Advertisement
best programming language for deep learning: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
best programming language for deep learning: Programming Machine Learning Paolo Perrotta, 2020-03-31 You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain. |
best programming language for deep learning: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
best programming language for deep learning: Land of Lisp Conrad Barski, 2010-10-15 Lisp has been hailed as the world’s most powerful programming language, but its cryptic syntax and academic reputation can be enough to scare off even experienced programmers. Those dark days are finally over—Land of Lisp brings the power of functional programming to the people! With his brilliantly quirky comics and out-of-this-world games, longtime Lisper Conrad Barski teaches you the mysteries of Common Lisp. You’ll start with the basics, like list manipulation, I/O, and recursion, then move on to more complex topics like macros, higher order programming, and domain-specific languages. Then, when your brain overheats, you can kick back with an action-packed comic book interlude! Along the way you’ll create (and play) games like Wizard Adventure, a text adventure with a whiskey-soaked twist, and Grand Theft Wumpus, the most violent version of Hunt the Wumpus the world has ever seen. You'll learn to: –Master the quirks of Lisp’s syntax and semantics –Write concise and elegant functional programs –Use macros, create domain-specific languages, and learn other advanced Lisp techniques –Create your own web server, and use it to play browser-based games –Put your Lisp skills to the test by writing brain-melting games like Dice of Doom and Orc Battle With Land of Lisp, the power of functional programming is yours to wield. |
best programming language for deep learning: Coding the Matrix Philip N. Klein, 2013-07 An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by doing, writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant xkcd comics. Chapters: The Function, The Field, The Vector, The Vector Space, The Matrix, The Basis, Dimension, Gaussian Elimination, The Inner Product, Special Bases, The Singular Value Decomposition, The Eigenvector, The Linear Program A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon. |
best programming language for deep learning: Machine Learning for Kids Dale Lane, 2021-01-19 A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+ |
best programming language for deep learning: Deep Learning with Python Francois Chollet, 2017-11-30 Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance |
best programming language for deep learning: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
best programming language for deep learning: Clojure for Data Science Henry Garner, 2015-09-03 Statistics, big data, and machine learning for Clojure programmers About This Book Write code using Clojure to harness the power of your data Discover the libraries and frameworks that will help you succeed A practical guide to understanding how the Clojure programming language can be used to derive insights from data Who This Book Is For This book is aimed at developers who are already productive in Clojure but who are overwhelmed by the breadth and depth of understanding required to be effective in the field of data science. Whether you're tasked with delivering a specific analytics project or simply suspect that you could be deriving more value from your data, this book will inspire you with the opportunities–and inform you of the risks–that exist in data of all shapes and sizes. What You Will Learn Perform hypothesis testing and understand feature selection and statistical significance to interpret your results with confidence Implement the core machine learning techniques of regression, classification, clustering and recommendation Understand the importance of the value of simple statistics and distributions in exploratory data analysis Scale algorithms to web-sized datasets efficiently using distributed programming models on Hadoop and Spark Apply suitable analytic approaches for text, graph, and time series data Interpret the terminology that you will encounter in technical papers Import libraries from other JVM languages such as Java and Scala Communicate your findings clearly and convincingly to nontechnical colleagues In Detail The term “data science” has been widely used to define this new profession that is expected to interpret vast datasets and translate them to improved decision-making and performance. Clojure is a powerful language that combines the interactivity of a scripting language with the speed of a compiled language. Together with its rich ecosystem of native libraries and an extremely simple and consistent functional approach to data manipulation, which maps closely to mathematical formula, it is an ideal, practical, and flexible language to meet a data scientist's diverse needs. Taking you on a journey from simple summary statistics to sophisticated machine learning algorithms, this book shows how the Clojure programming language can be used to derive insights from data. Data scientists often forge