Advertisement
artificial intelligence in education examples: Artificial Intelligence in Education Wayne Holmes, Maya Bialik, Charles Fadel, 2019-02-28 The landscape for education has been rapidly changing in the last years: demographic changes affecting the makeup of families, multiple school options available to children, wealth disparities, the global economy demanding new skills from workers, and continued breakthroughs in technology are some of the factors impacting education. Given these changes, how can schools continue to prepare students for the future? In a world where information is readily available online, how can schools continue to be relevant? The emergence of Artificial Intelligence (AI) has exacerbated the need to have these conversations. Its impact on education and the multiple possibilities that it offers are putting pressure on educational leaders to reformulate the school curriculum and the channels to deliver it. The book Artificial Intelligence in Education, Promises and Implications for Teaching and Learning by the Center for Curriculum Redesign immerses the reader in a discussion on what to teach students in the era of AI and examines how AI is already demanding much needed updates to the school curriculum, including modernizing its content, focusing on core concepts, and embedding interdisciplinary themes and competencies with the end goal of making learning more enjoyable and useful in students' lives. The second part of the book dives into the history of AI in education, its techniques and applications -including the way AI can help teachers be more effective, and finishes on a reflection about the social aspects of AI. This book is a must-read for educators and policy-makers who want to prepare schools to face the uncertainties of the future and keep them relevant. --Amada Torres, VP, Studies, Insights, and Research, National Association of Independent School (NAIS) The rapid advances in technology in recent decades have already brought about substantial changes in education, opening up new opportunities to teach and learn anywhere anytime and providing new tools and methods to improve learning outcomes and support innovative teaching and learning.Research into artificial intelligence and machine learning in education goes back to the late 1970s. Artificial intelligence methods were generally employed in two ways: to design and facilitate interactive learning environments that would support learning by doing, and to design and implement tutoring systems by adapting instructions with respect to the students' knowledge state.But this is just the beginning. As Artificial Intelligence in Education shows, AI is increasingly used in education and learning contexts. The collision of three areas - data, computation and education - is set to have far-reaching consequences, raising fundamental questions about the nature of education: what is taught and how it is taught. Artificial Intelligence in Education is an important, if at times disturbing, contribution to the debate on AI and provides a detailed analysis on how it may affect the way teachers and students engage in education. The book describes how artificial intelligence may impact on curriculum design, on the individualisation of learning, and on assessment, offering some tantalising glimpses into the future (the end of exams, your very own lifelong learning companion) while not falling victim to tech-hype. The enormous ethical, technical and pedagogical challenges ahead are spelt out, and there is a real risk that the rapid advances in artificial intelligence products and services will outstrip education systems' capacity to understand, manage and integrate them appropriately. As the book concludes: We can either leave it to others (the computer scientists, AI engineers and big tech companies) to decide how artificial intelligence in education unfolds, or we can engage in productive dialogue.I commend this book to anyone concerned with the future of education in a digital world. --Marc Durando, Executive Director, European Schoolnet |
artificial intelligence in education examples: AI and education Miao, Fengchun, Holmes, Wayne, Ronghuai Huang, Hui Zhang, UNESCO, 2021-04-08 Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed] |
artificial intelligence in education examples: OECD Digital Education Outlook 2021 Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots OECD, 2021-06-08 How might digital technology and notably smart technologies based on artificial intelligence (AI), learning analytics, robotics, and others transform education? This book explores such question. It focuses on how smart technologies currently change education in the classroom and the management of educational organisations and systems. |
artificial intelligence in education examples: Business Trends in Practice Bernard Marr, 2021-11-15 WINNER OF THE BUSINESS BOOK OF THE YEAR AWARD 2022! Stay one step ahead of the competition with this expert review of the most impactful and disruptive business trends coming down the pike Far from slowing down, change and transformation in business seems to come only at a more and more furious rate. The last ten years alone have seen the introduction of groundbreaking new trends that pose new opportunities and challenges for leaders in all industries. In Business Trends in Practice: The 25+ Trends That Are Redefining Organizations, best-selling business author and strategist Bernard Marr breaks down the social and technological forces underlying these rapidly advancing changes and the impact of those changes on key industries. Critical consumer trends just emerging today—or poised to emerge tomorrow—are discussed, as are strategies for rethinking your organisation’s product and service delivery. The book also explores: Crucial business operations trends that are changing the way companies conduct themselves in the 21st century The practical insights and takeaways you can glean from technological and social innovation when you cut through the hype Disruptive new technologies, including AI, robotic and business process automation, remote work, as well as social and environmental sustainability trends Business Trends in Practice: The 25+ Trends That Are Redefining Organizations is a must-read resource for executives, business leaders and managers, and business development and innovation leads trying to get – and stay – on top of changes and disruptions that are right around the corner. |
