Advertisement
applications of large language models: Application of Large Language Models (LLMs) for Software Vulnerability Detection Omar, Marwan, Zangana, Hewa Majeed, 2024-11-01 Large Language Models (LLMs) are redefining the landscape of cybersecurity, offering innovative methods for detecting software vulnerabilities. By applying advanced AI techniques to identify and predict weaknesses in software code, including zero-day exploits and complex malware, LLMs provide a proactive approach to securing digital environments. This integration of AI and cybersecurity presents new possibilities for enhancing software security measures. Application of Large Language Models (LLMs) for Software Vulnerability Detection offers a comprehensive exploration of this groundbreaking field. These chapters are designed to bridge the gap between AI research and practical application in cybersecurity, in order to provide valuable insights for researchers, AI specialists, software developers, and industry professionals. Through real-world examples and actionable strategies, the publication will drive innovation in vulnerability detection and set new standards for leveraging AI in cybersecurity. |
applications of large language models: Building Applications with Large Language Models Bhawna Singh, 2024-10-30 This book delves into a broad spectrum of topics, covering the foundational aspects of Large Language Models (LLMs) such as PaLM, LLaMA, BERT, and GPT, among others. The book takes you through the complexities involved in creating and deploying applications based on LLMs, providing you with an in-depth understanding of the model architecture. You will explore techniques such as fine-tuning, prompt engineering, and retrieval augmented generation (RAG). The book also addresses different ways to evaluate LLM outputs and discusses the benefits and limitations of large models. The book focuses on the tools, techniques, and methods essential for developing Large Language Models. It includes hands-on examples and tips to guide you in building applications using the latest technology in Natural Language Processing (NLP). It presents a roadmap to assist you in navigating challenges related to constructing and deploying LLM-based applications. By the end of the book, you will understand LLMs and build applications with use cases that align with emerging business needs and address various problems in the realm of language processing. What You Will Learn Be able to answer the question: What are Large Language Models? Understand techniques such as prompt engineering, fine-tuning, RAG, and vector databases Know the best practices for effective implementation Know the metrics and frameworks essential for evaluating the performance of Large Language Models Who This Book Is For An essential resource for AI-ML developers and enthusiasts eager to acquire practical, hands-on experience in this domain; also applies to individuals seeking a technical understanding of Large Language Models (LLMs) and those aiming to build applications using LLMs |
applications of large language models: Large Language Model-Based Solutions Shreyas Subramanian, 2024-04-02 Learn to build cost-effective apps using Large Language Models In Large Language Model-Based Solutions: How to Deliver Value with Cost-Effective Generative AI Applications, Principal Data Scientist at Amazon Web Services, Shreyas Subramanian, delivers a practical guide for developers and data scientists who wish to build and deploy cost-effective large language model (LLM)-based solutions. In the book, you'll find coverage of a wide range of key topics, including how to select a model, pre- and post-processing of data, prompt engineering, and instruction fine tuning. The author sheds light on techniques for optimizing inference, like model quantization and pruning, as well as different and affordable architectures for typical generative AI (GenAI) applications, including search systems, agent assists, and autonomous agents. You'll also find: Effective strategies to address the challenge of the high computational cost associated with LLMs Assistance with the complexities of building and deploying affordable generative AI apps, including tuning and inference techniques Selection criteria for choosing a model, with particular consideration given to compact, nimble, and domain-specific models Perfect for developers and data scientists interested in deploying foundational models, or business leaders planning to scale out their use of GenAI, Large Language Model-Based Solutions will also benefit project leaders and managers, technical support staff, and administrators with an interest or stake in the subject. |
applications of large language models: Building Large Language Model(LLM) Applications Anand Vemula, Building LLM Apps is a comprehensive guide that equips readers with the knowledge and practical skills needed to develop applications utilizing large language models (LLMs). The book covers various aspects of LLM application development, starting from understanding the fundamentals of LLMs to deploying scalable and efficient solutions. Beginning with an introduction to LLMs and their importance in modern applications, the book explores the history, key concepts, and popular architectures like GPT and BERT. Readers learn how to set up their development environment, including hardware and software requirements, installing necessary tools and libraries, and leveraging cloud services for efficient development and deployment. Data preparation is essential for training LLMs, and the book provides insights into gathering and cleaning data, annotating and labeling data, and handling imbalanced data to ensure high-quality training datasets. Training large language models involves understanding training basics, best practices, distributed training techniques, and fine-tuning pre-trained models for specific tasks. Developing LLM applications requires designing user interfaces, integrating LLMs into existing systems, and building interactive features such as chatbots, text generation, sentiment analysis, named entity recognition, and machine translation. Advanced LLM techniques like prompt engineering, transfer learning, multi-task