Advertisement
artificial intelligence management system: AI Management System Certification According to the ISO/IEC 42001 Standard Sid Ahmed Benraouane, 2024-06-24 The book guides the reader through the auditing and compliance process of the newly released ISO Artificial Intelligence standard. It provides tools and best practices on how to put together an AI management system that is certifiable and sheds light on ethical and legal challenges business leaders struggle with to make their AI system comply with existing laws and regulations, and the ethical framework of the organization. The book is unique because it provides implementation guidance on the new certification and conformity assessment process required by the new ISO Standard on Artificial Intelligence (ISO 42001:2023 Artificial Intelligence Management System) published by ISO in August 2023. This is the first book that addresses this issue. As a member of the US/ISO team who participated in the drafting of this standard during the last 3 years, the author has direct knowledge and insights that are critical to the implementation of the standard. He explains the context of how to interpret ISO clauses, gives examples and guidelines, and provides best practices that help compliance managers and senior leadership understand how to put together the AI compliance system to certify their AI system. The reader will find in the book a complete guide to the certification process of AI systems and the conformity assessment required by the standard. It also provides guidance on how to read the new EU AI Act and some of the U.S. legislations, such as NYC Local Law 144, enacted in July 2023. This is the first book that helps the reader create an internal auditing program that enhances the company’s AI compliance framework. Generative AI has taken the world by storm, and currently, there is no international standard that provides guidance on how to put together a management system that helps business leaders address issues of AI governance, AI structure, AI risk, AI audit, and AI impact analysis. ISO/IEC 42001:2023 is the first international mandatory and certifiable standard that provides a comprehensive and well-integrated framework for the issue of AI governance. This book provides a step-by-step process on how to implement the standard so the AI system can pass the ISO accreditation process. |
artificial intelligence management system: Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems Alexandre Dolgui, Alain Bernard, David Lemoine, Gregor von Cieminski, David Romero, 2021-08-31 The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online. |
artificial intelligence management system: The AI-Powered Enterprise Seth Earley, 2020-04-28 Learn how to develop and employ an ontology, the secret weapon for successfully using artificial intelligence to create a powerful competitive advantage in your business. The AI-Powered Enterprise examines two fundamental questions: First, how will the future be different as a result of artificial intelligence? And second, what must companies do to stake their claim on that future? When the Web came along in the mid-90s, it transformed the behavior of customers and remade whole industries. Now, as part of its promise to bring revolutionary change in untold ways to human activity, artificial intelligence--AI--is about to create another complete transformation in how companies create and deliver value to customers. But despite the billions spent so far on bots and other tools, AI continues to stumble. Why can't it magically use all the data organizations generate to make them run faster and better? Because something is missing. AI works only when it understands the soul of the business. An ontology is a holistic digital model of every piece of information that matters to the business, from processes to products to people, and it's what makes the difference between the promise of AI and delivering on that promise. Business leaders who want to catch the AI wave--rather than be crushed by it--need to read The AI-Powered Enterprise. The book is the first to combine a sophisticated explanation of how AI works with a practical approach to applying AI to the problems of business, from customer experience to business operations to product development. |
artificial intelligence management system: ISO/IEC 42001:2023 Information Technology - Artificial Intelligence - Management System International Organization for Standardization, 2023 |
artificial intelligence management system: Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries Shmelova, Tetiana, Sikirda, Yuliya, Sterenharz, Arnold, 2019-10-11 With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation. |
artificial intelligence management system: Artificial Intelligence for Healthcare Applications and Management Boris Galitsky, Saveli Goldberg, 2022-01-19 Current conditions affected by COVID-19 pose new challenges for healthcare management and learning how to apply AI will be important for a broad spectrum of students and mature professionals working in medical informatics. . |