artificial intelligence in education examples: Artificial Intelligence and Inclusive Education Jeremy Knox, Yuchen Wang, Michael Gallagher, 2019-06-13 This book brings together the fields of artificial intelligence (often known as A.I.) and inclusive education in order to speculate on the future of teaching and learning in increasingly diverse social, cultural, emotional, and linguistic educational contexts. This book addresses a pressing need to understand how future educational practices can promote equity and equality, while at the same time adopting A.I. systems that are oriented towards automation, standardisation and efficiency. The contributions in this edited volume appeal to scholars and students with an interest in forming a critical understanding of the development of A.I. for education, as well as an interest in how the processes of inclusive education might be shaped by future technologies. Grounded in theoretical engagement, establishing key challenges for future practice, and outlining the latest research, this book offers a comprehensive overview of the complex issues arising from the convergence of A.I. technologies and the necessity of developing inclusive teaching and learning. To date, there has been little in the way of direct association between research and practice in these domains: A.I. has been a predominantly technical field of research and development, and while intelligent computer systems and ‘smart’ software are being increasingly applied in many areas of industry, economics, social life, and education itself, a specific engagement with the agenda of inclusion appears lacking. Although such technology offers exciting possibilities for education, including software that is designed to ‘personalise’ learning or adapt to learner behaviours, these developments are accompanied by growing concerns about the in-built biases involved in machine learning techniques driven by ‘big data’. |
artificial intelligence in education examples: AI for School Teachers Rose Luckin, Karine George, Mutlu Cukurova, 2022-04-07 What is artificial intelligence? Can I realistically use it in my school? What’s best done by human intelligence vs. artificial intelligence, and how do I bring these strengths together? What would it look like for me, and my school, to be AI Ready? AI for School Teachers will help teachers and headteachers understand enough about AI to build a strategy for how it can be used in their school. Examining the needs of schools to ensure they are ready to leverage the power of AI and drawing examples from early years to high school students, this book outlines the educational implications and benefits that AI brings to school education in practical ways. It develops an understanding of what AI is and isn't and how we define and measure what we value and provides a framework which supports a step-by-step approach to developing an AI mindset, focusing on ways to improve educational opportunities for students with evidence-informed interventions. |
artificial intelligence in education examples: Teaching AI Michelle Zimmerman, 2018-12-15 Get the tools, resources and insights you need to explore artificial intelligence in the classroom and explore what students need to know about living in a world with AI. For many, artificial intelligence, or AI, may seem like science fiction, or inherently overwhelming. The reality is that AI is already being applied in industry and, for many of us, in our daily lives as well. A better understanding of AI can help you make informed decisions in the classroom that will impact the future of your students. Drawing from a broad variety of expert voices from countries including Australia, Japan, and South Africa, as well as educators from around the world and underrepresented student voices, this book explores some of the ways AI can improve education. These include educating learners about AI, teaching them about living in a world where they will be surrounded by AI and helping educators understand how they can use AI to augment human ability. Each chapter offers activities and questions to help you deepen your understanding, try out new concepts and reflect on the information presented. Links to media artifacts from trusted sources will help make your learning experience more dynamic while also providing additional resources to use in your classroom. This book: • Offers a unique approach to the topic, with chapter opening scenes, case studies, and featured student voices. • Discusses a variety of ways to teach students about AI, through design thinking, project-based learning and STEM connections. • Includes lesson ideas, activities and tools for exploring AI with your students. • Includes references to films and other media you can use in class to start discussions on AI or inspire design thinking and STEM projects. In Teaching AI, you’ll learn what AI is, how it works and how to use it to better prepare students in a world with increased human-computer interaction. |
