Big Data In Financial Industry

Advertisement



  big data in financial industry: New Horizons for a Data-Driven Economy José María Cavanillas, Edward Curry, Wolfgang Wahlster, 2016-04-04 In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
  big data in financial industry: Big Data Science in Finance Irene Aldridge, Marco Avellaneda, 2021-01-08 Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) Covers vital topics in the field in a clear, straightforward manner Compares, contrasts, and discusses Big Data and Small Data Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.
  big data in financial industry: Fintech with Artificial Intelligence, Big Data, and Blockchain Paul Moon Sub Choi, Seth H. Huang, 2021-03-08 This book introduces readers to recent advancements in financial technologies. The contents cover some of the state-of-the-art fields in financial technology, practice, and research associated with artificial intelligence, big data, and blockchain—all of which are transforming the nature of how products and services are designed and delivered, making less adaptable institutions fast become obsolete. The book provides the fundamental framework, research insights, and empirical evidence in the efficacy of these new technologies, employing practical and academic approaches to help professionals and academics reach innovative solutions and grow competitive strengths.
  big data in financial industry: Big Data Analytics for Internet of Things Tausifa Jan Saleem, Mohammad Ahsan Chishti, 2021-04-20 BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.
  big data in financial industry: Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) Cheng Few Lee, John C Lee, 2020-07-30 This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
  big data in financial industry: Digital Finance Perry Beaumont, 2019-09-10 The internet is dramatically transforming the way business is done, particularly for financial services. Digital Finance takes a thoughtful look at how the industry is evolving, and it explains how to integrate concepts of digital finance into existing traditional finance platforms. This book explores what successful companies are doing to maximize their opportunities in this context and offers suggestions on how to introduce digital finance into a firm’s structure. Specific strategies for a digital future are presented, alongside numerous case studies that explore key attributes of success. In recognition of the rapidly evolving nature of finance today, Digital Finance is accompanied by a website maintained by the author (PerryBeaumont.com), as well as links to other content with insightful articles, analyses, and opinions. For both practitioners and students of finance, Digital Finance provides a rich context for a better understanding of the landscape of finance today, and lays the foundation for us to process and create the financial innovations of tomorrow.
  big data in financial industry: Big Data Concepts, Theories, and Applications Shui Yu, Song Guo, 2016-03-03 This book covers three major parts of Big Data: concepts, theories and applications. Written by world-renowned leaders in Big Data, this book explores the problems, possible solutions and directions for Big Data in research and practice. It also focuses on high level concepts such as definitions of Big Data from different angles; surveys in research and applications; and existing tools, mechanisms, and systems in practice. Each chapter is independent from the other chapters, allowing users to read any chapter directly. After examining the practical side of Big Data, this book presents theoretical perspectives. The theoretical research ranges from Big Data representation, modeling and topology to distribution and dimension reducing. Chapters also investigate the many disciplines that involve Big Data, such as statistics, data mining, machine learning, networking, algorithms, security and differential geometry. The last section of this book introduces Big Data applications from different communities, such as business, engineering and science. Big Data Concepts, Theories and Applications is designed as a reference for researchers and advanced level students in computer science, electrical engineering and mathematics. Practitioners who focus on information systems, big data, data mining, business analysis and other related fields will also find this material valuable.
  big data in financial industry: Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance El Bachir Boukherouaa, Mr. Ghiath Shabsigh, Khaled AlAjmi, Jose Deodoro, Aquiles Farias, Ebru S Iskender, Mr. Alin T Mirestean, Rangachary Ravikumar, 2021-10-22 This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
  big data in financial industry: Fusing Big Data, Blockchain and Cryptocurrency Hossein Hassani, Xu Huang, Emmanuel Sirimal Silva, 2019-12-18 As technology continues to revolutionise today’s economy, Big Data, Blockchain and Cryptocurrency are rapidly transforming themselves into mainstream functions within the financial services industry. This book examines each concept individually, analysing the opportunities and challenges they bring and exploring the potential for future development. The authors further evaluate the fusion of these three important products of the FinTech revolution, illustrating their combined influence on the digital economy. Providing a comprehensive analysis of three innovative technologies, this timely book will appeal to scholars researching innovation in the finance industry and financial services technology more specifically.
  big data in financial industry: Big Data Analytics: Systems, Algorithms, Applications C.S.R. Prabhu, Aneesh Sreevallabh Chivukula, Aditya Mogadala, Rohit Ghosh, L.M. Jenila Livingston, 2019-10-14 This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.