a novel path, and you'll see how to make use of Clojure's Java interoperability capabilities to access libraries such as Mahout and Mllib for which Clojure wrappers don't yet exist. Even seasoned Clojure developers will develop a deeper appreciation for their language's flexibility! You'll learn how to apply statistical thinking to your own data and use Clojure to explore, analyze, and visualize it in a technically and statistically robust way. You can also use Incanter for local data processing and ClojureScript to present interactive visualisations and understand how distributed platforms such as Hadoop sand Spark's MapReduce and GraphX's BSP solve the challenges of data analysis at scale, and how to explain algorithms using those programming models. Above all, by following the explanations in this book, you'll learn not just how to be effective using the current state-of-the-art methods in data science, but why such methods work so that you can continue to be productive as the field evolves into the future. Style and approach This is a practical guide to data science that teaches theory by example through the libraries and frameworks accessible from the Clojure programming language. |
best programming language for deep learning: Machine Learning Algorithms Giuseppe Bonaccorso, 2017-07-24 Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning. |
best programming language for deep learning: ANSI Common Lisp Paul Graham, 1996 Teaching users new and more powerful ways of thinking about programs, this two-in-one text contains a tutorial--full of examples--that explains all the essential concepts of Lisp programming, plus an up-to-date summary of ANSI Common Lisp. Informative and fun, it gives users everything they need to start writing programs in Lisp and highlights innovative Lisp features. |
best programming language for deep learning: Introduction to Deep Learning Eugene Charniak, 2019-01-29 A project-based guide to the basics of deep learning. This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach. Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference. |
best programming language for deep learning: Deep Learning with PyTorch Luca Pietro Giovanni Antiga, Eli Stevens, Thomas Viehmann, 2020-07-01 “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production |
best programming language for deep learning: C++ Machine Learning Phil Culliton, 2017-12-29 Get introduced to the concepts of Machine Learning and build efficient data models in C++About This Book* Get introduced to the concepts of Machine Learning and see how you can implement them in C++, and build efficient data models for training data using popular libraries such as mlpack and Shark* A detailed guide packed with real-life examples to help you build a solid understanding of Machine Learning.Who This Book Is ForThe target audience is C++ developers who want to get into machine learning, or knowledgeable ML programmers who don't know C++ well but want to use it, and libraries written in it, in their work. The reader should be conversant with at least one programming language, and have some familiarity with strongly-typed languages and vectors/matrices.What you will learn* Model relationships in your data using supervised learning* Uncover insights using clustering and t-SNE* Use ensemble and stack to create more powerful models* Use cuda-convnet and deep learning to solve image recognition problems* Build an end-to-end pipeline that turns what you learn into practical, ready-to-use software* Solve big data problems using Hadoop and Google's MR4CIn DetailMachine Learning tasks are CPU time-consuming. C++ outperforms any other programming language by allowing access to programming constructs to optimize CPU-based number crunching, precision, and memory management normally abstracted away in higher-level languages.This book aims to address the challenges associated with C++ machine learning by introducing you to several useful libraries (mlpack, Shogun, and so on); you'll producing a library of your own code along the way that should make common tasks more straightforward.We begin with a review of the basic concepts you will need to know or brush up on before going further, including math and an intro to the C++ style we'll be using throughout the book. We then deal with the fundamentals of ML-how to handle input, the basic algorithms, and sample cases where the basic algorithms succeed or fail. This is followed by more advanced topics such as complex algorithms, regularization, optimization, and visualizing and understanding data, referring back to earlier work consistently so that you can see the mountains move. We'll then touch upon topics of current interest: computer vision (including sections on CUDA and deep learning), natural language processing, and handling very large datasets.The journey ends with a coda: we go back through the original sample cases, applying what we've learned along the way to rectify the issues we ran into initially. |