artificial intelligence in education examples: Rewiring Education John D. Couch, 2023-01-03 What if we could unlock the potential in every child? As it turns out, we can. Apple's iconic cofounder Steve Jobs had a powerful vision for education: employing technology to make an enormous impact on the lives of millions of students. To realize this vision, Jobs tapped John D. Couch, a trusted engineer and executive with a passion for education. Couch believed the real purpose of education was to help children discover their unique potential and empower them to reach beyond their perceived limitations. Today, technology is increasingly integrated into every aspect of our lives, rewiring our homes, our jobs, and even our brains. Most important, it presents an opportunity to rewire education to enrich and strengthen our schools, children, and society In Rewiring Education, Couch shares the professional lessons he's learned during his 50-plus years in education and technology. He takes us behind Apple's major research study, Apple Classrooms of Tomorrow (ACOT), and its follow-up (ACOT 2), highlighting the powerful effects of the Challenge-Based Learning framework. Going beyond Apple's walls, he also introduces us to some of the most extraordinary parents, educators, and entrepreneurs from around the world who have ignored the failed promises of memorization and, instead, utilize new science-backed methods and technologies that benefit all children, from those who struggle to honor students. Rewiring Education presents a bold vision for the future of education, looking at promising emerging technologies and how we—as parents, teachers, and voters—can ensure children are provided with opportunities and access to the relevant, creative, collaborative, and challenging learning environments they need to succeed. |
artificial intelligence in education examples: Innovative Learning Environments in STEM Higher Education Jungwoo Ryoo, Kurt Winkelmann, 2021-03-11 As explored in this open access book, higher education in STEM fields is influenced by many factors, including education research, government and school policies, financial considerations, technology limitations, and acceptance of innovations by faculty and students. In 2018, Drs. Ryoo and Winkelmann explored the opportunities, challenges, and future research initiatives of innovative learning environments (ILEs) in higher education STEM disciplines in their pioneering project: eXploring the Future of Innovative Learning Environments (X-FILEs). Workshop participants evaluated four main ILE categories: personalized and adaptive learning, multimodal learning formats, cross/extended reality (XR), and artificial intelligence (AI) and machine learning (ML). This open access book gathers the perspectives expressed during the X-FILEs workshop and its follow-up activities. It is designed to help inform education policy makers, researchers, developers, and practitioners about the adoption and implementation of ILEs in higher education. |
artificial intelligence in education examples: Artificial Intelligence and Tutoring Systems Etienne Wenger, 2014-05-12 Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge focuses on the cognitive approaches, methodologies, principles, and concepts involved in the communication of knowledge. The publication first elaborates on knowledge communication systems, basic issues, and tutorial dialogues. Concerns cover natural reasoning and tutorial dialogues, shift from local strategies to multiple mental models, domain knowledge, pedagogical knowledge, implicit versus explicit encoding of knowledge, knowledge communication, and practical and theoretical implications. The text then examines interactive simulations, existing CAI traditions, and learning environments. The manuscript elaborates on knowledge communication, didactics, and diagnosis. Topics include knowledge presentation and communication, pedagogical contexts, target levels of didactic operations, behavioral and epistemic diagnosis, and aspects of diagnostic experience. The publication is a dependable reference for researchers interested in the computational and cognitive approaches to the communication of knowledge. |
artificial intelligence in education examples: Artificial Intelligence in Practice Bernard Marr, 2019-04-15 Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce. |
artificial intelligence in education examples: AI and the Future of Education Priten Shah, 2023-08-30 Clear away the fog surrounding AI in education—and regain your peace of mind Among teachers, there is a cloud of rumors, confusion, and fear surrounding the rise of artificial intelligence. AI and the Future of Education is a timely response to this general state of panic, showing you that AI is a tool to leverage, not a threat to teaching and learning. By understanding what AI is, what it does, and how it can be used to enhance education, you can let go of anxiety and uncertainty, and learn to embrace artificial intelligence. It's true that, along with tremendous opportunities, AI presents some challenges for the field of education. In this book, Priten Shah, a Harvard M.Ed. with a robust background in educational innovation, helps you face these challenges head on, so you can gain the knowledge and skills you need to use AI effectively in your classroom. Thanks to this thorough consideration of ethical considerations and practical approaches, you can develop your own strategy for leveraging AI in administrative tasks, lesson design, professional development, and beyond. Understand what AI and machine learning are, and learn about new developments like ChatGPT Discover strategies for engaging students more fully using AI Automate administrative tasks, grading and feedback, and assessments Use AI in innovative ways to promote higher-order thinking skills Examine ethical considerations of AI, including the achievement gap, privacy concerns, and bias For K-12 educators, as well as leaders and policymakers who want to understand the role of technology in education, AI and the Future of Education is a valuable resource that can change AI from an unknown entity to an indispensable tool. |