artificial intelligence management system: Artificial Intelligence and Machine Learning in Business Management Sandeep Kumar Panda, Vaibhav Mishra, R. Balamurali, Ahmed A. Elngar, 2021-11-04 Artificial Intelligence and Machine Learning in Business Management The focus of this book is to introduce artificial intelligence (AI) and machine learning (ML) technologies into the context of business management. The book gives insights into the implementation and impact of AI and ML to business leaders, managers, technology developers, and implementers. With the maturing use of AI or ML in the field of business intelligence, this book examines several projects with innovative uses of AI beyond data organization and access. It follows the Predictive Modeling Toolkit for providing new insight on how to use improved AI tools in the field of business. It explores cultural heritage values and risk assessments for mitigation and conservation and discusses on-shore and off-shore technological capabilities with spatial tools for addressing marketing and retail strategies, and insurance and healthcare systems. Taking a multidisciplinary approach for using AI, this book provides a single comprehensive reference resource for undergraduate, graduate, business professionals, and related disciplines. |
artificial intelligence management system: Artificial Intelligence in Healthcare Adam Bohr, Kaveh Memarzadeh, 2020-06-21 Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data |
artificial intelligence management system: Artificial Intelligence in Education Wayne Holmes, Maya Bialik, Charles Fadel, 2019-02-28 The landscape for education has been rapidly changing in the last years: demographic changes affecting the makeup of families, multiple school options available to children, wealth disparities, the global economy demanding new skills from workers, and continued breakthroughs in technology are some of the factors impacting education. Given these changes, how can schools continue to prepare students for the future? In a world where information is readily available online, how can schools continue to be relevant? The emergence of Artificial Intelligence (AI) has exacerbated the need to have these conversations. Its impact on education and the multiple possibilities that it offers are putting pressure on educational leaders to reformulate the school curriculum and the channels to deliver it. The book Artificial Intelligence in Education, Promises and Implications for Teaching and Learning by the Center for Curriculum Redesign immerses the reader in a discussion on what to teach students in the era of AI and examines how AI is already demanding much needed updates to the school curriculum, including modernizing its content, focusing on core concepts, and embedding interdisciplinary themes and competencies with the end goal of making learning more enjoyable and useful in students' lives. The second part of the book dives into the history of AI in education, its techniques and applications -including the way AI can help teachers be more effective, and finishes on a reflection about the social aspects of AI. This book is a must-read for educators and policy-makers who want to prepare schools to face the uncertainties of the future and keep them relevant. --Amada Torres, VP, Studies, Insights, and Research, National Association of Independent School (NAIS) The rapid advances in technology in recent decades have already brought about substantial changes in education, opening up new opportunities to teach and learn anywhere anytime and providing new tools and methods to improve learning outcomes and support innovative teaching and learning.Research into artificial intelligence and machine learning in education goes back to the late 1970s. Artificial intelligence methods were generally employed in two ways: to design and facilitate interactive learning environments that would support learning by doing, and to design and implement tutoring systems by adapting instructions with respect to the students' knowledge state.But this is just the beginning. As Artificial Intelligence in Education shows, AI is increasingly used in education and learning contexts. The collision of three areas - data, computation and education - is set to have far-reaching consequences, raising fundamental questions about the nature of education: what is taught and how it is taught. Artificial Intelligence in Education is an important, if at times disturbing, contribution to the debate on AI and provides a detailed analysis on how it may affect the way teachers and students engage in education. The book describes how artificial intelligence may impact on curriculum design, on the individualisation of learning, and on assessment, offering some tantalising glimpses into the future (the end of exams, your very own lifelong learning companion) while not falling victim to tech-hype. The enormous ethical, technical and pedagogical challenges ahead are spelt out, and there is a real risk that the rapid advances in artificial intelligence products and services will outstrip education systems' capacity to understand, manage and integrate them appropriately. As the book concludes: We can either leave it to others (the computer scientists, AI engineers and big tech companies) to decide how artificial intelligence in education unfolds, or we can engage in productive dialogue.I commend this book to anyone concerned with the future of education in a digital world. --Marc Durando, Executive Director, European Schoolnet |