  big data in financial industry: Big Data and Artificial Intelligence in Digital Finance John Soldatos, Dimosthenis Kyriazis, 2022 This open access book presents how cutting-edge digital technologies like Machine Learning, Artificial Intelligence (AI), and Blockchain are set to disrupt the financial sector. The book illustrates how recent advances in these technologies facilitate banks, FinTechs, and financial institutions to collect, process, analyze, and fully leverage the very large amounts of data that are nowadays produced and exchanged in the sector. To this end, the book also introduces some of the most popular Big Data, AI and Blockchain applications in the sector, including novel applications in the areas of Know Your Customer (KYC), Personalized Wealth Management and Asset Management, Portfolio Risk Assessment, as well as variety of novel Usage-based Insurance applications based on Internet-of-Things data. Most of the presented applications have been developed, deployed and validated in real-life digital finance settings in the context of the European Commission funded INFINITECH project, which is a flagship innovation initiative for Big Data and AI in digital finance. This book is ideal for researchers and practitioners in Big Data, AI, banking and digital finance. Introduces the latest advances in Big Data and AI in Digital Finance that enable scalable, effective, and real-time analytics; Explains the merits of Blockchain technology in digital finance, including applications beyond the blockbuster cryptocurrencies; Presents practical applications of cutting edge digital technologies in the digital finance sector; Illustrates the regulatory environment of the financial sector and presents technical solutions that boost compliance to applicable regulations; This book is open access, which means that you have free and unlimited access.
  big data in financial industry: Big Data Applications in Industry 4.0 P. Kaliraj, T. Devi, 2022-02-10 Industry 4.0 is the latest technological innovation in manufacturing with the goal to increase productivity in a flexible and efficient manner. Changing the way in which manufacturers operate, this revolutionary transformation is powered by various technology advances including Big Data analytics, Internet of Things (IoT), Artificial Intelligence (AI), and cloud computing. Big Data analytics has been identified as one of the significant components of Industry 4.0, as it provides valuable insights for smart factory management. Big Data and Industry 4.0 have the potential to reduce resource consumption and optimize processes, thereby playing a key role in achieving sustainable development. Big Data Applications in Industry 4.0 covers the recent advancements that have emerged in the field of Big Data and its applications. The book introduces the concepts and advanced tools and technologies for representing and processing Big Data. It also covers applications of Big Data in such domains as financial services, education, healthcare, biomedical research, logistics, and warehouse management. Researchers, students, scientists, engineers, and statisticians can turn to this book to learn about concepts, technologies, and applications that solve real-world problems. Features An introduction to data science and the types of data analytics methods accessible today An overview of data integration concepts, methodologies, and solutions A general framework of forecasting principles and applications, as well as basic forecasting models including naïve, moving average, and exponential smoothing models A detailed roadmap of the Big Data evolution and its related technological transformation in computing, along with a brief description of related terminologies The application of Industry 4.0 and Big Data in the field of education The features, prospects, and significant role of Big Data in the banking industry, as well as various use cases of Big Data in banking, finance services, and insurance Implementing a Data Lake (DL) in the cloud and the significance of a data lake in decision making
  big data in financial industry: Big Data in Finance Thomas Walker, Frederick Davis, Tyler Schwartz, 2022-10-03 This edited book explores the unique risks, opportunities, challenges, and societal implications associated with big data developments within the field of finance. While the general use of big data has been the subject of frequent discussions, this book will take a more focused look at big data applications in the financial sector. With contributions from researchers, practitioners, and entrepreneurs involved at the forefront of big data in finance, the book discusses technological and business-inspired breakthroughs in the field. The contributions offer technical insights into the different applications presented and highlight how these new developments may impact and contribute to the evolution of the financial sector. Additionally, the book presents several case studies that examine practical applications of big data in finance. In exploring the readiness of financial institutions to adapt to new developments in the big data/artificial intelligence space and assessing different implementation strategies and policy solutions, the book will be of interest to academics, practitioners, and regulators who work in this field.
  big data in financial industry: Big Data in Practice Bernard Marr, 2016-03-22 The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter
  big data in financial industry: Big Data Analytics Frank J. Ohlhorst, 2012-11-15 Unique insights to implement big data analytics and reap big returns to your bottom line Focusing on the business and financial value of big data analytics, respected technology journalist Frank J. Ohlhorst shares his insights on the newly emerging field of big data analytics in Big Data Analytics. This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine markets, improve profits and identify new business opportunities. Reveals big data analytics as the next wave for businesses looking for competitive advantage Takes an in-depth look at the financial value of big data analytics Offers tools and best practices for working with big data Once the domain of large on-line retailers such as eBay and Amazon, big data is now accessible by businesses of all sizes and across industries. From how to mine the data your company collects, to the data that is available on the outside, Big Data Analytics shows how you can leverage big data into a key component in your business's growth strategy.
  big data in financial industry: Big Data, Big Analytics Michael Minelli, Michele Chambers, Ambiga Dhiraj, 2013-01-22 Unique prospective on the big data analytics phenomenon for both business and IT professionals The availability of Big Data, low-cost commodity hardware and new information management and analytics software has produced a unique moment in the history of business. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. These capabilities are neither theoretical nor trivial. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue and profitability. The Age of Big Data is here, and these are truly revolutionary times. This timely book looks at cutting-edge companies supporting an exciting new generation of business analytics. Learn more about the trends in big data and how they are impacting the business world (Risk, Marketing, Healthcare, Financial Services, etc.) Explains this new technology and how companies can use them effectively to gather the data that they need and glean critical insights Explores relevant topics such as data privacy, data visualization, unstructured data, crowd sourcing data scientists, cloud computing for big data, and much more.
  big data in financial industry: Big Data Cornelia Hammer, Ms.Diane C Kostroch, Mr.Gabriel Quiros, 2017-09-13 Big data are part of a paradigm shift that is significantly transforming statistical agencies, processes, and data analysis. While administrative and satellite data are already well established, the statistical community is now experimenting with structured and unstructured human-sourced, process-mediated, and machine-generated big data. The proposed SDN sets out a typology of big data for statistics and highlights that opportunities to exploit big data for official statistics will vary across countries and statistical domains. To illustrate the former, examples from a diverse set of countries are presented. To provide a balanced assessment on big data, the proposed SDN also discusses the key challenges that come with proprietary data from the private sector with regard to accessibility, representativeness, and sustainability. It concludes by discussing the implications for the statistical community going forward.
  big data in financial industry: The Global Findex Database 2017 Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, Saniya Ansar, 2018-04-19 In 2011 the World Bank—with funding from the Bill and Melinda Gates Foundation—launched the Global Findex database, the world's most comprehensive data set on how adults save, borrow, make payments, and manage risk. Drawing on survey data collected in collaboration with Gallup, Inc., the Global Findex database covers more than 140 economies around the world. The initial survey round was followed by a second one in 2014 and by a third in 2017. Compiled using nationally representative surveys of more than 150,000 adults age 15 and above in over 140 economies, The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution includes updated indicators on access to and use of formal and informal financial services. It has additional data on the use of financial technology (or fintech), including the use of mobile phones and the Internet to conduct financial transactions. The data reveal opportunities to expand access to financial services among people who do not have an account—the unbanked—as well as to promote greater use of digital financial services among those who do have an account. The Global Findex database has become a mainstay of global efforts to promote financial inclusion. In addition to being widely cited by scholars and development practitioners, Global Findex data are used to track progress toward the World Bank goal of Universal Financial Access by 2020 and the United Nations Sustainable Development Goals. The database, the full text of the report, and the underlying country-level data for all figures—along with the questionnaire, the survey methodology, and other relevant materials—are available at www.worldbank.org/globalfindex.
  big data in financial industry: A Primer on Business Analytics Yudhvir Seetharam, 2022-01-01 This book will provide a comprehensive overview of business analytics, for those who have either a technical background (quantitative methods) or a practitioner business background. Business analytics, in the context of the 4th Industrial Revolution, is the “new normal” for businesses that operate in this digital age. This book provides a comprehensive primer and overview of the field (and related fields such as Business Intelligence and Data Science). It will discuss the field as it applies to financial institutions, with some minor departures to other industries. Readers will gain understanding and insight into the field of data science, including traditional as well as emerging techniques. Further, many chapters are dedicated to the establishment of a data-driven team – from executive buy-in and corporate governance to managing and quantifying the return of data-driven projects.