artificial intelligence in education examples: Understanding the impact of artificial intelligence on skills development UNESCO International Centre for Technical and Vocational Education and Training, 2021-04-02 |
artificial intelligence in education examples: Application of Artificial Intelligence to Assessment Hong Jiao, Robert W. Lissitz, 2020-03-01 The general theme of this book is to present the applications of artificial intelligence (AI) in test development. In particular, this book includes research and successful examples of using AI technology in automated item generation, automated test assembly, automated scoring, and computerized adaptive testing. By utilizing artificial intelligence, the efficiency of item development, test form construction, test delivery, and scoring could be dramatically increased. Chapters on automated item generation offer different perspectives related to generating a large number of items with controlled psychometric properties including the latest development of using machine learning methods. Automated scoring is illustrated for different types of assessments such as speaking and writing from both methodological aspects and practical considerations. Further, automated test assembly is elaborated for the conventional linear tests from both classical test theory and item response theory perspectives. Item pool design and assembly for the linear-on-the-fly tests elaborates more complications in practice when test security is a big concern. Finally, several chapters focus on computerized adaptive testing (CAT) at either item or module levels. CAT is further illustrated as an effective approach to increasing test-takers’ engagement in testing. In summary, the book includes both theoretical, methodological, and applied research and practices that serve as the foundation for future development. These chapters provide illustrations of efforts to automate the process of test development. While some of these automation processes have become common practices such as automated test assembly, automated scoring, and computerized adaptive testing, some others such as automated item generation calls for more research and exploration. When new AI methods are emerging and evolving, it is expected that researchers can expand and improve the methods for automating different steps in test development to enhance the automation features and practitioners can adopt quality automation procedures to improve assessment practices. |
artificial intelligence in education examples: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
artificial intelligence in education examples: Educational Design Research Jan Van den Akker, Koeno Gravemeijer, Susan McKenney, Nienke Nieveen, 2006-11-22 The field of design research has been gaining momentum over the last five years, particularly in educational studies. As papers and articles have grown in number, definition of the domain is now beginning to standardise. This book fulfils a growing need by providing a synthesised assessment of the use of development research in education. It looks at four main elements: background information including origins, definitions of development research, description of applications and benefits and risks associated with studies of this kind how the approach can serve the design of learning environments and educational technology quality assurance - how to safeguard academic rigor while conducting design and development studies a synthesis and overview of the topic along with relevant reflections. |
artificial intelligence in education examples: Robot-Proof, revised and updated edition Joseph E. Aoun, 2024-10-15 A fresh look at a “robot-proof” education in the new age of generative AI. In 2017, Robot-Proof, the first edition, foresaw the advent of the AI economy and called for a new model of higher education designed to help human beings flourish alongside smart machines. That economy has arrived. Creative tasks that, seven years ago, seemed resistant to automation can now be performed with a simple prompt. As a result, we must now learn not only to be conversant with these technologies, but also to comprehend and deploy their outputs. In this revised and updated edition, Joseph Aoun rethinks the university’s mission for a world transformed by AI, advocating for the lifelong endeavor of a “robot-proof” education. Aoun puts forth a framework for a new curriculum, humanics, which integrates technological, data, and human literacies in an experiential setting, and he renews the call for universities to embrace lifelong learning through a social compact with government, employers, and learners themselves. Drawing on the latest developments and debates around generative AI, Robot-Proof is a blueprint for the university as a force for human reinvention in an era of technological change—an era in which we must constantly renegotiate the shifting boundaries between artificial intelligence and the capacities that remain uniquely human. |
artificial intelligence in education examples: Handbook of Research on Learning in the Age of Transhumanism Sisman-Ugur, Serap, Kurubacak, Gulsun, 2019-05-03 As a movement, transhumanism aims to upgrade the human body through science, constantly pushing back the limits of a person by using cutting-edge technologies to fix the human body and upgrade it beyond its natural abilities. Transhumanism can not only change human habits, but it can also change learning practices. By improving human learning, it improves the human organism beyond natural and biological limits. The Handbook of Research on Learning in the Age of Transhumanism is an essential research publication that discusses global values, norms, and ethics that relate to the diverse needs of learners in the digital world and addresses future priorities and needs for transhumanism. The book will identify and scrutinize the needs of learners in the age of transhumanism and examine best practices for transhumanist leaders in learning. Featuring topics such as cybernetics, pedagogy, and sociology, this book is ideal for educators, trainers, instructional designers, curriculum developers, professionals, researchers, academicians, policymakers, and librarians. |