artificial intelligence management system: Integrating AI in IoT Analytics on the Cloud for Healthcare Applications Jeya Mala, D., 2022-01-07 Internet of things (IoT) applications employed for healthcare generate a huge amount of data that needs to be analyzed to produce the expected reports. To accomplish this task, a cloud-based analytical solution is ideal in order to generate faster reports in comparison to the traditional way. Given the current state of the world in which every day IoT devices are developed to provide healthcare solutions, it is essential to consider the mechanisms used to collect and analyze the data to provide thorough reports. Integrating AI in IoT Analytics on the Cloud for Healthcare Applications applies artificial intelligence (AI) in edge analytics for healthcare applications, analyzes the impact of tools and techniques in edge analytics for healthcare, and discusses security solutions for edge analytics in healthcare IoT. Covering topics such as data analytics and next generation healthcare systems, it is ideal for researchers, academicians, technologists, IT specialists, data scientists, healthcare industries, IoT developers, data security analysts, educators, and students. |
artificial intelligence management system: Human-Centered AI Ben Shneiderman, 2022 The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity. |
artificial intelligence management system: Artificial Intelligence Harvard Business Review, 2019 Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business. |
artificial intelligence management system: Applications of Artificial Intelligence in Process Systems Engineering Jingzheng Ren, Weifeng Shen, Yi Man, Lichun Dong, 2021-06-05 Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering |
artificial intelligence management system: Artificial Intelligence for Knowledge Management Eunika Mercier-Laurent, M. Özgür Kayalica, Mieczyslaw Lech Owoc, 2021-07-03 This book features a selection of extended papers presented at the 8th IFIP WG 12.6 International Workshop on Artificial Intelligence for Knowledge Management, AI4KM 2021, held in Yokohama, Japan, in January 2021, in the framework of the International Joint Conference on Artificial Intelligence, IJCAI 2020.* The 14 revised and extended papers presented together with an invited talk were carefully reviewed and selected for inclusion in this volume. They present new research and innovative aspects in the field of knowledge management and discuss methodological, technical and organizational aspects of artificial intelligence used for knowledge management. *The workshop was held virtually. |
artificial intelligence management system: Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems Alexandre Dolgui, Alain Bernard, David Lemoine, Gregor von Cieminski, David Romero, 2021-09-01 The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online. |
artificial intelligence management system: Artificial Intelligence-Based Energy Management Systems for Smart Microgrids Baseem Khan, Sanjeevikumar Padmanaban, Hassan Haes Alhelou, Om Prakash Mahela, S. Rajkumar, 2022-06-07 Modeling and optimization of energy management systems for micro- and mini-grids play an important role in the fields of energy generation dispatch, system operation, protection coordination, power quality issues, and peak demand conflict with grid security. This comprehensive reference text provides an in-depth insight into these topics. This text discusses the use of meta-heuristic and artificial intelligence algorithms for developing energy management systems with energy use prediction for mini- and microgrid systems. It covers important concepts including modeling of microgrid and energy management systems, optimal protection coordination-based microgrid energy management, optimal energy dispatch with energy management systems, and peak demand management with energy management systems. Key Features: Presents a comprehensive discussion of mini- and microgrid concepts Discusses AC and DC microgrid modeling in detail Covers optimization of mini- and microgrid systems using AI and meta-heuristic techniques Provides MATLAB®-based simulations on a mini- and microgrid Comprehensively discussing concepts of microgrids with the help of software-based simulations, this text will be useful as a reference text for graduate students and professionals in the fields of electrical engineering, electronics and communication engineering, renewable energy, and clean technology. |
artificial intelligence management system: Management Information System Hitesh Gupta, 2011 |
artificial intelligence management system: Artificial Intelligence, Management and Trust Mariusz Sołtysik, Magda Gawłowska, Bartlomiej Sniezynski, Artur Gunia, 2023-09-01 The main challenge related to the development of artificial intelligence (AI) is to establish harmonious human-AI relations, necessary for the proper use of its potential. AI will eventually transform many businesses and industries; its pace of development is influenced by the lack of trust on the part of society. AI autonomous decision-making is still in its infancy, but use cases are evolving at an ever-faster pace. Over time, AI will be responsible for making more decisions, and those decisions will be of greater importance. The monograph aims to comprehensively describe AI technology in three aspects: organizational, psychological, and technological in the context of the increasingly bold use of this technology in management. Recognizing the differences between trust in people and AI agents and identifying the key psychological factors that determine the development of trust in AI is crucial for the development of modern Industry 4.0 organizations. So far, little is known about trust in human-AI relationships and almost nothing about the psychological mechanisms involved. The monograph will contribute to a better understanding of how trust is built between people and AI agents, what makes AI agents trustworthy, and how their morality is assessed. It will therefore be of interest to researchers, academics, practitioners, and advanced students with an interest in trust research, management of technology and innovation, and organizational management. |