learning, and zero-shot learning are explored to enhance model capabilities. Deployment and scalability strategies are discussed to ensure smooth deployment of LLM applications while managing costs effectively. Security and ethics in LLM apps are addressed, covering bias detection, fairness, privacy, security, and ethical considerations to build responsible AI solutions. Real-world case studies illustrate the practical applications of LLMs in various domains, including customer service, healthcare, and finance. Troubleshooting and optimization techniques help readers address common issues and optimize model performance. Looking towards the future, the book highlights emerging trends and developments in LLM technology, emphasizing the importance of staying updated with advancements and adhering to ethical AI practices. Building LLM Apps serves as a comprehensive resource for developers, data scientists, and business professionals seeking to harness the power of large language models in their applications. |
applications of large language models: Next Generation AI Language Models in Research Kashif Naseer Qureshi, Gwanggil Jeon, 2024-11-13 In this comprehensive and cutting-edge volume, Qureshi and Jeon bring together experts from around the world to explore the potential of artificial intelligence models in research and discuss the potential benefits and the concerns and challenges that the rapid development of this field has raised. The international chapter contributor group provides a wealth of technical information on different aspects of AI, including key aspects of AI, deep learning and machine learning models for AI, natural language processing and computer vision, reinforcement learning, ethics and responsibilities, security, practical implementation, and future directions. The contents are balanced in terms of theory, methodologies, and technical aspects, and contributors provide case studies to clearly illustrate the concepts and technical discussions throughout. Readers will gain valuable insights into how AI can revolutionize their work in fields including data analytics and pattern identification, healthcare research, social science research, and more, and improve their technical skills, problem-solving abilities, and evidence-based decision-making. Additionally, they will be cognizant of the limitations and challenges, the ethical implications, and security concerns related to language models, which will enable them to make more informed choices regarding their implementation. This book is an invaluable resource for undergraduate and graduate students who want to understand AI models, recent trends in the area, and technical and ethical aspects of AI. Companies involved in AI development or implementing AI in various fields will also benefit from the book’s discussions on both the technical and ethical aspects of this rapidly growing field. |
applications of large language models: Optimizing Large Language Models Practical Approaches and Applications of Quantization Technique Anand Vemula, 2024-08-19 The book provides an in-depth understanding of quantization techniques and their impact on model efficiency, performance, and deployment. The book starts with a foundational overview of quantization, explaining its significance in reducing the computational and memory requirements of LLMs. It delves into various quantization methods, including uniform and non-uniform quantization, per-layer and per-channel quantization, and hybrid approaches. Each technique is examined for its applicability and trade-offs, helping readers select the best method for their specific needs. The guide further explores advanced topics such as quantization for edge devices and multi-lingual models. It contrasts dynamic and static quantization strategies and discusses emerging trends in the field. Practical examples, use cases, and case studies are provided to illustrate how these techniques are applied in real-world scenarios, including the quantization of popular models like GPT and BERT. |
applications of large language models: Generative AI with LangChain Ben Auffarth, 2023-12-22 2024 Edition – Get to grips with the LangChain framework to develop production-ready applications, including agents and personal assistants. The 2024 edition features updated code examples and an improved GitHub repository. Purchase of the print or Kindle book includes a free PDF eBook. Key Features Learn how to leverage LangChain to work around LLMs’ inherent weaknesses Delve into LLMs with LangChain and explore their fundamentals, ethical dimensions, and application challenges Get better at using ChatGPT and GPT models, from heuristics and training to scalable deployment, empowering you to transform ideas into reality Book DescriptionChatGPT and the GPT models by OpenAI have brought about a revolution not only in how we write and research but also in how we can process information. This book discusses the functioning, capabilities, and limitations of LLMs underlying chat systems, including ChatGPT and Gemini. It demonstrates, in a series of practical examples, how to use the LangChain framework to build production-ready and responsive LLM applications for tasks ranging from customer support to software development assistance and data analysis – illustrating the expansive utility of LLMs in real-world applications. Unlock the full potential of LLMs within your projects as you navigate through guidance on fine-tuning, prompt engineering, and best practices for deployment and monitoring in production environments. Whether you're building creative writing tools, developing sophisticated chatbots, or crafting cutting-edge software development aids, this book will be your roadmap to mastering the transformative power of generative AI with confidence and creativity.What you will learn Create LLM apps with LangChain, like question-answering systems and chatbots Understand transformer models and attention mechanisms Automate data analysis and visualization using pandas and Python Grasp prompt engineering to improve performance Fine-tune LLMs and get to know the tools to unleash their power Deploy LLMs as a service with LangChain and apply evaluation strategies Privately interact with documents using open-source LLMs to prevent data leaks Who this book is for The book is for developers, researchers, and anyone interested in learning more about LangChain. Whether you are a beginner or an experienced developer, this book will serve as a valuable resource if you want to get the most out of LLMs using LangChain. Basic knowledge of Python is a prerequisite, while prior exposure to machine learning will help you follow along more easily. |