  big data in financial industry: Artificial Intelligence in Banking Introbooks, 2020-04-07 In these highly competitive times and with so many technological advancements, it is impossible for any industry to remain isolated and untouched by innovations. In this era of digital economy, the banking sector cannot exist and operate without the various digital tools offered by the ever new innovations happening in the field of Artificial Intelligence (AI) and its sub-set technologies. New technologies have enabled incredible progression in the finance industry. Artificial Intelligence (AI) and Machine Learning (ML) have provided the investors and customers with more innovative tools, new types of financial products and a new potential for growth.According to Cathy Bessant (the Chief Operations and Technology Officer, Bank of America), AI is not just a technology discussion. It is also a discussion about data and how it is used and protected. She says, In a world focused on using AI in new ways, we're focused on using it wisely and responsibly.
  big data in financial industry: Building Big Data Applications Krish Krishnan, 2019-11-15 Building Big Data Applications helps data managers and their organizations make the most of unstructured data with an existing data warehouse. It provides readers with what they need to know to make sense of how Big Data fits into the world of Data Warehousing. Readers will learn about infrastructure options and integration and come away with a solid understanding on how to leverage various architectures for integration. The book includes a wide range of use cases that will help data managers visualize reference architectures in the context of specific industries (healthcare, big oil, transportation, software, etc.). - Explores various ways to leverage Big Data by effectively integrating it into the data warehouse - Includes real-world case studies which clearly demonstrate Big Data technologies - Provides insights on how to optimize current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements
  big data in financial industry: The Data Industry Chunlei Tang, 2016-06-13 Provides an introduction of the data industry to the field of economics This book bridges the gap between economics and data science to help data scientists understand the economics of big data, and enable economists to analyze the data industry. It begins by explaining data resources and introduces the data asset. This book defines a data industry chain, enumerates data enterprises’ business models versus operating models, and proposes a mode of industrial development for the data industry. The author describes five types of enterprise agglomerations, and multiple industrial cluster effects. A discussion on the establishment and development of data industry related laws and regulations is provided. In addition, this book discusses several scenarios on how to convert data driving forces into productivity that can then serve society. This book is designed to serve as a reference and training guide for ata scientists, data-oriented managers and executives, entrepreneurs, scholars, and government employees. Defines and develops the concept of a “Data Industry,” and explains the economics of data to data scientists and statisticians Includes numerous case studies and examples from a variety of industries and disciplines Serves as a useful guide for practitioners and entrepreneurs in the business of data technology The Data Industry: The Business and Economics of Information and Big Data is a resource for practitioners in the data science industry, government, and students in economics, business, and statistics. CHUNLEI TANG, Ph.D., is a research fellow at Harvard University. She is the co-founder of Fudan’s Institute for Data Industry and proposed the concept of the “data industry”. She received a Ph.D. in Computer and Software Theory in 2012 and a Master of Software Engineering in 2006 from Fudan University, Shanghai, China.
  big data in financial industry: Big Data Management And Analytics Brij B Gupta, Mamta, 2023-12-05 With the proliferation of information, big data management and analysis have become an indispensable part of any system to handle such amounts of data. The amount of data generated by the multitude of interconnected devices increases exponentially, making the storage and processing of these data a real challenge.Big data management and analytics have gained momentum in almost every industry, ranging from finance or healthcare. Big data can reveal key insights if handled and analyzed properly; it has great application potential to improve the working of any industry. This book covers the spectrum aspects of big data; from the preliminary level to specific case studies. It will help readers gain knowledge of the big data landscape.Highlights of the topics covered include description of the Big Data ecosystem; real-world instances of big data issues; how the Vs of Big Data (volume, velocity, variety, veracity, valence, and value) affect data collection, monitoring, storage, analysis, and reporting; structural process to get value out of Big Data and recognize the differences between a standard database management system and a big data management system.Readers will gain insights into choice of data models, data extraction, data integration to solve large data problems, data modelling using machine learning techniques, Spark's scalable machine learning techniques, modeling a big data problem into a graph database and performing scalable analytical operations over the graph and different tools and techniques for processing big data and its applications including in healthcare and finance.