best programming language for deep learning: Programming PyTorch for Deep Learning Ian Pointer, 2019-09-20 Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian Pointer shows you how to set up PyTorch on a cloud-based environment, then walks you through the creation of neural architectures that facilitate operations on images, sound, text,and more through deep dives into each element. He also covers the critical concepts of applying transfer learning to images, debugging models, and PyTorch in production. Learn how to deploy deep learning models to production Explore PyTorch use cases from several leading companies Learn how to apply transfer learning to images Apply cutting-edge NLP techniques using a model trained on Wikipedia Use PyTorch’s torchaudio library to classify audio data with a convolutional-based model Debug PyTorch models using TensorBoard and flame graphs Deploy PyTorch applications in production in Docker containers and Kubernetes clusters running on Google Cloud |
best programming language for deep learning: Clever Algorithms Jason Brownlee, 2011 This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language. |
best programming language for deep learning: Python Machine Learning Wei-Meng Lee, 2019-04-04 Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level. |
best programming language for deep learning: Machine Learning For Dummies John Paul Mueller, Luca Massaron, 2021-02-09 One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world. |
best programming language for deep learning: Deep Learning with R François Chollet, 2018-01-22 Summary Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples. Continue your journey into the world of deep learning with Deep Learning with R in Motion, a practical, hands-on video course available exclusively at Manning.com (www.manning.com/livevideo/deep-learning-with-r-in-motion). Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. Deep-learning systems now enable previously impossible smart applications, revolutionizing image recognition and natural-language processing, and identifying complex patterns in data. The Keras deep-learning library provides data scientists and developers working in R a state-of-the-art toolset for tackling deep-learning tasks. About the Book Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. Initially written for Python as Deep Learning with Python by Keras creator and Google AI researcher François Chollet and adapted for R by RStudio founder J. J. Allaire, this book builds your understanding of deep learning through intuitive explanations and practical examples. You'll practice your new skills with R-based applications in computer vision, natural-language processing, and generative models. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image classification and generation Deep learning for text and sequences About the Reader You'll need intermediate R programming skills. No previous experience with machine learning or deep learning is assumed. About the Authors François Chollet is a deep-learning researcher at Google and the author of the Keras library. J.J. Allaire is the founder of RStudio and the author of the R interfaces to TensorFlow and Keras. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions |
best programming language for deep learning: Natural Language Processing with Python Steven Bird, Ewan Klein, Edward Loper, 2009-06-12 This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify named entities Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful. |
best programming language for deep learning: The Rust Programming Language (Covers Rust 2018) Steve Klabnik, Carol Nichols, 2019-09-03 The official book on the Rust programming language, written by the Rust development team at the Mozilla Foundation, fully updated for Rust 2018. The Rust Programming Language is the official book on Rust: an open source systems programming language that helps you write faster, more reliable software. Rust offers control over low-level details (such as memory usage) in combination with high-level ergonomics, eliminating the hassle traditionally associated with low-level languages. The authors of The Rust Programming Language, members of the Rust Core Team, share their knowledge and experience to show you how to take full advantage of Rust's features--from installation to creating robust and scalable programs. You'll begin with basics like creating functions, choosing data types, and binding variables and then move on to more advanced concepts, such as: Ownership and borrowing, lifetimes, and traits Using Rust's memory safety guarantees to build fast, safe programs Testing, error handling, and effective refactoring Generics, smart pointers, multithreading, trait objects, and advanced pattern matching Using Cargo, Rust's built-in package manager, to build, test, and document your code and manage dependencies How best to use Rust's advanced compiler with compiler-led programming techniques You'll find plenty of code examples throughout the book, as well as three chapters dedicated to building complete projects to test your learning: a number guessing game, a Rust implementation of a command line tool, and a multithreaded server. New to this edition: An extended section on Rust macros, an expanded chapter on modules, and appendixes on Rust development tools and editions. |