artificial intelligence in education examples: Human-Centered AI Ben Shneiderman, 2022 The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity. |
artificial intelligence in education examples: 50 Strategies for Integrating AI into the Classroom Donnie Piercey, 2024-02-13 Learn how to harness the power of AI in your classroom! This professional resource includes 50 easy-to-implement strategies for using AI technology as a tool for teaching. This book saves teachers valuable time with activities that boost literacy, content knowledge, and student engagement using AI tools. Written by a teacher who specializes in using technology in his own classroom, this professional book introduces artificial intelligence and the many ways it can help educators. These quick, accessible strategies for using AI academically and creatively can be used in any K–12 classroom. From sample prompts for AI to activities that support community building and fun, help teachers save valuable time and implement creative strategies with the tools in this resource! |
artificial intelligence in education examples: Encyclopedia of Education and Information Technologies ARTHUR TATNALL., 2019 This encyclopedia aims to offer researchers an indication of the breadth and importance of information systems in education, including the way IT is being used, and could be used to enable learning and teaching. The encyclopedia covers all aspects of the interaction between education and information technologies, including IT in kindergartens, primary and secondary schools, universities, training colleges, industry training, distance education and further education. It also covers teaching and computing, the use of IT in many different subject areas, the use of IT in educational administration, and national policies of IT and education. |
artificial intelligence in education examples: The AI Marketing Canvas Raj Venkatesan, Jim Lecinski, 2021-05-18 This book offers a direct, actionable plan CMOs can use to map out initiatives that are properly sequenced and designed for success—regardless of where their marketing organization is in the process. The authors pose the following critical questions to marketers: (1) How should modern marketers be thinking about artificial intelligence and machine learning? and (2) How should marketers be developing a strategy and plan to implement AI into their marketing toolkit? The opening chapters provide marketing leaders with an overview of what exactly AI is and how is it different than traditional computer science approaches. Venkatesan and Lecinski, then, propose a best-practice, five-stage framework for implementing what they term the AI Marketing Canvas. Their approach is based on research and interviews they conducted with leading marketers, and offers many tangible examples of what brands are doing at each stage of the AI Marketing Canvas. By way of guidance, Venkatesan and Lecinski provide examples of brands—including Google, Lyft, Ancestry.com, and Coca-Cola—that have successfully woven AI into their marketing strategies. The book concludes with a discussion of important implications for marketing leaders—for your team and culture. |
artificial intelligence in education examples: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
artificial intelligence in education examples: 21st Century Skills Bernie Trilling, Charles Fadel, 2012-02-07 This important resource introduces a framework for 21st Century learning that maps out the skills needed to survive and thrive in a complex and connected world. 21st Century content includes the basic core subjects of reading, writing, and arithmetic-but also emphasizes global awareness, financial/economic literacy, and health issues. The skills fall into three categories: learning and innovations skills; digital literacy skills; and life and career skills. This book is filled with vignettes, international examples, and classroom samples that help illustrate the framework and provide an exciting view of twenty-first century teaching and learning. Explores the three main categories of 21st Century Skills: learning and innovations skills; digital literacy skills; and life and career skills Addresses timely issues such as the rapid advance of technology and increased economic competition Based on a framework developed by the Partnership for 21st Century Skills (P21) The book contains a video with clips of classroom teaching. For more information on the book visit www.21stcenturyskillsbook.com. |
artificial intelligence in education examples: Handbook of Artificial Intelligence in Education Benedict du Boulay, Antonija Mitrovic, Kalina Yacef, 2023-01-20 Gathering insightful and stimulating contributions from leading global experts in Artificial Intelligence in Education (AIED), this comprehensive Handbook traces the development of AIED from its early foundations in the 1970s to the present day. |
artificial intelligence in education examples: Artificial Intelligence Stuart Russell, Peter Norvig, 2016-09-10 Artificial Intelligence: A Modern Approach offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence. |