applications of large language models: Advanced Intelligent Computing Technology and Applications De-Shuang Huang, |
applications of large language models: Algorithms in Advanced Artificial Intelligence R. N. V. Jagan Mohan, Vasamsetty Chandra Sekhar, V. M. N. S. S. V. K. R. Gupta, 2024-07-08 The most common form of severe dementia, Alzheimer’s disease (AD), is a cumulative neurological disorder because of the degradation and death of nerve cells in the brain tissue, intelligence steadily declines and most of its activities are compromised in AD. Before diving into the level of AD diagnosis, it is essential to highlight the fundamental differences between conventional machine learning (ML) and deep learning (DL). This work covers a number of photo-preprocessing approaches that aid in learning because image processing is essential for the diagnosis of AD. The most crucial kind of neural network for computer vision used in medical image processing is called a Convolutional Neural Network (CNN). The proposed study will consider facial characteristics, including expressions and eye movements using the diffusion model, as part of CNN’s meticulous approach to Alzheimer’s diagnosis. Convolutional neural networks were used in an effort to sense Alzheimer’s disease in its early stages using a big collection of pictures of facial expressions. |
applications of large language models: Leveraging Applications of Formal Methods, Verification and Validation. Rigorous Engineering of Collective Adaptive Systems Tiziana Margaria, |
applications of large language models: Machine Learning in Elixir Sean Moriarity, 2024-08-27 Stable Diffusion, ChatGPT, Whisper - these are just a few examples of incredible applications powered by developments in machine learning. Despite the ubiquity of machine learning applications running in production, there are only a few viable language choices for data science and machine learning tasks. Elixir's Nx project seeks to change that. With Nx, you can leverage the power of machine learning in your applications, using the battle-tested Erlang VM in a pragmatic language like Elixir. In this book, you'll learn how to leverage Elixir and the Nx ecosystem to solve real-world problems in computer vision, natural language processing, and more. The Elixir Nx project aims to make machine learning possible without the need to leave Elixir for solutions in other languages. And even if concepts like linear models and logistic regression are new to you, you'll be using them and much more to solve real-world problems in no time. Start with the basics of the Nx programming paradigm - how it differs from the Elixir programming style you're used to and how it enables you to write machine learning algorithms. Use your understanding of this paradigm to implement foundational machine learning algorithms from scratch. Go deeper and discover the power of deep learning with Axon. Unlock the power of Elixir and learn how to build and deploy machine learning models and pipelines anywhere. Learn how to analyze, visualize, and explain your data and models. Discover how to use machine learning to solve diverse problems from image recognition to content recommendation - all in your favorite programming language. What You Need: You'll need a computer with a working installation of Elixir v1.12 and Erlang/OTP 24. For some of the more compute intensive examples, you'll want to use EXLA, which currently only supports x86-64 platforms. While not explicitly required, some examples will demonstrate programs running on accelerators such as CUDA/ROCm enabled GPUs and Google TPUs. Most of these programs will still run fine on a regular CPU, just for much longer periods of time. |
applications of large language models: Technological Innovations & Applications in Industry 4.0 Dinesh Seth, Sushant S. Satputaley, Minhaj Ahemad A. Rehman, Amit R. Bhende, 2025-01-27 The conference offered an international forum for discussion and exchange of knowledge on opportunities and challenges related with all facets and aspects of technological innovations & applications in Industry 4.0, its challenges and way ahead. The objective of this international conference was to provide a platform for policy makers, academicians and researchers to share their experiences and knowledge by presentation of scientific advances made in the field of Industry 4.0. |
applications of large language models: Mastering Large Language Models Sanket Subhash Khandare, 2024-03-12 Do not just talk AI, build it: Your guide to LLM application development KEY FEATURES ● Explore NLP basics and LLM fundamentals, including essentials, challenges, and model types. ● Learn data handling and pre-processing techniques for efficient data management. ● Understand neural networks overview, including NN basics, RNNs, CNNs, and transformers. ● Strategies and examples for harnessing LLMs. DESCRIPTION Transform your business landscape with the formidable prowess of large language models (LLMs). The book provides you with practical insights, guiding you through conceiving, designing, and implementing impactful LLM-driven applications. This book explores NLP fundamentals like applications, evolution, components and language models. It teaches data pre-processing, neural networks , and specific architectures like RNNs, CNNs, and transformers. It tackles training challenges, advanced techniques such as GANs, meta-learning, and introduces top LLM models like GPT-3 and BERT. It also covers prompt engineering. Finally, it showcases LLM applications and emphasizes responsible development and deployment. With this book as your compass, you will navigate the ever-evolving landscape of LLM technology, staying ahead of the curve with the