best programming language for deep learning: Modern Fortran Milan Curcic, 2020-10-07 Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you’ll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. Summary Using Fortran, early and accurate forecasts for hurricanes and other major storms have saved thousands of lives. Better designs for ships, planes, and automobiles have made travel safer, more efficient, and less expensive than ever before. Using Fortran, low-level machine learning and deep learning libraries provide incredibly easy, fast, and insightful analysis of massive data. Fortran is an amazingly powerful and flexible programming language that forms the foundation of high performance computing for research, science, and industry. And it's come a long, long way since starting life on IBM mainframes in 1956. Modern Fortran is natively parallel, so it's uniquely suited for efficiently handling problems like complex simulations, long-range predictions, and ultra-precise designs. If you're working on tasks where speed, accuracy, and efficiency matter, it's time to discover—or re-discover—Fortran.. About the technology For over 60 years Fortran has been powering mission-critical scientific applications, and it isn't slowing down yet! Rock-solid reliability and new support for parallel programming make Fortran an essential language for next-generation high-performance computing. Simply put, the future is in parallel, and Fortran is already there. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you'll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. What's inside Fortran's place in the modern world Working with variables, arrays, and functions Module development Parallelism with coarrays, teams, and events Interoperating Fortran with C About the reader For developers and computational scientists. No experience with Fortran required. About the author Milan Curcic is a meteorologist, oceanographer, and author of several general-purpose Fortran libraries and applications. Table of Contents PART 1 - GETTING STARTED WITH MODERN FORTRAN 1 Introducing Fortran 2 Getting started: Minimal working app PART 2 - CORE ELEMENTS OF FORTRAN 3 Writing reusable code with functions and subroutines 4 Organizing your Fortran code using modules 5 Analyzing time series data with arrays 6 Reading, writing, and formatting your data PART 3 - ADVANCED FORTRAN USE 7 Going parallel with Fortan coarrays 8 Working with abstract data using derived types 9 Generic procedures and operators for any data type 10 User-defined operators for derived types PART 4 - THE FINAL STRETCH 11 Interoperability with C: Exposing your app to the web 12 Advanced parallelism with teams, events, and collectives |
best programming language for deep learning: Grokking Deep Learning Andrew W. Trask, 2019-01-23 Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide |
best programming language for deep learning: Learn Python 3 the Hard Way Zed A. Shaw, 2017-06-26 You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Python 3 the Hard Way, you’ll learn Python by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how a computer works; what good programs look like; and how to read, write, and think about code. Zed then teaches you even more in 5+ hours of video where he shows you how to break, fix, and debug your code—live, as he’s doing the exercises. Install a complete Python environment Organize and write code Fix and break code Basic mathematics Variables Strings and text Interact with users Work with files Looping and logic Data structures using lists and dictionaries Program design Object-oriented programming Inheritance and composition Modules, classes, and objects Python packaging Automated testing Basic game development Basic web development It’ll be hard at first. But soon, you’ll just get it—and that will feel great! This course will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Python programmer. This Book Is Perfect For Total beginners with zero programming experience Junior developers who know one or two languages Returning professionals who haven’t written code in years Seasoned professionals looking for a fast, simple, crash course in Python 3 |
best programming language for deep learning: Genetic Algorithms and Machine Learning for Programmers Frances Buontempo, 2019 Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to machine learning. Discover machine learning algorithms using a handful of self-contained recipes. Create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, and cellular automata. Find minima and maxima, using hill climbing and simulated annealing. Try selection mathods, including tournament and roulette wheels. Learn about heuristics, fitness functions, metrics, and clusters. |