artificial intelligence in education examples: AI 2041 Kai-Fu Lee, Chen Qiufan, 2024-03-05 How will AI change our world within twenty years? A pioneering technologist and acclaimed writer team up for a “dazzling” (The New York Times) look at the future that “brims with intriguing insights” (Financial Times). This edition includes a new foreword by Kai-Fu Lee. A BEST BOOK OF THE YEAR: The Wall Street Journal, The Washington Post, Financial Times Long before the advent of ChatGPT, Kai-Fu Lee and Chen Qiufan understood the enormous potential of artificial intelligence to transform our daily lives. But even as the world wakes up to the power of AI, many of us still fail to grasp the big picture. Chatbots and large language models are only the beginning. In this “inspired collaboration” (The Wall Street Journal), Lee and Chen join forces to imagine our world in 2041 and how it will be shaped by AI. In ten gripping, globe-spanning short stories and accompanying commentary, their book introduces readers to an array of eye-opening settings and characters grappling with the new abundance and potential harms of AI technologies like deep learning, mixed reality, robotics, artificial general intelligence, and autonomous weapons. |
artificial intelligence in education examples: Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky Andrew M. Olney, |
artificial intelligence in education examples: Embedding STEAM in Early Childhood Education and Care Caroline Cohrssen, Susanne Garvis, 2021-05-28 This book approaches STEAM (Science, Technology, Engineering, the Arts and Mathematics) in early childhood education from multiple angles. It focuses on the teaching and learning of children from two years of age to the early years of school. Proponents of STEAM describe how it can create opportunities for children to learn creatively, and various chapter authors make strong connections between discipline areas within the context of an informal curriculum. Others advocate for an integrated STEM, rather than STEAM, approach. With a light touch on theory and a focus on how to embed STE(A)M in an integrated early childhood curriculum, the editors and contributors examine the STEAM versus STEM question from multiple angles. The chapters provide helpful frameworks for parents, teachers and higher education institutions, and make practical suggestions of ways to support young children’s inquiry learning. Drawing on pedagogy and research from around the world, this book will be of interest to scholars of STEAM education, early childhood educators, students of early childhood education and parents of young children. |
artificial intelligence in education examples: Application of Artificial Intelligence in Government Practices and Processes José Ramón Saura, Felipe Debasa, 2022 This book identifies the main uses that governments make of artificial intelligence and outlines define citizens' concerns about their privacy, covering topics that are essential to understanding how governments should use artificial intelligence in their practices and processes-- |
artificial intelligence in education examples: MOOCs and Open Education in the Global South Ke Zhang, Curtis J. Bonk, Thomas C. Reeves, Thomas H. Reynolds, 2019-11-05 With e-learning technologies evolving and expanding at high rates, organizations and institutions around the world are integrating massive open online courses (MOOCs) and other open educational resources (OERs). MOOCs and Open Education in the Global South explores the initiatives that are leveraging these flexible systems to educate, train, and empower populations previously denied access to such opportunities. Featuring contributors leading efforts in rapidly changing nations and regions, this wide-ranging collection grapples with accreditation, credentialing, quality standards, innovative assessment, learner motivation and attrition, and numerous other issues. The provocative narratives curated in this volume demonstrate how MOOCs and OER can be effectively designed and implemented in vastly different ways in particular settings, as detailed by experts from Asia, Latin America, the Middle East, Africa, the Pacific/Oceania, and the Caribbean. This comprehensive text is an essential resource for policy makers, instructional designers, practitioners, administrators, and other MOOC and OER community stakeholders. |
artificial intelligence in education examples: Building Intelligent Interactive Tutors Beverly Park Woolf, 2010-07-28 Building Intelligent Interactive Tutors discusses educational systems that assess a student's knowledge and are adaptive to a student's learning needs. The impact of computers has not been generally felt in education due to lack of hardware, teacher training, and sophisticated software. and because current instructional software is neither truly responsive to student needs nor flexible enough to emulate teaching. Dr. Woolf taps into 20 years of research on intelligent tutors to bring designers and developers a broad range of issues and methods that produce the best intelligent learning environments possible, whether for classroom or life-long learning. The book describes multidisciplinary approaches to using computers for teaching, reports on research, development, and real-world experiences, and discusses intelligent tutors, web-based learning systems, adaptive learning systems, intelligent agents and intelligent multimedia. It is recommended for professionals, graduate students, and others in computer science and educational technology who are developing online tutoring systems to support e-learning, and who want to build intelligence into the system. - Combines both theory and practice to offer most in-depth and up-to-date treatment of intelligent tutoring systems available - Presents powerful drivers of virtual teaching systems, including cognitive science, artificial intelligence, and the Internet - Features algorithmic material that enables programmers and researchers to design building components and intelligent systems |
artificial intelligence in education examples: Machine Learning for Kids Dale Lane, 2021-01-19 A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+ |