latest advancements and industry best practices. WHAT YOU WILL LEARN ● Grasp fundamentals of natural language processing (NLP) applications. ● Explore advanced architectures like transformers and their applications. ● Master techniques for training large language models effectively. ● Implement advanced strategies, such as meta-learning and self-supervised learning. ● Learn practical steps to build custom language model applications. WHO THIS BOOK IS FOR This book is tailored for those aiming to master large language models, including seasoned researchers, data scientists, developers, and practitioners in natural language processing (NLP). TABLE OF CONTENTS 1. Fundamentals of Natural Language Processing 2. Introduction to Language Models 3. Data Collection and Pre-processing for Language Modeling 4. Neural Networks in Language Modeling 5. Neural Network Architectures for Language Modeling 6. Transformer-based Models for Language Modeling 7. Training Large Language Models 8. Advanced Techniques for Language Modeling 9. Top Large Language Models 10. Building First LLM App 11. Applications of LLMs 12. Ethical Considerations 13. Prompt Engineering 14. Future of LLMs and Its Impact |
applications of large language models: Developing Apps with GPT-4 and ChatGPT Olivier Caelen, Marie-Alice Blete, 2023-08-29 This minibook is a comprehensive guide for Python developers who want to learn how to build applications with large language models. Authors Olivier Caelen and Marie-Alice Blete cover the main features and benefits of GPT-4 and ChatGPT and explain how they work. You'll also get a step-by-step guide for developing applications using the GPT-4 and ChatGPT Python library, including text generation, Q&A, and content summarization tools. Written in clear and concise language, Developing Apps with GPT-4 and ChatGPT includes easy-to-follow examples to help you understand and apply the concepts to your projects. Python code examples are available in a GitHub repository, and the book includes a glossary of key terms. Ready to harness the power of large language models in your applications? This book is a must. You'll learn: The fundamentals and benefits of ChatGPT and GPT-4 and how they work How to integrate these models into Python-based applications for NLP tasks How to develop applications using GPT-4 or ChatGPT APIs in Python for text generation, question answering, and content summarization, among other tasks Advanced GPT topics including prompt engineering, fine-tuning models for specific tasks, plug-ins, LangChain, and more |
applications of large language models: Bridging the Gap Between AI and Reality Bernhard Steffen, 2023-12-13 This book constitutes the proceedings of the First International Conference on Bridging the Gap between AI and Reality, AISoLA 2023, which took place in Crete, Greece, in October 2023. The papers included in this book focus on the following topics: The nature of AI-based systems; ethical, economic and legal implications of AI-systems in practice; ways to make controlled use of AI via the various kinds of formal methods-based validation techniques; dedicated applications scenarios which may allow certain levels of assistance; and education in times of deep learning. |
applications of large language models: Introduction to Python and Large Language Models Dilyan Grigorov, |
applications of large language models: The Developer's Playbook for Large Language Model Security Steve Wilson, 2024-09-03 Large language models (LLMs) are not just shaping the trajectory of AI, they're also unveiling a new era of security challenges. This practical book takes you straight to the heart of these threats. Author Steve Wilson, chief product officer at Exabeam, focuses exclusively on LLMs, eschewing generalized AI security to delve into the unique characteristics and vulnerabilities inherent in these models. Complete with collective wisdom gained from the creation of the OWASP Top 10 for LLMs list—a feat accomplished by more than 400 industry experts—this guide delivers real-world guidance and practical strategies to help developers and security teams grapple with the realities of LLM applications. Whether you're architecting a new application or adding AI features to an existing one, this book is your go-to resource for mastering the security landscape of the next frontier in AI. You'll learn: Why LLMs present unique security challenges How to navigate the many risk conditions associated with using LLM technology The threat landscape pertaining to LLMs and the critical trust boundaries that must be maintained How to identify the top risks and vulnerabilities associated with LLMs Methods for deploying defenses to protect against attacks on top vulnerabilities Ways to actively manage critical trust boundaries on your systems to ensure secure execution and risk minimization |
applications of large language models: Large Language Models - LLMs Jagdish Krishanlal Arora, 2024-03-28 Large Language Models (LLMs) have revolutionized the field of artificial intelligence (AI), enabling computers to understand and generate human-like text on an unprecedented scale. In this comprehensive summary, we explore the intricacies of LLMs, their evolution, applications, benefits, challenges, and future prospects. Evolution of LLMs: The journey of LLMs began with early language models like Word2Vec and GloVe, which laid the foundation for understanding word embeddings. The breakthrough came with transformers, particularly the introduction of GPT (Generative Pre-trained Transformer) series by OpenAI, including GPT-2, GPT-3, and beyond. These models leverage self-attention mechanisms and massive amounts of data for training, leading to remarkable improvements in language understanding and generation capabilities. Applications of LLMs: LLMs find applications across diverse domains, including natural language processing (NLP), machine translation, chatbots, question answering systems, text summarization, sentiment analysis, and more. They power virtual assistants like Siri and Alexa, facilitate language translation services, aid in content creation, and enhance user experiences in various digital platforms. Benefits of LLMs: The key benefits