, and those starting out as data scientists will benefit from an overview of the field and take their first steps as business analytics specialist. Through this book and the various exercises included, you will be equipped with an understanding of BA, while learning R, a popular tool for statistics and machine learning.
  application of business analytics: Getting Started with Business Analytics David Roi Hardoon, Galit Shmueli, 2013-03-26 Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts
  application of business analytics: A Practitioner's Guide to Business Analytics (PB) Randy Bartlett, 2013-01-25 Gain the competitive edge with the smart use of business analytics In today’s volatile business environment, the strategic use of business analytics is more important than ever. A Practitioners Guide to Business Analytics helps you get the organizational commitment you need to get business analytics up and running in your company. It provides solutions for meeting the strategic challenges of applying analytics, such as: Integrating analytics into decision making, corporate culture, and business strategy Leading and organizing analytics within the corporation Applying statistical qualifications, statistical diagnostics, and statistical review Providing effective building blocks to support analytics—statistical software, data collection, and data management Randy Bartlett, Ph.D., is Chief Statistical Officer of the consulting company Blue Sigma Analytics. He currently works with Infosys, where he has helped build their new Business Analytics practice.
  application of business analytics: Global Business Analytics Models Hokey Min, 2016-03-05 THE COMPLETE GUIDE TO USING ANALYTICS TO MANAGE RISK AND UNCERTAINTY IN COMPLEX GLOBAL BUSINESS ENVIRONMENTS Practical techniques for developing reliable, actionable intelligence–and using it to craft strategy Analytical opportunities to solve key managerial problems in global enterprises Written for working managers: packed with realistic, useful examples This guide helps global managers use modern analytics to gain reliable, actionable, and timely business intelligence–and use it to manage risk, build winning strategies, and solve urgent problems. Dr. Hokey Min offers a practical, easy-to-understand overview of business analytics in a global context, focusing especially on managerial and strategic implications. After demystifying today’s core quantitative tools, he demonstrates them at work in a wide spectrum of global applications. You’ll build models to help segment global markets, forecast demand, assess risk, plan financing, optimize supply chains, and more. Along the way, you’ll find practical guidance for developing analytic thinking, operationalizing Big Data in global environments, and preparing for future analytical innovations. Whether you’re a global executive, strategist, analyst, marketer, supply chain professional, student or researcher, this book will help you drive real value from analytics–in smarter decisions, improved strategy, and better management. In today’s global business environments characterized by growing complexity, volatility, and uncertainty, business analytics has become an indispensable tool for managing these challenges. Specifically, global managers need analytics expertise to solve problems, identify opportunities, shape strategy, mitigate risk, and improve their day-to-day operational efficiency. Now, for the first time, there’s an analytics guide designed specifically for decision-makers in global organizations. Leveraging his experience teaching a number of students and training hundreds of managers and executives, Dr. Hokey Min demystifies the principles and tools of modern business analytics, and demonstrates their real-world use in global business. First, Dr. Min identifies key success factors and mindsets, helping you establish the preconditions for effective analysis. Next, he walks you through the practicalities of collecting, organizing, and analyzing Big Data, and developing models to transform them into actionable insight. Building on these foundations, he illustrates core analytical applications in finance, healthcare, and global supply chains. He concludes by previewing emerging trends in analytics, including the newest tools for automated decision-making. Compare today’s key quantitative tools Stats, data mining, OR, and simulation: how they work, when to use them Get the right data... ...and get the data right Predict the future... ...and sense its arrival sooner than others can
软件(software)和应用程序(application)有什么区别? - 知乎
App 其实是 Application Software (应用程序)的简称。 因为在之前的计算机时代,人们不但需要懂软件层的Software,也要关心硬件层的 Hardware 是否支持、是否兼容,所以用软件来与硬 …