  big data in financial industry: Big Data Kuan-Ching Li, Hai Jiang, Laurence T. Yang, Alfredo Cuzzocrea, 2015-09-15 As today’s organizations are capturing exponentially larger amounts of data than ever, now is the time for organizations to rethink how they digest that data. Through advanced algorithms and analytics techniques, organizations can harness this data, discover hidden patterns, and use the newly acquired knowledge to achieve competitive advantages. Presenting the contributions of leading experts in their respective fields, Big Data: Algorithms, Analytics, and Applications bridges the gap between the vastness of Big Data and the appropriate computational methods for scientific and social discovery. It covers fundamental issues about Big Data, including efficient algorithmic methods to process data, better analytical strategies to digest data, and representative applications in diverse fields, such as medicine, science, and engineering. The book is organized into five main sections: Big Data Management—considers the research issues related to the management of Big Data, including indexing and scalability aspects Big Data Processing—addresses the problem of processing Big Data across a wide range of resource-intensive computational settings Big Data Stream Techniques and Algorithms—explores research issues regarding the management and mining of Big Data in streaming environments Big Data Privacy—focuses on models, techniques, and algorithms for preserving Big Data privacy Big Data Applications—illustrates practical applications of Big Data across several domains, including finance, multimedia tools, biometrics, and satellite Big Data processing Overall, the book reports on state-of-the-art studies and achievements in algorithms, analytics, and applications of Big Data. It provides readers with the basis for further efforts in this challenging scientific field that will play a leading role in next-generation database, data warehousing, data mining, and cloud computing research. It also explores related applications in diverse sectors, covering technologies for media/data communication, elastic media/data storage, cross-network media/data fusion, and SaaS.
  big data in financial industry: Big Data at Work Thomas Davenport, 2014-02-04 Go ahead, be skeptical about big data. The author was—at first. When the term “big data” first came on the scene, bestselling author Tom Davenport (Competing on Analytics, Analytics at Work) thought it was just another example of technology hype. But his research in the years that followed changed his mind. Now, in clear, conversational language, Davenport explains what big data means—and why everyone in business needs to know about it. Big Data at Work covers all the bases: what big data means from a technical, consumer, and management perspective; what its opportunities and costs are; where it can have real business impact; and which aspects of this hot topic have been oversold. This book will help you understand: • Why big data is important to you and your organization • What technology you need to manage it • How big data could change your job, your company, and your industry • How to hire, rent, or develop the kinds of people who make big data work • The key success factors in implementing any big data project • How big data is leading to a new approach to managing analytics With dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities—from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource.
  big data in financial industry: Big Data Analytics in Supply Chain Management Iman Rahimi, Amir H. Gandomi, Simon James Fong, M. Ali Ülkü, 2020-12-20 In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.
  big data in financial industry: Effective Big Data Management and Opportunities for Implementation Singh, Manoj Kumar, G., Dileep Kumar, 2016-06-20 “Big data” has become a commonly used term to describe large-scale and complex data sets which are difficult to manage and analyze using standard data management methodologies. With applications across sectors and fields of study, the implementation and possible uses of big data are limitless. Effective Big Data Management and Opportunities for Implementation explores emerging research on the ever-growing field of big data and facilitates further knowledge development on methods for handling and interpreting large data sets. Providing multi-disciplinary perspectives fueled by international research, this publication is designed for use by data analysts, IT professionals, researchers, and graduate-level students interested in learning about the latest trends and concepts in big data.
  big data in financial industry: The Palgrave Handbook of Technological Finance Raghavendra Rau, Robert Wardrop, Luigi Zingales, 2021-09-09 This handbook provides the first comprehensive overview of the fast-evolving alternative finance space and makes a timely and in-depth contribution to the literature in this area. Bringing together expert contributions in the field from both practitioners and academics, in one of the most dynamic parts of the financial sector, it provides a solid reference for this exciting discipline. Divided into six parts, Section 1 presents a high-level overview of the technologically-enabled finance space. It also offers a historical perspective on technological finance models and outlines different business models. Section 2 analyses digital currencies including guides to bitcoins, other cryptocurrencies, and blockchains. Section 3 addresses alternative payment systems such as digital money and asset tokenization. Section 4 deals with crowdfunding models from both a theoretical perspective and from a regulatory perspective. Section 5 discusses data-driven business models and includes a discussion of neural networks and deep learning. Finally, Section 6 discusses welfare implications of the technological finance revolution. This collection highlights the most current developments to date and the state-of-the-art in alternative finance, while also indicating areas of further potential. Acting as a roadmap for future research in this innovative and promising area of finance, this handbook is a solid reference work for academics and students whilst also appealing to industry practitioners, businesses and policy-makers.