of LLMs include their versatility, scalability, and adaptability. A single model can perform multiple tasks, reducing the need for specialized models for each application. Moreover, LLMs can be fine-tuned with minimal data, making them accessible to a wide range of users. Their performance continues to improve with more data and parameters, driving innovation and advancement in AI research. Challenges and Limitations: Despite their impressive capabilities, LLMs face challenges such as bias, explainability, and accessibility. Biases in training data can lead to biased outputs, while the complex inner workings of LLMs make it challenging to understand their decision-making processes. Moreover, access to large-scale computing resources and expertise is limited, hindering widespread adoption and development. Future Prospects: The future of LLMs holds immense potential, with ongoing research focused on addressing challenges and expanding capabilities. Efforts are underway to mitigate bias, improve explainability, and enhance accessibility. Advancements in LLMs are expected to drive innovation in AI-driven applications, revolutionizing industries and reshaping human-computer interaction. In conclusion, Large Language Models represent a significant milestone in AI research, offering unprecedented capabilities in understanding and generating human-like text. While they present challenges and limitations, ongoing efforts to overcome these hurdles pave the way for a future where LLMs play a central role in shaping the AI landscape. As we continue to unravel the wonders of LLMs, the possibilities for innovation and discovery are limitless |
applications of large language models: Pretrain Vision and Large Language Models in Python Emily Webber, Andrea Olgiati, 2023-05-31 Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examples Key Features Learn to develop, train, tune, and apply foundation models with optimized end-to-end pipelines Explore large-scale distributed training for models and datasets with AWS and SageMaker examples Evaluate, deploy, and operationalize your custom models with bias detection and pipeline monitoring Book Description Foundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization. With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you'll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models. You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines. By the end of this book, you'll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future. What you will learn Find the right use cases and datasets for pretraining and fine-tuning Prepare for large-scale training with custom accelerators and GPUs Configure environments on AWS and SageMaker to maximize performance Select hyperparameters based on your model and constraints Distribute your model and dataset using many types of parallelism Avoid pitfalls with job restarts, intermittent health checks, and more Evaluate your model with quantitative and qualitative insights Deploy your models with runtime improvements and monitoring pipelines Who this book is for If you're a machine learning researcher or enthusiast who wants to start a foundation modelling project, this book is for you. Applied scientists, data scientists, machine learning engineers, solution architects, product managers, and students will all benefit from this book. Intermediate Python is a must, along with introductory concepts of cloud computing. A strong understanding of deep learning fundamentals is needed, while advanced topics will be explained. The content covers advanced machine learning and cloud techniques, explaining them in an actionable, easy-to-understand way. |
applications of large language models: Challenges in Large Language Model Development and AI Ethics Gupta, Brij, 2024-08-15 The development of large language models has resulted in artificial intelligence advancements promising transformations and benefits across various industries and sectors. However, this progress is not without its challenges. The scale and complexity of these models pose significant technical hurdles, including issues related to bias, transparency, and data privacy. As these models integrate into decision-making processes, ethical concerns about their societal impact, such as potential job displacement or harmful stereotype reinforcement, become more urgent. Addressing these challenges requires a collaborative effort from business owners, computer engineers, policymakers, and sociologists. Fostering effective research for solutions to address AI ethical challenges may ensure that large language model developments benefit society in a positive way. Challenges in Large Language Model Development and AI Ethics addresses complex ethical dilemmas and challenges of the development of large language models and artificial intelligence. It analyzes ethical considerations involved in the design and implementation of large language models, while exploring aspects like bias, accountability, privacy, and social impacts. This book covers topics such as law and policy, model architecture, and machine learning, and is a useful resource for computer engineers, sociologists, policymakers, business owners, academicians, researchers, and scientists. |
applications of large language models: Artificial Intelligence and Large Language Models Kutub Thakur, Helen G. Barker, Al-Sakib Khan Pathan, 2024-07-12 Having been catapulted into public discourse in the last few years, this book serves as an in-depth exploration of the ever-evolving domain of artificial intelligence (AI), large language models, and ChatGPT. It provides a meticulous and thorough analysis of AI, ChatGPT technology, and their prospective trajectories given the current trend, in addition to tracing the significant advancements that have materialized over time. Key Features: Discusses the fundamentals of AI for general readers Introduces readers to the ChatGPT chatbot and how it works Covers natural language processing (NLP), the foundational building block of ChatGPT Introduces readers to the deep learning transformer architecture Covers the fundamentals of ChatGPT training for practitioners Illustrated and organized in an accessible manner, this textbook contains particular appeal to students and course convenors at the undergraduate and graduate level, as well as a reference source for general readers. |