best programming language for deep learning: Hands-On Machine Learning with C++ Kirill Kolodiazhnyi, 2020-05-15 Implement supervised and unsupervised machine learning algorithms using C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib with the help of real-world examples and datasets Key FeaturesBecome familiar with data processing, performance measuring, and model selection using various C++ librariesImplement practical machine learning and deep learning techniques to build smart modelsDeploy machine learning models to work on mobile and embedded devicesBook Description C++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples. This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You’ll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you’ll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you’ll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format. By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems. What you will learnExplore how to load and preprocess various data types to suitable C++ data structuresEmploy key machine learning algorithms with various C++ librariesUnderstand the grid-search approach to find the best parameters for a machine learning modelImplement an algorithm for filtering anomalies in user data using Gaussian distributionImprove collaborative filtering to deal with dynamic user preferencesUse C++ libraries and APIs to manage model structures and parametersImplement a C++ program to solve image classification tasks with LeNet architectureWho this book is for You will find this C++ machine learning book useful if you want to get started with machine learning algorithms and techniques using the popular C++ language. As well as being a useful first course in machine learning with C++, this book will also appeal to data analysts, data scientists, and machine learning developers who are looking to implement different machine learning models in production using varied datasets and examples. Working knowledge of the C++ programming language is mandatory to get started with this book. |
best programming language for deep learning: Practical Machine Learning with Rust Joydeep Bhattacharjee, 2019-12-10 Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud. After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will Learn Write machine learning algorithms in RustUse Rust libraries for different tasks in machine learningCreate concise Rust packages for your machine learning applicationsImplement NLP and computer vision in RustDeploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust. |
best programming language for deep learning: Introducing Machine Learning Dino Esposito, Francesco Esposito, 2020-01-31 Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library |
best programming language for deep learning: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
best programming language for deep learning: Deep Learning For Dummies John Paul Mueller, Luca Massaron, 2019-05-14 Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day. |
best programming language for deep learning: Connectome Sebastian Seung, 2012-02-07 “Accessible, witty . . . an important new researcher, philosopher and popularizer of brain science . . . on par with cosmology’s Brian Greene and the late Carl Sagan” (The Plain Dealer). One of the Wall Street Journal’s 10 Best Nonfiction Books of the Year and a Publishers Weekly “Top Ten in Science” Title Every person is unique, but science has struggled to pinpoint where, precisely, that uniqueness resides. Our genome may determine our eye color and even aspects of our character. But our friendships, failures, and passions also shape who we are. The question is: How? Sebastian Seung is at the forefront of a revolution in neuroscience. He believes that our identity lies not in our genes, but in the connections between our brain cells—our particular wiring. Seung and a dedicated group of researchers are leading the effort to map these connections, neuron by neuron, synapse by synapse. It’s a monumental effort, but if they succeed, they will uncover the basis of personality, identity, intelligence, memory, and perhaps disorders such as autism and schizophrenia. Connectome is a mind-bending adventure story offering a daring scientific and technological vision for understanding what makes us who we are, as individuals and as a species. “This is complicated stuff, and it is a testament to Dr. Seung’s remarkable clarity of exposition that the reader is swept along with his enthusiasm, as he moves from the basics of neuroscience out to the farthest regions of the hypothetical, sketching out a spectacularly illustrated giant map of the universe of man.” —TheNew York Times “An elegant primer on what’s known about how the brain is organized and how it grows, wires its neurons, perceives its environment, modifies or repairs itself, and stores information. Seung is a clear, lively writer who chooses vivid examples.” —TheWashington Post |
best programming language for deep learning: Python Machine Learning Sebastian Raschka, 2015-09-23 Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models. |
best programming language for deep learning: Machine Learning in Python Michael Bowles, 2015-04-27 Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. Predict outcomes using linear and ensemble algorithm families Build predictive models that solve a range of simple and complex problems Apply core machine learning algorithms using Python Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics. |