  big data in financial industry: Big Data Finance in China Mengyao Lin,
  big data in financial industry: Big Data Bill Schmarzo, 2013-09-23 Leverage big data to add value to your business Social media analytics, web-tracking, and other technologies help companies acquire and handle massive amounts of data to better understand their customers, products, competition, and markets. Armed with the insights from big data, companies can improve customer experience and products, add value, and increase return on investment. The tricky part for busy IT professionals and executives is how to get this done, and that's where this practical book comes in. Big Data: Understanding How Data Powers Big Business is a complete how-to guide to leveraging big data to drive business value. Full of practical techniques, real-world examples, and hands-on exercises, this book explores the technologies involved, as well as how to find areas of the organization that can take full advantage of big data. Shows how to decompose current business strategies in order to link big data initiatives to the organization’s value creation processes Explores different value creation processes and models Explains issues surrounding operationalizing big data, including organizational structures, education challenges, and new big data-related roles Provides methodology worksheets and exercises so readers can apply techniques Includes real-world examples from a variety of organizations leveraging big data Big Data: Understanding How Data Powers Big Business is written by one of Big Data's preeminent experts, William Schmarzo. Don't miss his invaluable insights and advice.
  big data in financial industry: Big Data for Entrepreneurship and Sustainable Development Mohammed El Amine Abdelli, Wissem Ajili-Ben Youssef, Uğur Özgöker, Imen Ben Slimene, 2021-12-09 This book provides insight for researchers and decision-makers on the application of data in the entrepreneurship and sustainable development sector. This book covers how Big Data for Industry 4.0 and entrepreneurship are effective in resolving business, social, and economic problems. The book discusses how entrepreneurs use Big Data to cut costs and minimize the waste of time. It offers how using Big Data can increase efficiency, enables the studying of competitors, can improve the pricing of products, increase sales and loyalty, and can ensure the right people are hired. The book presents how decision-makers can make use of Big Data to resolve economic and social problems. Analyze the development of the economy and enhance the business climate. This book is for researchers, PhD students, and entrepreneurs and can also be of interest for transforming governments as well as businesses.
  big data in financial industry: The Elements of Big Data Value Edward Curry, Andreas Metzger, Sonja Zillner, Jean-Christophe Pazzaglia, Ana García Robles, 2021-08-01 This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.
  big data in financial industry: Python for Finance Yves Hilpisch, 2014-12-11 The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies
  big data in financial industry: Expert Systems in Finance Noura Metawa, Mohamed Elhoseny, Aboul Ella Hassanien, Kabir Hassan, 2020-12-18 Throughout the industry, financial institutions seek to eliminate cumbersome authentication methods, such as PINs, passwords, and security questions, as these antiquated tactics prove increasingly weak. Thus, many organizations now aim to implement emerging technologies in an effort to validate identities with greater certainty. The near instantaneous nature of online banking, purchases, transactions, and payments puts tremendous pressure on banks to secure their operations and procedures. In order to reduce the risk of human error in financial domains, expert systems are seen to offer a great advantage in big data environments. Besides their efficiency in quantitative analysis such as profitability, banking management, and strategic financial planning, expert systems have successfully treated qualitative issues including financial analysis, investment advisories, and knowledge-based decision support systems. Due to the increase in financial applications' size, complexity, and number of components, it is no longer practical to anticipate and model all possible interactions and data processing in these applications using the traditional data processing model. The emergence of new research areas is clear evidence of the rise of new demands and requirements of modern real-life applications to be more intelligent. This book provides an exhaustive review of the roles of expert systems within the financial sector, with particular reference to big data environments. In addition, it offers a collection of high-quality research that addresses broad challenges in both theoretical and application aspects of intelligent and expert systems in finance. The book serves to aid the continued efforts of the application of intelligent systems that respond to the problem of big data processing in a smart banking and financial environment.
  big data in financial industry: Big Data and Analytics Vincenzo Morabito, 2015-01-31 This book presents and discusses the main strategic and organizational challenges posed by Big Data and analytics in a manner relevant to both practitioners and scholars. The first part of the book analyzes strategic issues relating to the growing relevance of Big Data and analytics for competitive advantage, which is also attributable to empowerment of activities such as consumer profiling, market segmentation, and development of new products or services. Detailed consideration is also given to the strategic impact of Big Data and analytics on innovation in domains such as government and education and to Big Data-driven business models. The second part of the book addresses the impact of Big Data and analytics on management and organizations, focusing on challenges for governance, evaluation, and change management, while the concluding part reviews real examples of Big Data and analytics innovation at the global level. The text is supported by informative illustrations and case studies, so that practitioners can use the book as a toolbox to improve understanding and exploit business opportunities related to Big Data and analytics.