applications of large language models: Computational Neurosurgery Antonio Di Ieva, |
applications of large language models: Large Language Models Oswald Campesato, 2024-10-02 This book begins with an overview of the Generative AI landscape, distinguishing it from conversational AI and shedding light on the roles of key players like DeepMind and OpenAI. It then reviews the intricacies of ChatGPT, GPT-4, and Gemini, examining their capabilities, strengths, and competitors. Readers will also gain insights into the BERT family of LLMs, including ALBERT, DistilBERT, and XLNet, and how these models have revolutionized natural language processing. Further, the book covers prompt engineering techniques, essential for optimizing the outputs of AI models, and addresses the challenges of working with LLMs, including the phenomenon of hallucinations and the nuances of fine-tuning these advanced models. Designed for software developers, AI researchers, and technology enthusiasts with a foundational understanding of AI, this book offers both theoretical insights and practical code examples in Python. Companion files with code, figures, and datasets are available for downloading from the publisher. |
applications of large language models: Applications of Topic Models Jordan Boyd-Graber, Yuening Hu, David Mimno, 2017-07-13 Describes recent academic and industrial applications of topic models with the goal of launching a young researcher capable of building their own applications of topic models. |
applications of large language models: Mastering Large Language Models with Python Raj Arun R, 2024-04-12 A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise KEY FEATURES ● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. ● Prioritize the ethical and responsible use of LLMs, with an emphasis on building models that adhere to principles of fairness, transparency, and accountability, fostering trust in AI technologies. DESCRIPTION “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. WHAT WILL YOU LEARN ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. ● Master prompt engineering techniques to fine-tune LLM outputs, enhancing quality and relevance for diverse use cases. ● Navigate the complex landscape of ethical AI development, prioritizing responsible practices to drive impactful technology adoption and advancement. WHO IS THIS BOOK FOR? This book is tailored for software engineers, data scientists, AI researchers, and technology leaders with a foundational understanding of machine learning concepts and programming. It's ideal for those looking to deepen their knowledge of Large Language Models and their practical applications in the field of AI. If you aim to explore LLMs extensively for implementing inventive solutions or spearheading AI-driven projects, this book is tailored to your needs. TABLE OF CONTENTS 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index |
applications of large language models: Assessing Policy Effectiveness using AI and Language Models Chandrasekar Vuppalapati, |
applications of large language models: Generative AI Application Integration Patterns Juan Pablo Bustos, Luis Lopez Soria, 2024-09-05 Unleash the transformative potential of GenAI with this comprehensive guide that serves as an indispensable roadmap for integrating large language models into real-world applications. Gain invaluable insights into identifying compelling use cases, leveraging state-of-the-art models effectively, deploying these models into your applications at scale, and navigating ethical considerations. Key Features Get familiar with the most important tools and concepts used in real scenarios to design GenAI apps Interact with GenAI models to tailor model behavior to minimize hallucinations Get acquainted with a variety of strategies and an easy to follow 4 step frameworks for integrating GenAI into applications Book Description Explore the transformative potential of GenAI in the application development lifecycle. Through concrete examples, you will go through the process of ideation and integration, understanding the tradeoffs and the decision points when integrating GenAI. With recent advances in models like Google Gemini, Anthropic Claude, DALL-E and GPT-4o, this timely resource will help you harness these technologies through proven design patterns. We then delve into the practical applications of GenAI, identifying common use cases and applying design patterns to address real-world challenges. From summarization and metadata extraction to intent classification and question answering, each chapter offers practical examples and blueprints for leveraging GenAI across diverse domains and tasks. You will learn how to fine-tune models for specific applications, progressing from basic prompting to sophisticated strategies such as retrieval augmented generation (RAG) and chain of thought. Additionally, we provide end-to-end guidance on operationalizing models, including data prep, training, deployment, and monitoring. We also focus on responsible and ethical development techniques for transparency, auditing, and governance as crucial design patterns. What you will learn Concepts of GenAI: pre-training, fine-tuning, prompt engineering, and RAG Framework for integrating AI: entry points, prompt pre-processing, inference, post-processing, and presentation Patterns for batch and real-time integration Code samples for metadata extraction, summarization, intent classification, question-answering with RAG, and more Ethical use: bias mitigation, data privacy, and monitoring Deployment and hosting options for GenAI models Who this book is for This book is not an introduction to AI/ML or Python. It offers practical guides for designing, building, and deploying GenAI applications in production. While all readers are welcome, those who benefit most include: Developer engineers with foundational tech knowledge Software architects seeking best practices and design patterns Professionals using ML for data science, research, etc., who want a deeper understanding of Generative AI Technical product managers with a software development background This concise focus ensures practical, actionable insights for experienced professionals |