artificial intelligence management system: Artificial Intelligence and Cognitive Science Luca Longo, Ruairi O’Reilly, 2023-02-22 This open access book constitutes selected papers presented during the 30th Irish Conference on Artificial Intelligence and Cognitive Science, held in Munster, Ireland, in December 2022. The 41 presented papers were thoroughly reviewed and selected from the 102 submissions. They are organized in topical sections on machine learning, deep learning and applications; responsible and trustworthy artificial intelligence; natural language processing and recommender systems; knowledge representation, reasoning, optimisation and intelligent applications. |
artificial intelligence management system: Artificial Intelligence for Marketing Management Park Thaichon, Sara Quach, 2022-11-10 Artificial intelligence (AI) has driven businesses to adopt new business practices rapidly, enhance product development and services, has helped to power AI-based market intelligence and customer insights, and improve customer relationship management. This timely book addresses the use of AI in marketing. This book also explores the dark side of AI in marketing management and discusses ethics and transparency of automated decision-making in AI applications, data privacy, cyber security issues, and biases in various facets of marketing. Emerging applications of AI such as DeepFakes which use deep learning technology could increase risks of manipulation and deception. Hence, apart from leveraging AI capabilities and advantages, the book cautions the need for prevention strategies to deal with potential issues that could arise from the adoption of AI in marketing management. This book will provide practical insights into the role of AI in marketing management. It will be a useful reference for those researching marketing and marketing professionals. |
artificial intelligence management system: Machine Learning for Cloud Management Jitendra Kumar, Ashutosh Kumar Singh, Anand Mohan, Rajkumar Buyya, 2021-11-25 Cloud computing offers subscription-based on-demand services, and it has emerged as the backbone of the computing industry. It has enabled us to share resources among multiple users through virtualization, which creates a virtual instance of a computer system running in an abstracted hardware layer. Unlike early distributed computing models, it offers virtually limitless computing resources through its large scale cloud data centers. It has gained wide popularity over the past few years, with an ever-increasing infrastructure, a number of users, and the amount of hosted data. The large and complex workloads hosted on these data centers introduce many challenges, including resource utilization, power consumption, scalability, and operational cost. Therefore, an effective resource management scheme is essential to achieve operational efficiency with improved elasticity. Machine learning enabled solutions are the best fit to address these issues as they can analyze and learn from the data. Moreover, it brings automation to the solutions, which is an essential factor in dealing with large distributed systems in the cloud paradigm. Machine Learning for Cloud Management explores cloud resource management through predictive modelling and virtual machine placement. The predictive approaches are developed using regression-based time series analysis and neural network models. The neural network-based models are primarily trained using evolutionary algorithms, and efficient virtual machine placement schemes are developed using multi-objective genetic algorithms. Key Features: The first book to set out a range of machine learning methods for efficient resource management in a large distributed network of clouds. Predictive analytics is an integral part of efficient cloud resource management, and this book gives a future research direction to researchers in this domain. It is written by leading international researchers. The book is ideal for researchers who are working in the domain of cloud computing. |
artificial intelligence management system: Challenges and Opportunities to Develop Organizations Through Creativity, Technology and Ethics Silvia L. Fotea, Ioan Ş. Fotea, Sebastian A. Văduva, 2020-06-11 This proceedings volume provides a multifaceted perspective on current challenges and opportunities that organizations face in their efforts to develop and grow in an ever more complex environment. Featuring selected contributions from the 2019 Griffiths School of Management Annual Conference (GSMAC) on Business, Entrepreneurship and Ethics, this book focuses on the role of creativity, technology and ethics in facilitating the transformation organizations need in order to be ready for the future and succeed. Growth and development have always been imperative for people, organizations, and societies and a relevant topic in the management sciences. Globalization, along with dramatic changes in social, cultural, and technological progress, are the main factors that determine the current conditions for development, putting forth a new set of challenges and opportunities that are putting pressure on organisations to adapt. Although technology and creativity seem to be the mantra for success in this new context, issues around the ethics of these two factors also seem to be crucial to the sustainability of growth in organizations. Featuring contributions on topics such as academic marketing, technology in healthcare organizations, ethical issues in hospitality, artificial intelligence and data mining, this book provides research and tools for students, professors, practitioners and policy makers in the fields of business, management, public administration and sociology. |