best programming language for deep learning: Java Deep Learning Cookbook Rahul Raj, 2019-11-08 Use Java and Deeplearning4j to build robust, scalable, and highly accurate AI models from scratch Key FeaturesInstall and configure Deeplearning4j to implement deep learning models from scratchExplore recipes for developing, training, and fine-tuning your neural network models in JavaModel neural networks using datasets containing images, text, and time-series dataBook Description Java is one of the most widely used programming languages in the world. With this book, you will see how to perform deep learning using Deeplearning4j (DL4J) – the most popular Java library for training neural networks efficiently. This book starts by showing you how to install and configure Java and DL4J on your system. You will then gain insights into deep learning basics and use your knowledge to create a deep neural network for binary classification from scratch. As you progress, you will discover how to build a convolutional neural network (CNN) in DL4J, and understand how to construct numeric vectors from text. This deep learning book will also guide you through performing anomaly detection on unsupervised data and help you set up neural networks in distributed systems effectively. In addition to this, you will learn how to import models from Keras and change the configuration in a pre-trained DL4J model. Finally, you will explore benchmarking in DL4J and optimize neural networks for optimal results. By the end of this book, you will have a clear understanding of how you can use DL4J to build robust deep learning applications in Java. What you will learnPerform data normalization and wrangling using DL4JBuild deep neural networks using DL4JImplement CNNs to solve image classification problemsTrain autoencoders to solve anomaly detection problems using DL4JPerform benchmarking and optimization to improve your model's performanceImplement reinforcement learning for real-world use cases using RL4JLeverage the capabilities of DL4J in distributed systemsWho this book is for If you are a data scientist, machine learning developer, or a deep learning enthusiast who wants to implement deep learning models in Java, this book is for you. Basic understanding of Java programming as well as some experience with machine learning and neural networks is required to get the most out of this book. |
best programming language for deep learning: Deep Learning Josh Patterson, Adam Gibson, 2017-07-28 Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular Understand how deep networks evolved from neural network fundamentals Explore the major deep network architectures, including Convolutional and Recurrent Learn how to map specific deep networks to the right problem Walk through the fundamentals of tuning general neural networks and specific deep network architectures Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool Learn how to use DL4J natively on Spark and Hadoop |
best programming language for deep learning: Dive Into Deep Learning Joanne Quinn, Joanne McEachen, Michael Fullan, Mag Gardner, Max Drummy, 2019-07-15 The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself. |
best programming language for deep learning: Artificial Intelligence Stuart Russell, Peter Norvig, 2016-09-10 Artificial Intelligence: A Modern Approach offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence. |
best programming language for deep learning: Machine Learning by Tutorials (Second Edition) raywenderlich Tutorial Team, Alexis Gallagher, Matthijs Hollemans, Audrey Tam, Chris LaPollo, 2020-05-19 Learn Machine Learning!Machine learning is one of those topics that can be daunting at first blush. It's not clear where to start, what path someone should take and what APIs to learn in order to get started teaching machines how to learn.This is where Machine Learning by Tutorials comes in! In this book, we'll hold your hand through a number of tutorials, to get you started in the world of machine learning. We'll cover a wide range of popular topics in the field of machine learning, while developing apps that work on iOS devices.Who This Book Is ForThis books is for the intermediate iOS developer who already knows the basics of iOS and Swift development, but wants to understand how machine learning works.Topics covered in Machine Learning by TutorialsCoreML: Learn how to add a machine learning model to your iOS apps, and how to use iOS APIs to access it.Create ML: Learn how to create your own model using Apple's Create ML Tool.Turi Create and Keras: Learn how to tune parameters to improve your machine learning model using more advanced tools.Image Classification: Learn how to apply machine learning models to predict objects in an image.Convolutional Networks: Learn advanced machine learning techniques for predicting objects in an image with Convolutional Neural Networks (CNNs).Sequence Classification: Learn how you can use recurrent neural networks (RNNs) to classify motion from an iPhone's motion sensor.Text-to-text Transform: Learn how to use machine learning to convert bodies of text between two languages.By the end of this book, you'll have a firm understanding of what machine learning is, what it can and cannot do, and how you can use machine learning in your next app! |