applications of large language models: Recent Advances in Machine Learning Techniques and Sensor Applications for Human Emotion, Activity Recognition and Support Kyandoghere Kyamakya, |
applications of large language models: Artificial Intelligence and its Applications Dr.A.Thasil Mohamed, Dr.S. SanthoshKumar, 2024-03-25 Dr.A.Thasil Mohamed, Application Architect, Compunnel, Inc NJ,USA Dr.S. SanthoshKumar, Assistant Professor, Department of Computer Science, Alagappa University, Karaikudi, Sivagangai, Tamil Nadu, India. |
applications of large language models: Large Language Models Projects Pere Martra Manonelles, 2024-10-20 This book offers you a hands-on experience using models from OpenAI and the Hugging Face library. You will use various tools and work on small projects, gradually applying the new knowledge you gain. The book is divided into three parts. Part one covers techniques and libraries. Here, you'll explore different techniques through small examples, preparing to build projects in the next section. You'll learn to use common libraries in the world of Large Language Models. Topics and technologies covered include chatbots, code generation, OpenAI API, Hugging Face, vector databases, LangChain, fine tuning, PEFT fine tuning, soft prompt tuning, LoRA, QLoRA, evaluating models, and Direct Preference Optimization. Part two focuses on projects. You'll create projects, understanding design decisions. Each project may have more than one possible implementation, as there is often not just one good solution. You'll also explore LLMOps-related topics. Part three delves into enterprise solutions. Large Language Models are not a standalone solution; in large corporate environments, they are one piece of the puzzle. You'll explore how to structure solutions capable of transforming organizations with thousands of employees, highlighting the main role that Large Language Models play in these new solutions. This book equips you to confidently navigate and implement Large Language Models, empowering you to tackle diverse challenges in the evolving landscape of language processing. What You Will Learn Gain practical experience by working with models from OpenAI and the Hugging Face library Use essential libraries relevant to Large Language Models, covering topics such as Chatbots, Code Generation, OpenAI API, Hugging Face, and Vector databases Create and implement projects using LLM while understanding the design decisions involved Understand the role of Large Language Models in larger corporate settings Who This Book Is For Data analysts, data science, Python developers, and software professionals interested in learning the foundations of NLP, LLMs, and the processes of building modern LLM applications for various tasks |
applications of large language models: Database and Expert Systems Applications - DEXA 2023 Workshops Gabriele Kotsis, A Min Tjoa, Ismail Khalil, Bernhard Moser, Atif Mashkoor, Johannes Sametinger, Maqbool Khan, 2023-08-20 This volume constitutes the refereed proceedings of the workshops held at the 34th International Conference on Database and Expert Systems Applications, DEXA 2023, held in Penang, Malaysia, in August 2023: The 7th International Workshop on Cyber-Security and Functional Safety in Cyber-Physical Systems, IWCFS 2023, and The 3rd International Workshop on AI System Engineering: Math, Modelling and Software, AISys2023. The 7 full papers and 3 short papers were thoroughly reviewed and selected from 20 submissions, and discuss a range of topics including: knowledge discovery, biological data, cyber security, cyber-physical system, machine learning, knowledge graphs, information retriever, data base, and artificial intelligence. |
applications of large language models: Generative AI and Large Language Models Aditya Pratap Bhuyan, 2024-07-24 Artificial Intelligence is reshaping our world, and at the forefront of this revolution are Generative AI and Large Language Models (LLMs). This book, Generative AI and Large Language Models: Revolutionizing the Future, offers an in-depth exploration of these groundbreaking technologies, delving into their foundations, development, and profound implications for various industries and society as a whole. Starting with a historical overview of AI, the book traces the evolution of machine learning and deep learning, setting the stage for understanding the rise of generative AI. Readers will discover the inner workings of LLMs, from their advanced neural network architectures to the massive datasets and computational power required for their training. Key models, such as the Generative Pre-trained Transformer (GPT) series, are examined in detail, showcasing their remarkable capabilities in natural language processing and beyond. The book also addresses the ethical and social challenges posed by these powerful technologies. Issues such as bias, fairness, and privacy are discussed, alongside the need for transparent and accountable AI systems. Through real-world applications and case studies, readers will see how generative AI is transforming fields like healthcare, finance, content creation, and more. Looking ahead, the book explores future trends and innovations, highlighting potential advancements and the ongoing research aimed at enhancing AI's efficiency and multimodal capabilities. It envisions a future where AI and humans collaborate more closely, driving progress and innovation across all domains. Generative AI and Large Language Models: Revolutionizing the Future is an essential read for anyone interested in the cutting-edge of AI technology. Whether you are a researcher, practitioner, or simply curious about the future of AI, this book provides a comprehensive and accessible guide to the transformative power of generative AI and LLMs. |
applications of large language models: Engineering Applications of Neural Networks Lazaros Iliadis, |