artificial intelligence in education examples: Artificial Intelligence in Education Elisabeth André, Ryan Baker, Xiangen Hu, Ma. Mercedes T. Rodrigo, Benedict du Boulay, 2017-06-22 This book constitutes the refereed proceedings of the 18th International Conference on Artificial Intelligence in Education, AIED 2017, held in Wuhan, China, in June/July 2017. The 36 revised full papers presented together with 4 keynotes, 37 poster, presentations, 4 doctoral consortium papers, 5 industry papers, 4 workshop abstracts, and 2 tutorial abstracts were carefully reviewed and selected from 159 submissions. The conference provides opportunities for the cross-fertilization of approaches, techniques and ideas from the many fields that comprise AIED, including computer science, cognitive and learning sciences, education, game design, psychology, sociology, linguistics as well as many domain-specific areas. |
artificial intelligence in education examples: Artificial Intelligence in Education Matthew N.O. Sadiku, Sarhan M. Musa, Uwakwe C. Chukwu, 2022-01-27 The quest for building an artificial brain developed in the fields of computer science and psychology. Artificial intelligence (AI), sometimes called machine intelligence, refers to intelligence demonstrated by machines, while the natural intelligence is the intelligence displayed by humans and animals. Typically, AI systems demonstrate at least some of the following human behaviors: planning, learning, reasoning, problem solving, knowledge representation, perception, speech recognition, decision-making, language translation, motion, manipulation, intelligence, and creativity. Artificial intelligence is an emerging technology which the educational sector can benefit from. In this book, we consider the applications of AI in key areas of education. Artificial intelligence in education (AIED) refers to the application of AI technologies in educational settings to facilitate teaching, learning, or decision making. AI will impact the education field in the areas of administration, instruction, and personalized, and individualized learning applications. In this book, AI is specifically applied in the following key educational sectors: education, natural sciences, social sciences, computer science, engineering, business, and medicine. |
artificial intelligence in education examples: Robots for Kids Allison Druin, James A. Hendler, 2000 This work brings together the insights of ten designers, researchers, and educators, each invited to contribute a chapter that relates his or her experience develping or using a children's robotic learning device. This growing area of endeavour is expected to have prodound and long-lasting effets on the ways children learn and develop, and its participants come from a wide range of backgrounds. |
artificial intelligence in education examples: Conducting Educational Design Research Susan McKenney, Thomas Reeves, 2018-09-03 Educational design research blends scientific investigation with the systematic development and implementation of solutions to educational challenges. Empirical inquiry is conducted in real learning settings – not laboratories – to craft effective solutions to the complex challenges facing educational practitioners. At the same time, the research is carefully structured to produce theoretical understanding that can serve the work of others. Conducting Educational Design Research, 2nd Edition has been written to support graduate students as well as experienced researchers who are new to this approach. Part I describes the origins, outcomes, and generic approach. Part II discusses the core processes of the generic approach in detail. Part III recommends how to propose, report, and advance educational design research. In addition to expanded treatment of research goals and practicalities, more examples, and attention to design-based implementation research, this new edition features enhanced guidance. For each of the four core processes, this volume offers: assessment tools detailed, behind-the-scenes descriptions of actual project work examples of how specific theories have been used to enrich the work For decades, policies for educational research worldwide have swung back and forth between demanding rigor above all other concerns, and increasing emphasis on impact. These two qualities, rigor and impact, need not be mutually exclusive. This volume supports readers in grasping and realizing the potential of educational design research. It demonstrates how rigorous and relevant investigation can yield both theoretical understanding and solutions to urgent educational challenges. |
artificial intelligence in education examples: The ABCs of How We Learn: 26 Scientifically Proven Approaches, How They Work, and When to Use Them Daniel L. Schwartz, Jessica M. Tsang, Kristen P. Blair, 2016-07-26 Selected as one of NPR's Best Books of 2016, this book offers superior learning tools for teachers and students, from A to Z. An explosive growth in research on how people learn has revealed many ways to improve teaching and catalyze learning at all ages. The purpose of this book is to present this new science of learning so that educators can creatively translate the science into exceptional practice. The book is highly appropriate for the preparation and professional development of teachers and college faculty, but also parents, trainers, instructional designers, psychology students, and simply curious folks interested in improving their own learning. Based on a popular Stanford University course, The ABCs of How We Learn uses a novel format that is suitable as both a textbook and a popular read. With everyday language, engaging examples, a sense of humor, and solid evidence, it describes 26 unique ways that students learn. Each chapter offers a concise and approachable breakdown of one way people learn, how it works, how we know it works, how and when to use it, and what mistakes to avoid. The book presents learning research in a way that educators can creatively translate into exceptional lessons and classroom practice. The book covers field-defining learning theories ranging from behaviorism (R is for Reward) to cognitive psychology (S is for Self-Explanation) to social psychology (O is for Observation). The chapters also introduce lesser-known theories exceptionally relevant to practice, such as arousal theory (X is for eXcitement). Together the theories, evidence, and strategies from each chapter can be combined endlessly to create original and effective learning plans and the means to know if they succeed. |