artificial intelligence management system: Artificial Intelligence of Things (AIoT) Kashif Naseer Qureshi, Thomas Newe, 2024-04-05 This book is devoted to the new standards, technologies, and communication systems for Artificial Intelligence of Things (AIoT) networks. Smart and intelligent communication networks have gained significant attention due to the combination of AI and IoT networks to improve human and machine interfaces and enhance data processing and services. AIoT networks involve the collection of data from several devices and sensor nodes in the environment. AI can enhance these networks to make them faster, greener, smarter, and safer. Computer vision, language processing, and speech recognition are some examples of AIoT networks. Due to a large number of devices in today’s world, efficient and intelligent data processing is essential for problem-solving and decision-making. AI multiplies the value of these networks and promotes intelligence and learning capabilities, especially in homes, offices, and cities. However, several challenges have been observed in deploying AIoT networks, such as scalability, complexity, accuracy, and robustness. In addition, these networks are integrated with cloud, 5G networks, and blockchain methods for service provision. Many different solutions have been proposed to address issues related to machine and deep learning methods, ontology-based approaches, genetic algorithms, and fuzzy-based systems. This book aims to contribute to the state of the art and present current standards, technologies, and approaches for AIoT networks. This book focuses on existing solutions in AIoT network technologies, applications, services, standards, architectures, and security provisions. This book also introduces some new architectures and models for AIoT networks. |
artificial intelligence management system: Artificial Intelligence for Customer Relationship Management Boris Galitsky, 2020-12-23 The second volume of this research monograph describes a number of applications of Artificial Intelligence in the field of Customer Relationship Management with the focus of solving customer problems. We design a system that tries to understand the customer complaint, his mood, and what can be done to resolve an issue with the product or service. To solve a customer problem efficiently, we maintain a dialogue with the customer so that the problem can be clarified and multiple ways to fix it can be sought. We introduce dialogue management based on discourse analysis: a systematic linguistic way to handle the thought process of the author of the content to be delivered. We analyze user sentiments and personal traits to tailor dialogue management to individual customers. We also design a number of dialogue scenarios for CRM with replies following certain patterns and propose virtual and social dialogues for various modalities of communication with a customer. After we learn to detect fake content, deception and hypocrisy, we examine the domain of customer complaints. We simulate mental states, attitudes and emotions of a complainant and try to predict his behavior. Having suggested graph-based formal representations of complaint scenarios, we machine-learn them to identify the best action the customer support organization can chose to retain the complainant as a customer. |
artificial intelligence management system: Artificial Intelligence Kerrigan, Charles, 2022-03-17 This timely book provides an extensive overview and analysis of the law and regulation as it applies to the technology and uses of Artificial Intelligence (AI). It examines the human and ethical concerns associated with the technology, the history of AI and AI in commercial contexts. |
artificial intelligence management system: Secure Knowledge Management In Artificial Intelligence Era Sanjay K. Sahay, Nihita Goel, Vishwas Patil, Murtuza Jadliwala, 2020-03-05 This book constitutes the refereed proceedings of the 8th International Conference On Secure Knowledge Management In Artificial Intelligence Era, SKM 2019, held in Goa, India, in December 2019. The 12 full papers presented were carefully reviewed and selected from 34 submissions. They were organized according to the following topical sections: cyber security; security and artifcial intelligence; access control models; and social networks. |
artificial intelligence management system: Artificial Intelligence in Practice Bernard Marr, 2019-04-15 Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce. |
artificial intelligence management system: Designing Workforce Management Systems for Industry 4.0 Alex Khang, Sita Rani, Rashmi Gujrati, Hayri Uygun, Shashi Kant Gupta, 2023-10-11 This book brings insight to the HR management system and offers data-centric approaches and AI-enabled applications for the design and implementation strategies used for workforce development and management. Designing Workforce Management Systems for Industry 4.0: Data-Centric and AI-Enabled Approaches focuses on the mechanisms of proposing solutions along with architectural concepts, design principles, smart solutions, and intelligent predictions with visualization simulation. Data visualization for the metrics of management systems and robotic process automation applications and tools are also offered. This book is also useful as a reference for those involved in AI-enabled applications, data analytics, data visualization, as well as systems engineering and systems designing. |