best programming language for deep learning: Deep Learning with JavaScript Shanqing Cai, Stan Bileschi, Eric Nielsen, 2019-10-07 Deep learning has transformed the fields of computer vision, image processing, and natural language applications. Thanks to TensorFlow.js, now JavaScript developers can build deep learning apps without relying on Python or R. Deep Learning with JavaScript shows developers how they can bring DL technology to the web. Written by the main authors of the TensorFlow library, this new book provides fascinating use cases and in-depth instruction for deep learning apps in JavaScript in your browser or on Node. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. |
best programming language for deep learning: Build Your Own Lisp Daniel Holden, 2014-10-22 If you've ever wondered how to build your own programming language or wanted to learn C but weren't sure where to start, this is the book for you. In under 1000 lines of code you'll start building your very own programming language, and in doing so learn how to program in C, one of the world's most important programming languages. Along the way we'll learn about the weird and wonderful nature of Lisps, the unique techniques behind function programming, the methods used to concisely solve problems, and the art of writing beautiful code. Build Your Own Lisp is a fun and creative journey through a fascinating area of computer science, and an essential read for any programmer, new or old! |
Programming PyTorch for Deep Learning - Archive.org
able to put together an image classifier that rivals what the best minds in 2015 could offer with just a few lines of code. PyTorch As I mentioned back at the start, PyTorch is an open source …
Using Python for Artificial Intellig ence - Stanford University
pattern recognition or data classification, through a learning process In a biological system, learning in volves adjustments to the synaptic connections between neurons This is the same …
DEEPCODER: LEARNING TO WRITE PROGRAMS
In this work, we propose two main ideas: (1) learn to induce programs; that is, use a corpus of program induction problems to learn strategies that generalize across problems, and (2) …
Deep Learning Programming by All - GitHub Pages
We aim to provide high-school and non-computer science undergraduate students with limited programming abilities with tools for acquiring experiences designing, training, testing, and …
Programming Language Selection for the Development of …
The programming language is the core of deep learning library development, so this paper describes the selection stage to find the most suitable programming language for developing a …
DeepProbLog: Neural Probabilistic Logic Programming
We introduce DeepProbLog, a probabilistic logic programming language that in-corporates deep learning by means of neural predicates. We show how exist-ing inference and learning …
Hands-On Deep Learning - Anarcho-Copy
This book is for data scientists, machine learning engineers, and deep learning aspirants who are looking to inject deep learning into their Go applications. Familiarity with machine learning and …
Deep Learning for Natural Language Processing - CLU) Lab
“Why do we need another deep learning and natural language process-ing book?” Several excellent ones have been published, covering both theoretical and practical aspects of deep …
Machine Learning in Python: Main Developments and …
Python continues to be the most preferred language for scientific computing, data science, and machine learning, boosting both performance and productivity by enabling the use of low-level …
DeepScratch: Scratch Programming Language Extension for …
deep learning models to the used programming language. This paper presents DeepScratch, a new programming language extension to Scratch that provides powerful language elements to …
Deep Learning Illustrated: A Visual, Interactive Guide to …
“Deep learning is regularly redefining the state of the art across machine vision, natural language, and sequential decision-making tasks. If you too would like to pass data through deep neural …
Deep Learning with Python - Online Tutorials Library
Deep Learning with Python i About the Tutorial Python is a general-purpose high level programming language that is widely used in data science and for producing deep learning …
Applications: Large-Scale Deep Learning - University at Buffalo
GoogLeNet has 9 inception modules stacked linearly. 22 layers deep (27 with pooling layers). Global average pooling at end of last inception module. Replaces standard Inception modules …
The Little Book of Deep Learning - Fleuret
Although the bulk of deep learning is not dificult to understand, it combines diverse components such as linear algebra, calculus, probabilities, op-timization, signal processing, programming, …
Introduction to Deep Learning Lecture 20 Large Language …
Large Language Models Language models that have many parameters (over 1B) and can perform multiple tasks through prompting Eg. GPT, Llama2, Gemini, PaLM, Mistral, Mixtral etc.