artificial intelligence in education examples: Pedagogy, Education, and Praxis in Critical Times Kathleen Mahon, Christine Edwards-Groves, Susanne Francisco, Mervi Kaukko, Stephen Kemmis, Kirsten Petrie, 2020-10-22 This book critically explores urgent questions that researchers, educators, and policy makers need to consider and address in order to better our understanding and capacity to transform education. Focusing on areas that underpin the empirical, theoretical, and strategic research of the Pedagogy, Education and Praxis (PEP) International Research Network, it discusses the following topics: the nature of educational praxis; research approaches that facilitate praxis and praxis development; changing cultural, social, political and material conditions affecting the educational practices of teachers; and how good professional practice in teaching, leading, and professional learning are understood and experienced. Presenting findings emerging from the Pedagogy, Education and Praxis research, the book raises new questions and offers new ways of thinking about the identified issues and themes in light of current educational concerns and the prevalence of neoliberal conditions being experienced in educational settings around the globe. It provides supporting evidence and illustrative examples to help readers understand important concepts, situations, and concerns, and brings together intellectual and cultural-historical traditions that, when considered in relation to each other, open up critical opportunities and ideas orienting readers towards future educational transformation. |
artificial intelligence in education examples: Artificial Intelligence and Social Work Milind Tambe, Eric Rice, 2018-11-29 An introductory guide with real-life examples on using AI to help homeless youth, diabetes patients, and other social welfare interventions. |
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something natural : man-made. How to use artificial in a sentence.
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by people, often…. Learn more.
Artificial - definition of artificial by The Free Dictionary
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a natural product, esp as a substitute; not genuine: artificial cream. 3. pretended; …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is often used as the opposite of natural. A close synonym of artificial is synthetic.
ARTIFICIAL definition and meaning | Collins English Dictionary
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for example using science or technology.
artificial adjective - Definition, pictures, pronunciation and usage ...
Definition of artificial adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Artificial - Definition, Meaning & Synonyms - Vocabulary.com
While artificial can simply mean “made by humans,” it’s often used in a negative sense, conveying the idea that an artificial product is inferior to the real thing. If you remark that your friend’s new …
artificial - Wiktionary, the free dictionary
6 days ago · artificial (comparative more artificial, superlative most artificial) Man-made; made by humans; of artifice. The flowers were artificial, and he thought them rather tacky. An artificial …
What does artificial mean? - Definitions.net
Artificial refers to something that is made or produced by human beings rather than occurring naturally or in the environment. It often implies an imitation of something natural or a real version, …
Artificial Intelligence Is Not Intelligent - The Atlantic
Jun 6, 2025 · The good news is that nothing about this is inevitable: According to a study released in April by the Pew Research Center, although 56 percent of “AI experts” think artificial …
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something natural : man-made. How to use artificial in a sentence.
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by people, often…. Learn more.
Artificial - definition of artificial by The Free Dictionary
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a natural product, esp as a substitute; not genuine: artificial cream. 3. pretended; …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is often used as the opposite of natural. A close synonym of artificial is …
ARTIFICIAL definition and meaning | Collins English Dictionary
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for example using science or technology.
artificial adjective - Definition, pictures, pronunciation and usage ...
Definition of artificial adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Artificial - Definition, Meaning & Synonyms - Vocabulary.com
While artificial can simply mean “made by humans,” it’s often used in a negative sense, conveying the idea that an artificial product is inferior to the real thing. If you remark that your friend’s new …
artificial - Wiktionary, the free dictionary
6 days ago · artificial (comparative more artificial, superlative most artificial) Man-made; made by humans; of artifice. The flowers were artificial, and he thought them rather tacky. An artificial …
What does artificial mean? - Definitions.net
Artificial refers to something that is made or produced by human beings rather than occurring naturally or in the environment. It often implies an imitation of something natural or a real …
Artificial Intelligence Is Not Intelligent - The Atlantic
Jun 6, 2025 · The good news is that nothing about this is inevitable: According to a study released in April by the Pew Research Center, although 56 percent of “AI experts” think artificial …