artificial intelligence management system: Systems Engineering and Artificial Intelligence William F. Lawless, Ranjeev Mittu, Donald A. Sofge, Thomas Shortell, Thomas A. McDermott, 2021-11-02 This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments. The major topics include emergence, verification and validation of systems using AI/ML and human systems integration to develop robust and effective human-machine teams—where the machines may have varying degrees of autonomy due to the sophistication of their embedded AI/ML. The chapters not only describe what has been learned, but also raise questions that must be answered to further advance the general Science of Autonomy. The science of how humans and machines operate as a team requires insights from, among others, disciplines such as the social sciences, national and international jurisprudence, ethics and policy, and sociology and psychology. The social sciences inform how context is constructed, how trust is affected when humans and machines depend upon each other and how human-machine teams need a shared language of explanation. National and international jurisprudence determine legal responsibilities of non-trivial human-machine failures, ethical standards shape global policy, and sociology provides a basis for understanding team norms across cultures. Insights from psychology may help us to understand the negative impact on humans if AI/ML based machines begin to outperform their human teammates and consequently diminish their value or importance. This book invites professionals and the curious alike to witness a new frontier open as the Science of Autonomy emerges. |
artificial intelligence management system: The Promise of Artificial Intelligence Brian Cantwell Smith, 2019-10-08 An argument that—despite dramatic advances in the field—artificial intelligence is nowhere near developing systems that are genuinely intelligent. In this provocative book, Brian Cantwell Smith argues that artificial intelligence is nowhere near developing systems that are genuinely intelligent. Second wave AI, machine learning, even visions of third-wave AI: none will lead to human-level intelligence and judgment, which have been honed over millennia. Recent advances in AI may be of epochal significance, but human intelligence is of a different order than even the most powerful calculative ability enabled by new computational capacities. Smith calls this AI ability “reckoning,” and argues that it does not lead to full human judgment—dispassionate, deliberative thought grounded in ethical commitment and responsible action. Taking judgment as the ultimate goal of intelligence, Smith examines the history of AI from its first-wave origins (“good old-fashioned AI,” or GOFAI) to such celebrated second-wave approaches as machine learning, paying particular attention to recent advances that have led to excitement, anxiety, and debate. He considers each AI technology's underlying assumptions, the conceptions of intelligence targeted at each stage, and the successes achieved so far. Smith unpacks the notion of intelligence itself—what sort humans have, and what sort AI aims at. Smith worries that, impressed by AI's reckoning prowess, we will shift our expectations of human intelligence. What we should do, he argues, is learn to use AI for the reckoning tasks at which it excels while we strengthen our commitment to judgment, ethics, and the world. |
artificial intelligence management system: Industrial Engineering: Concepts, Methodologies, Tools, and Applications Management Association, Information Resources, 2012-08-31 Industrial engineering affects all levels of society, with innovations in manufacturing and other forms of engineering oftentimes spawning cultural or educational shifts along with new technologies. Industrial Engineering: Concepts, Methodologies, Tools, and Applications serves as a vital compendium of research, detailing the latest research, theories, and case studies on industrial engineering. Bringing together contributions from authors around the world, this three-volume collection represents the most sophisticated research and developments from the field of industrial engineering and will prove a valuable resource for researchers, academics, and practitioners alike. |
artificial intelligence management system: Developments in Information and Knowledge Management Systems for Business Applications Natalia Kryvinska, Michal Greguš, Solomiia Fedushko, 2023-03-18 This book presents a combination of chapters assembled in different fields of expertise. The book examines different aspects of business knowledge from a philosophical and practical standpoint. This data helps modern organizations by providing valuable insights and suggestions for future research and results. The increasing number of business disciplines studied necessitates implementing effective analytics practices within organizations. This book explores disciplinary and multidisciplinary concepts and practical techniques to help analyze the evolving field. |
artificial intelligence management system: Systems, Software and Services Process Improvement Murat Yilmaz, |