CodeNet: A Large-Scale AI for Code Dataset for Learning a …
In this paper, we present a large-scale dataset CodeNet, consisting of over 14 million code samples and about 500 million lines of code in 55 different programming languages, which is …
COMPUTER PROGRAMMING LANGUAGES IN 2020: …
different programming languages have been developed by software designers to meet a variety of needs and applications. But how many of these languages are being actively used by today’s …
Deep Probabilistic Programming Languages: A Qualitative …
A deep probabilistic programming language (PPL) is a language for specifying both deep neural networks and probabilistic models. In other words, a deep PPL draws upon programming …
Deep Learning in Natural Language Processing - Mphasis
In this paper, we will discuss different methods that can be adopted to perform NLP using deep learning methodologies. We will start our discussion with representation methods available to …
On the Generalizability of Deep Learning-basedCode …
Code completion is a key feature of Integrated Development Envi-ronments (IDEs), aimed at predicting the next tokens a developer is likely to write, helping them write code faster and with …
Programming PyTorch for Deep Learning - Archive.org
able to put together an image classifier that rivals what the best minds in 2015 could offer with just a few lines of code. PyTorch As I mentioned back at the start, PyTorch is an open source …
Using Python for Artificial Intellig ence - Stanford University
pattern recognition or data classification, through a learning process In a biological system, learning in volves adjustments to the synaptic connections between neurons This is the same …
DEEPCODER: LEARNING TO WRITE PROGRAMS
In this work, we propose two main ideas: (1) learn to induce programs; that is, use a corpus of program induction problems to learn strategies that generalize across problems, and (2) …
Deep Learning Programming by All - GitHub Pages
We aim to provide high-school and non-computer science undergraduate students with limited programming abilities with tools for acquiring experiences designing, training, testing, and …
Programming Language Selection for the Development of …
The programming language is the core of deep learning library development, so this paper describes the selection stage to find the most suitable programming language for developing a …
DeepProbLog: Neural Probabilistic Logic Programming
We introduce DeepProbLog, a probabilistic logic programming language that in-corporates deep learning by means of neural predicates. We show how exist-ing inference and learning …
Hands-On Deep Learning - Anarcho-Copy
This book is for data scientists, machine learning engineers, and deep learning aspirants who are looking to inject deep learning into their Go applications. Familiarity with machine learning and …
Deep Learning for Natural Language Processing - CLU) Lab
“Why do we need another deep learning and natural language process-ing book?” Several excellent ones have been published, covering both theoretical and practical aspects of deep …
Machine Learning in Python: Main Developments and …
Python continues to be the most preferred language for scientific computing, data science, and machine learning, boosting both performance and productivity by enabling the use of low-level …
DeepScratch: Scratch Programming Language Extension …
deep learning models to the used programming language. This paper presents DeepScratch, a new programming language extension to Scratch that provides powerful language elements to …
Deep Learning Illustrated: A Visual, Interactive Guide to …
“Deep learning is regularly redefining the state of the art across machine vision, natural language, and sequential decision-making tasks. If you too would like to pass data through deep neural …
Deep Learning with Python - Online Tutorials Library
Deep Learning with Python i About the Tutorial Python is a general-purpose high level programming language that is widely used in data science and for producing deep learning …
Applications: Large-Scale Deep Learning - University at Buffalo
GoogLeNet has 9 inception modules stacked linearly. 22 layers deep (27 with pooling layers). Global average pooling at end of last inception module. Replaces standard Inception modules …
The Little Book of Deep Learning - Fleuret
Although the bulk of deep learning is not dificult to understand, it combines diverse components such as linear algebra, calculus, probabilities, op-timization, signal processing, programming, …
Introduction to Deep Learning Lecture 20 Large Language …
Large Language Models Language models that have many parameters (over 1B) and can perform multiple tasks through prompting Eg. GPT, Llama2, Gemini, PaLM, Mistral, Mixtral etc.
CodeNet: A Large-Scale AI for Code Dataset for Learning a
In this paper, we present a large-scale dataset CodeNet, consisting of over 14 million code samples and about 500 million lines of code in 55 different programming languages, which is …
COMPUTER PROGRAMMING LANGUAGES IN 2020: WHAT …
different programming languages have been developed by software designers to meet a variety of needs and applications. But how many of these languages are being actively used by today’s …
Deep Probabilistic Programming Languages: A Qualitative …
A deep probabilistic programming language (PPL) is a language for specifying both deep neural networks and probabilistic models. In other words, a deep PPL draws upon programming …
Deep Learning in Natural Language Processing - Mphasis
In this paper, we will discuss different methods that can be adopted to perform NLP using deep learning methodologies. We will start our discussion with representation methods available to …
On the Generalizability of Deep Learning-basedCode …
Code completion is a key feature of Integrated Development Envi-ronments (IDEs), aimed at predicting the next tokens a developer is likely to write, helping them write code faster and with …