  big data in financial industry: Fintech in Islamic Finance Umar A. Oseni, S. Nazim Ali, 2019-06-07 Featuring high-level analysis of Islamic law, this book examines fintech in Islamic finance from both theoretical and empirical perspectives. Whilst building on existing approaches, it also discusses the current application of fintech in promoting financial inclusion through innovative solutions in Muslim-majority countries, identifying future directions for policy-makers. With original chapters written by prominent academics, senior lawyers and practitioners in the global Islamic finance industry, this book serves as the first standalone pioneering reference work on fintech in Islamic finance. It also, for the first time, examines the position of Islamic law on cryptocurrencies, such as bitcoin. Besides the conceptual analysis of the Sharīʿah and legal aspects of fintech in Islamic finance, this book provides relevant case studies showing current and potential developments in the application of fintech in various sectors ranging from crowdfunding and smart contracts, to Online Dispute Resolution, Investment Account Platform and identity verification in the KYC process. Setting the agenda for researchers in the field, Fintech in Islamic Finance will be useful to students and scholars of Islamic finance and financial technology.
  big data in financial industry: Artificial Intelligence and Big Data for Financial Risk Management Noura Metawa, M Kabir Hassan, Saad Metawa, 2022-09-09 This book presents a collection of high-quality contributions on the state-of-the-art in Artificial Intelligence and Big Data analysis as it relates to financial risk management applications. It brings together, in one place, the latest thinking on an emerging topic and includes principles, reviews, examples, and research directions. The book presents numerous specific use-cases throughout, showing practical applications of the concepts discussed. It looks at technologies such as eye movement analysis, data mining or mobile apps and examines how these technologies are applied by financial institutions, and how this affects both the institutions and the market. This work introduces students and aspiring practitioners to the subject of risk management in a structured manner. It is primarily aimed at researchers and students in finance and intelligent big data applications, such as intelligent information systems, smart economics and finance applications, and the internet of things in a marketing environment.
  big data in financial industry: Guide to Big Data Applications S. Srinivasan, 2017-05-25 This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data.
  big data in financial industry: Performance and Capacity Implications for Big Data Dave Jewell, Ricardo Dobelin Barros, Stefan Diederichs, Lydia M. Duijvestijn, Michael Hammersley, Arindam Hazra, Corneliu Holban, Yan Li, Osai Osaigbovo, Andreas Plach, Ivan Portilla, Mukerji Saptarshi, Harinder P. Seera, Elisabeth Stahl, Clea Zolotow, IBM Redbooks, 2014-02-07 Big data solutions enable us to change how we do business by exploiting previously unused sources of information in ways that were not possible just a few years ago. In IBM® Smarter Planet® terms, big data helps us to change the way that the world works. The purpose of this IBM RedpaperTM publication is to consider the performance and capacity implications of big data solutions, which must be taken into account for them to be viable. This paper describes the benefits that big data approaches can provide. We then cover performance and capacity considerations for creating big data solutions. We conclude with what this means for big data solutions, both now and in the future. Intended readers for this paper include decision-makers, consultants, and IT architects.
  big data in financial industry: Big Data for Managers Atal Malviya, Mike Malmgren, 2018-12-07 In today’s fast growing digital world, the web, mobile, social networks and other digital platforms are producing enormous amounts of data that hold intelligence and valuable information. Correctly used it has the power to create sustainable value in different forms for businesses. The commonly used term for this data is Big Data, which includes structured, unstructured and hybrid structured data. However, Big Data is of limited value unless insightful information can be extracted from the sources of data. The solution is Big Data analytics, and how managers and executives can capture value from this vast resource of information and insights. This book develops a simple framework and a non-technical approach to help the reader understand, digest and analyze data, and produce meaningful analytics to make informed decisions. It will support value creation within businesses, from customer care to product innovation, from sales and marketing to operational performance. The authors provide multiple case studies on global industries and business units, chapter summaries and discussion questions for the reader to consider and explore. Big Data for Managers also presents small cases and challenges for the reader to work on – making this a thorough and practical guide for students and managers.
BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is …

Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such …

Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design …

Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and …

Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 …

BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, …

Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such as Copenhill, a waste-to energy plant with a ski slope on …

Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design in Oakland, California in 2018. The new ballpark’s roof is accentuated …

Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and Products. A plethora of in-house perspectives allows us to see …

Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 Third Street builds on years of BIG’s prior study and design …

Sankt Lukas Hospice and Lukashuset | BIG | Bjarke Ingels Group
A small step for each of us becomes a BIG LEAP for all of us. BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the …

Google Bay View | BIG | Bjarke Ingels Group
Leon Rost — Partner, BIG The campus includes 17.3 acres of high-value natural areas – including wet meadows, woodlands, and marsh – that contribute to Google’s broader efforts to …

Gelephu International Airport | BIG | Bjarke Ingels Group
As Bhutan’s second international airport, the project is a collaboration with aviation engineering firm NACO and an integral part of the Gelephu Mindfulness City (GMC) masterplan designed …

Opera and Ballet Theatre of Kosovo | BIG | Bjarke Ingels Group
BIG proposes a simple and prag matic arrangement of the performance venues draped in a soft, undulating exterior skin of photovoltaic tiles. The theatre ’s form is reminiscent of the free …

Freedom Plaza | BIG | Bjarke Ingels Group
Freedom Plaza will extend BIG’s contribution to New York City’s waterfront, alongside adjacent coastal projects that include the East Side Coastal Resiliency project, the Battery Park City …