你们说的ABI,Application Binary Interface到底是什么东西?
ABI(Application Binary Interface)是编译器和链接器遵守的一组规则,使编译后的程序可以正常工作。

epub怎么打开? - 知乎
在iPhone上面看,epub的格式用什么软件打开呢,电脑上呢

WPS 如何卸载干净? - 知乎
7、打开我的电脑,C盘,依次打开Documents and Settings\Administrator\Application Data\Kingsoft\。注意上述Administrator是计算机管理员的用户名,如果你的电脑管理员用户名 …

win11内存完整性打不开,显示PassGuard_x64.sys驱动不兼容, …
sys 是驱动程序的可执行代码,扩展名为.sys,一般是在C:\Windows\System32\drivers里面,找到之后就可以删除啦。

Edge浏览器主页被360劫持怎么办 - 知乎
2021年7月21日实测有效: 右击快捷方式,属性,将目标中的内容替换为 "C:\Program Files (x86)\Microsoft\Edge\Application\msedge_proxy.exe"

如何打开mobi为后缀的文件? - 知乎
我补充个PC上的软件,借用其首页上的介绍. Sumatra PDF is a PDF, ePub, MOBI, CHM, XPS, DjVu, CBZ, CBR reader for Windows

如何解决Windows更新导致AMD Radeon Software等软件无法正 …
每次Windows更新之后(Advanced micro devices, inc, -Display -27.20.11028.5001),双击AMD Radeon Sof…

expert systems with applications这个期刊怎么样 ?有投过的么。 …
《expert systems with applications》学术影响力没得说,if=7.5,位于中科院1区,jcr q1,但审核速度在14个月左右,将近1年多的时间,周期太不稳定,时间紧迫的学者千万不要投稿,否则 …

F12如何查看cookie? - 知乎
May 4, 2023 · 在F12开发者工具中,切换到“ Application ”(或“应用程序”)选项卡; 在左侧的菜单中,点击“ Cookies ”(或“Cookie”)选项; 在右侧的面板中,可以查看当前网站的Cookie信 …

软件(software)和应用程序(application)有什么区别? - 知乎
App 其实是 Application Software (应用程序)的简称。 因为在之前的计算机时代,人们不但需要懂软件层的Software,也要关心硬件层的 Hardware 是否支持、是否兼容,所以用软件来与硬 …

你们说的ABI,Application Binary Interface到底是什么东西?
ABI(Application Binary Interface)是编译器和链接器遵守的一组规则,使编译后的程序可以正常工作。

epub怎么打开? - 知乎
在iPhone上面看,epub的格式用什么软件打开呢,电脑上呢

WPS 如何卸载干净? - 知乎
7、打开我的电脑,C盘,依次打开Documents and Settings\Administrator\Application Data\Kingsoft\。注意上述Administrator是计算机管理员的用户名,如果你的电脑管理员用户名 …

win11内存完整性打不开,显示PassGuard_x64.sys驱动不兼容,这 …
sys 是驱动程序的可执行代码,扩展名为.sys,一般是在C:\Windows\System32\drivers里面,找到之后就可以删除啦。

Edge浏览器主页被360劫持怎么办 - 知乎
2021年7月21日实测有效: 右击快捷方式,属性,将目标中的内容替换为 "C:\Program Files (x86)\Microsoft\Edge\Application\msedge_proxy.exe"

如何打开mobi为后缀的文件? - 知乎
我补充个PC上的软件,借用其首页上的介绍. Sumatra PDF is a PDF, ePub, MOBI, CHM, XPS, DjVu, CBZ, CBR reader for Windows

如何解决Windows更新导致AMD Radeon Software等软件无法正常 …
每次Windows更新之后(Advanced micro devices, inc, -Display -27.20.11028.5001),双击AMD Radeon Sof…

expert systems with applications这个期刊怎么样 ?有投过的么。 …
《expert systems with applications》学术影响力没得说,if=7.5,位于中科院1区,jcr q1,但审核速度在14个月左右,将近1年多的时间,周期太不稳定,时间紧迫的学者千万不要投稿,否则 …

F12如何查看cookie? - 知乎
May 4, 2023 · 在F12开发者工具中,切换到“ Application ”(或“应用程序”)选项卡; 在左侧的菜单中,点击“ Cookies ”(或“Cookie”)选项; 在右侧的面板中,可以查看当前网站的Cookie信 …