applications of large language models: The Pioneering Applications of Generative AI Kumar, Raghvendra, Sahu, Sandipan, Bhattacharya, Sudipta, 2024-07-17 Integrating generative artificial intelligence (AI) into art, design, and media presents a double-edged sword. While it offers unprecedented creative possibilities, it raises ethical concerns, challenges traditional workflows, and requires careful regulation. As AI becomes more prevalent in these fields, there is a pressing need for a comprehensive resource that explores the technology's potential and navigates the complex landscape of its implications. The Pioneering Applications of Generative AI is a pioneering book that addresses these challenges head-on. It provides a deep dive into the evolution, ethical considerations, core technologies, and creative applications of generative AI, offering readers a thorough understanding of this transformative technology. Researchers, academicians, scientists, and research scholars will find this book invaluable in navigating the complexities of generative AI in art, design, and media. With its focus on ethical and responsible AI and discussions on regulatory frameworks, the book equips readers with the knowledge and tools needed to harness the full potential of generative AI while ensuring its responsible and ethical use. |
applications of large language models: Reinforcement Learning from Experience Feedback: Application to Economic Policy Tohid Atashbar, 2024-06-07 Learning from the past is critical for shaping the future, especially when it comes to economic policymaking. Building upon the current methods in the application of Reinforcement Learning (RL) to the large language models (LLMs), this paper introduces Reinforcement Learning from Experience Feedback (RLXF), a procedure that tunes LLMs based on lessons from past experiences. RLXF integrates historical experiences into LLM training in two key ways - by training reward models on historical data, and by using that knowledge to fine-tune the LLMs. As a case study, we applied RLXF to tune an LLM using the IMF's MONA database to generate historically-grounded policy suggestions. The results demonstrate RLXF's potential to equip generative AI with a nuanced perspective informed by previous experiences. Overall, it seems RLXF could enable more informed applications of LLMs for economic policy, but this approach is not without the potential risks and limitations of relying heavily on historical data, as it may perpetuate biases and outdated assumptions. |
applications of large language models: Applications of Artificial Intelligence in Process Systems Engineering Jingzheng Ren, Weifeng Shen, Yi Man, Lichun Dong, 2021-06-05 Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering |
applications of large language models: Mathematical Modeling for Computer Applications Biswadip Basu Mallik, M. Niranjanamurthy, Sharmistha Ghosh, Valentina Emilia Balas, Krishanu Deyasi, Santanu Das, 2024-09-17 |
applications of large language models: Hands-On Large Language Models Jay Alammar, Maarten Grootendorst, 2024-09-11 AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today. You'll learn how to use the power of pre-trained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large amounts of text documents; and use existing libraries and pre-trained models for text classification, search, and clusterings. This book also shows you how to: Build advanced LLM pipelines to cluster text documents and explore the topics they belong to Build semantic search engines that go beyond keyword search with methods like dense retrieval and rerankers Learn various use cases where these models can provide value Understand the architecture of underlying Transformer models like BERT and GPT Get a deeper understanding of how LLMs are trained Understanding how different methods of fine-tuning optimize LLMs for specific applications (generative model fine-tuning, contrastive fine-tuning, in-context learning, etc.) |
applications of large language models: Persuasive Technology Nilufar Baghaei, |
applications of large language models: Technologies and Applications of Artificial Intelligence Chao-Yang Lee, |
Sign in to your account - myapplications.microsoft.com
Access and manage all your Microsoft apps and services securely in one place with My Apps.
My Apps
Access and manage your Microsoft applications securely with one sign-in through My Apps.
Sign in to your account
Access and manage all your Microsoft apps and services in one place with My Apps.
Sign in to your account - myapplications.microsoft.com
Sign in to access and manage your Microsoft applications securely and conveniently with one sign-in.
My Apps
My AppsYou need to enable JavaScript to run this app
Sign in to your account - myapplications.microsoft.com
My Apps is a secure and convenient way to access and manage your Microsoft applications with one sign-in.
Sign in to your account - myapplications.microsoft.com
Access and manage your Microsoft applications securely with My Apps.
My Apps
Sign in to access and manage your applications from the My Apps portal.
Sign in to your account - myapplications.microsoft.com
Access and manage your Microsoft applications securely with one sign-in through My Apps.
My Apps
My Apps ... My Apps
Sign in to your account - myapplications.microsoft.com
Access and manage all your Microsoft apps and services securely in one place with My Apps.
My Apps
Access and manage your Microsoft applications securely with one sign-in through My Apps.
Sign in to your account
Access and manage all your Microsoft apps and services in one place with My Apps.
Sign in to your account - myapplications.microsoft.com
Sign in to access and manage your Microsoft applications securely and conveniently with one sign-in.
My Apps
My AppsYou need to enable JavaScript to run this app
Sign in to your account - myapplications.microsoft.com
My Apps is a secure and convenient way to access and manage your Microsoft applications with one sign-in.
Sign in to your account - myapplications.microsoft.com
Access and manage your Microsoft applications securely with My Apps.
My Apps
Sign in to access and manage your applications from the My Apps portal.
Sign in to your account - myapplications.microsoft.com
Access and manage your Microsoft applications securely with one sign-in through My Apps.
My Apps
My Apps ... My Apps