artificial intelligence management system: AI Strategies For Web Development Anderson Soares Furtado Oliveira, 2024-09-30 From fundamental to advanced strategies, unlock useful insights for creating innovative, user-centric websites while navigating the evolving landscape of AI ethics and security Key Features Explore AI's role in web development, from shaping projects to architecting solutions Master advanced AI strategies to build cutting-edge applications Anticipate future trends by exploring next-gen development environments, emerging interfaces, and security considerations in AI web development Purchase of the print or Kindle book includes a free PDF eBook Book Description If you're a web developer looking to leverage the power of AI in your projects, then this book is for you. Written by an AI and ML expert with more than 15 years of experience, AI Strategies for Web Development takes you on a transformative journey through the dynamic intersection of AI and web development, offering a hands-on learning experience.The first part of the book focuses on uncovering the profound impact of AI on web projects, exploring fundamental concepts, and navigating popular frameworks and tools. As you progress, you'll learn how to build smart AI applications with design intelligence, personalized user journeys, and coding assistants. Later, you'll explore how to future-proof your web development projects using advanced AI strategies and understand AI's impact on jobs. Toward the end, you'll immerse yourself in AI-augmented development, crafting intelligent web applications and navigating the ethical landscape.Packed with insights into next-gen development environments, AI-augmented practices, emerging realities, interfaces, and security governance, this web development book acts as your roadmap to staying ahead in the AI and web development domain. What you will learn Build AI-powered web projects with optimized models Personalize UX dynamically with AI, NLP, chatbots, and recommendations Explore AI coding assistants and other tools for advanced web development Craft data-driven, personalized experiences using pattern recognition Architect effective AI solutions while exploring the future of web development Build secure and ethical AI applications following TRiSM best practices Explore cutting-edge AI and web development trends Who this book is for This book is for web developers with experience in programming languages and an interest in keeping up with the latest trends in AI-powered web development. Full-stack, front-end, and back-end developers, UI/UX designers, software engineers, and web development enthusiasts will also find valuable information and practical guidelines for developing smarter websites with AI. To get the most out of this book, it is recommended that you have basic knowledge of programming languages such as HTML, CSS, and JavaScript, as well as a familiarity with machine learning concepts. |
artificial intelligence management system: Artificial Intelligence for Managers Malay A. Upadhyay, 2020-09-17 Understand how to adopt and implement AI in your organization Key Features _ 7 Principles of an AI Journey _ The TUSCANE Approach to Become Data Ready _ The FAB-4 Model to Choose the Right AI Solution _ Major AI Techniques & their Applications: - CART & Ensemble Learning - Clustering, Association Rules & Search - Reinforcement Learning - Natural Language Processing - Image Recognition Description Most AI initiatives in organizations fail today not because of a lack of good AI solutions, but because of a lack of understanding of AI among its end users, decision makers and investors. Today, organizations need managers who can leverage AI to solve business problems and provide a competitive advantage. This book is designed to enable you to fill that need, and create an edge for your career. The chapters offer unique managerial frameworks to guide an organization's AI journey. The first section looks at what AI is; and how you can prepare for it, decide when to use it, and avoid pitfalls on the way. The second section dives into the different AI techniques and shows you where to apply them in business. The final section then prepares you from a strategic AI leadership perspective to lead the future of organizations. By the end of the book, you will be ready to offer any organization the capability to use AI successfully and responsibly - a need that is fast becoming a necessity. What will you learn _ Understand the major AI techniques & how they are used in business. _ Determine which AI technique(s) can solve your business problem. _ Decide whether to build or buy an AI solution. _ Estimate the financial value of an AI solution or company. _ Frame a robust policy to guide the responsible use of AI. Who this book is for This book is for Executives, Managers and Students on both Business and Technical teams who would like to use Artificial Intelligence effectively to solve business problems or get an edge in their careers. Table of Contents 1.Preface 2.Acknowledgement 3.About the Author 4.Section 1: Beginning an AI Journey a. AI Fundamentals b. 7 Principles of an AI Journey c. Getting Ready to Use AI 5.Section 2: Choosing the Right AI Techniques a. Inside the AI Laboratory b. How AI Predicts Values & Categories c. How AI Understands and Predicts Behaviors & Scenarios d. How AI Communicates & Learns from Mistakes e. How AI Starts to Think Like Humans 6.Section 3: Using AI Successfully & Responsibly a. AI Adoption & Valuation b. AI Strategy, Policy & Risk Management 7.Epilogue |
artificial intelligence management system: Anticipatory Systems: Humans Meet Artificial Intelligence Mu-Yen Chen, Edwin Lughofer, Jose De Jesus Rubio, Yenchun Jim Wu, 2021-09-13 |
artificial intelligence management system: Artificial Intelligence and Security Xingming Sun, Xiaorui Zhang, Zhihua Xia, Elisa Bertino, 2021-07-09 This two-volume set of LNCS 12736-12737 constitutes the refereed proceedings of the 7th International Conference on Artificial Intelligence and Security, ICAIS 2021, which was held in Dublin, Ireland, in July 2021. The conference was formerly called “International Conference on Cloud Computing and Security” with the acronym ICCCS. The total of 93 full papers and 29 short papers presented in this two-volume proceedings was carefully reviewed and selected from 1013 submissions. Overall, a total of 224 full and 81 short papers were accepted for ICAIS 2021; the other accepted papers are presented in CCIS 1422-1424. The papers were organized in topical sections as follows: Part I: Artificial intelligence; and big data Part II: Big data; cloud computing and security; encryption and cybersecurity; information hiding; IoT security; and multimedia forensics |
artificial intelligence management system: Semantic Web Technologies and Applications in Artificial Intelligence of Things Ortiz-Rodriguez, Fernando, Leyva-Mederos, Amed, Tiwari, Sanju, Hernandez-Quintana, Ania R., Martinez-Rodriguez, Jose L., 2024-05-16 The confluence of Artificial Intelligence of Things (AIoT) and Semantic Web technologies is nothing short of revolutionary. The profound impact of this synergy extends far beyond the realms of industry, research, and society; it shapes the very fabric of our future. Semantic Web Technologies and Applications in Artificial Intelligence of Things is a meticulously crafted reference that not only acknowledges this significance but also serves as a guide for those navigating the complexities of Industry 4.0 and AIoT. This curated compendium of cutting-edge technologies acts as a veritable knowledge base for future developments. As academics, scholars, and industry professionals, the ideal audience of this book, will find meticulously curated content that caters to their diverse interests and expertise, covering topics ranging from smart agriculture, manufacturing, industry, health sciences, and government. Seasoned academics, students, and visionary industry leaders, will find this book to be an indispensable guide that paves the way for innovation and progress. |
artificial intelligence management system: Smart Analytics, Artificial Intelligence and Sustainable Performance Management in a Global Digitalised Economy Pallavi Tyagi, Simon Grima, Kiran Sood, Balamurugan Balusamy, Ercan Özen, Eleftherios Thalassinos, 2023-05-29 The Covid 19 pandemic has created chaos in the business world and forced leaders to rethink their operational status quo. Though the benefits outweigh the risks, the challenges in digitalised economies are as sophisticated as the solutions they offer. |
artificial intelligence management system: New Frontiers in Artificial Intelligence Takashi Washio, Akito Sakurai, Katsuto Nakajima, Hideaki Takeda, Satoshi Tojo, Makoto Yokoo, 2006-06-29 This book presents the joint post-proceedings of five international workshops organized by the Japanese Society for Artificial Intelligence, during the 19th Annual Conference JSAI 2005. The volume includes 5 award winning papers of the main conference, along with 40 revised full workshop papers, covering such topics as logic and engineering of natural language semantics, learning with logics, agent network dynamics and intelligence, conversational informatics and risk management systems with intelligent data analysis. |
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something natural : man-made. How to use artificial in a sentence.
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by people, often…. Learn more.
Artificial - definition of artificial by The Free Dictionary
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a natural product, esp as a substitute; not genuine: artificial cream. 3. pretended; …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is often used as the opposite of natural. A close synonym of artificial is …
ARTIFICIAL definition and meaning | Collins English Dictionary
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for example using science or technology.
artificial adjective - Definition, pictures, pronunciation and usage ...
Definition of artificial adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Artificial - Definition, Meaning & Synonyms - Vocabulary.com
While artificial can simply mean “made by humans,” it’s often used in a negative sense, conveying the idea that an artificial product is inferior to the real thing. If you remark that your friend’s new …
artificial - Wiktionary, the free dictionary
6 days ago · artificial (comparative more artificial, superlative most artificial) Man-made; made by humans; of artifice. The flowers were artificial, and he thought them rather tacky. An artificial …
What does artificial mean? - Definitions.net
Artificial refers to something that is made or produced by human beings rather than occurring naturally or in the environment. It often implies an imitation of something natural or a real …
Artificial Intelligence Is Not Intelligent - The Atlantic
Jun 6, 2025 · The good news is that nothing about this is inevitable: According to a study released in April by the Pew Research Center, although 56 percent of “AI experts” think artificial …
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something natural : man-made. …
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by people, often…. Learn …
Artificial - definition of artificial by The Free Dictionary
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a natural product, esp as a …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is often used …
ARTIFICIAL definition and meaning | Collins English Dictionary
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for example using science or …