Advertisement
big data business intelligence pdf: Big Data, Big Analytics Michael Minelli, Michele Chambers, Ambiga Dhiraj, 2013-01-22 Unique prospective on the big data analytics phenomenon for both business and IT professionals The availability of Big Data, low-cost commodity hardware and new information management and analytics software has produced a unique moment in the history of business. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. These capabilities are neither theoretical nor trivial. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue and profitability. The Age of Big Data is here, and these are truly revolutionary times. This timely book looks at cutting-edge companies supporting an exciting new generation of business analytics. Learn more about the trends in big data and how they are impacting the business world (Risk, Marketing, Healthcare, Financial Services, etc.) Explains this new technology and how companies can use them effectively to gather the data that they need and glean critical insights Explores relevant topics such as data privacy, data visualization, unstructured data, crowd sourcing data scientists, cloud computing for big data, and much more. |
big data business intelligence pdf: Big Data and Analytics Vincenzo Morabito, 2015-01-31 This book presents and discusses the main strategic and organizational challenges posed by Big Data and analytics in a manner relevant to both practitioners and scholars. The first part of the book analyzes strategic issues relating to the growing relevance of Big Data and analytics for competitive advantage, which is also attributable to empowerment of activities such as consumer profiling, market segmentation, and development of new products or services. Detailed consideration is also given to the strategic impact of Big Data and analytics on innovation in domains such as government and education and to Big Data-driven business models. The second part of the book addresses the impact of Big Data and analytics on management and organizations, focusing on challenges for governance, evaluation, and change management, while the concluding part reviews real examples of Big Data and analytics innovation at the global level. The text is supported by informative illustrations and case studies, so that practitioners can use the book as a toolbox to improve understanding and exploit business opportunities related to Big Data and analytics. |
big data business intelligence pdf: Data Science and Big Data Analytics EMC Education Services, 2014-12-19 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today! |
big data business intelligence pdf: Business Intelligence Strategy and Big Data Analytics Steve Williams, 2016-04-08 Business Intelligence Strategy and Big Data Analytics is written for business leaders, managers, and analysts - people who are involved with advancing the use of BI at their companies or who need to better understand what BI is and how it can be used to improve profitability. It is written from a general management perspective, and it draws on observations at 12 companies whose annual revenues range between $500 million and $20 billion. Over the past 15 years, my company has formulated vendor-neutral business-focused BI strategies and program execution plans in collaboration with manufacturers, distributors, retailers, logistics companies, insurers, investment companies, credit unions, and utilities, among others. It is through these experiences that we have validated business-driven BI strategy formulation methods and identified common enterprise BI program execution challenges. In recent years, terms like big data and big data analytics have been introduced into the business and technical lexicon. Upon close examination, the newer terminology is about the same thing that BI has always been about: analyzing the vast amounts of data that companies generate and/or purchase in the course of business as a means of improving profitability and competitiveness. Accordingly, we will use the terms BI and business intelligence throughout the book, and we will discuss the newer concepts like big data as appropriate. More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both. - Provides ideas for improving the business performance of one's company or business functions - Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies - Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans |
big data business intelligence pdf: Data Mining Krzysztof J. Cios, Witold Pedrycz, Roman W. Swiniarski, Lukasz Andrzej Kurgan, 2007-10-05 This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material. |
big data business intelligence pdf: Analytics in a Big Data World Bart Baesens, 2014-04-15 The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities. |
big data business intelligence pdf: Managerial Perspectives on Intelligent Big Data Analytics Sun, Zhaohao, 2019-02-22 Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce. |
big data business intelligence pdf: Artificial Intelligence and Big Data Fernando Iafrate, 2018-03-27 With the idea of “deep learning” having now become the key to this new generation of solutions, major technological players in the business intelligence sector have taken an interest in the application of Big Data. In this book, the author explores the recent technological advances associated with digitized data flows, which have recently opened up new horizons for AI. The reader will gain insight into some of the areas of application of Big Data in AI, including robotics, home automation, health, security, image recognition and natural language processing. |
big data business intelligence pdf: The Elements of Big Data Value Edward Curry, Andreas Metzger, Sonja Zillner, Jean-Christophe Pazzaglia, Ana García Robles, 2021-08-01 This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation. |
big data business intelligence pdf: Big Data Imperatives Soumendra Mohanty, Madhu Jagadeesh, Harsha Srivatsa, 2013-08-23 Big Data Imperatives, focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use. This book addresses the following big data characteristics: Very large, distributed aggregations of loosely structured data – often incomplete and inaccessible Petabytes/Exabytes of data Millions/billions of people providing/contributing to the context behind the data Flat schema's with few complex interrelationships Involves time-stamped events Made up of incomplete data Includes connections between data elements that must be probabilistically inferred Big Data Imperatives explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability. Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data. |
big data business intelligence pdf: Big Data and Business Analytics Jay Liebowitz, 2016-04-19 The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions todo this, avoid that.'-From the Foreword by Joe LaCugna, Ph.D., Enterprise Analytics and Business Intelligence, Starbucks Coffee CompanyWith the growing barrage of big data, it becomes vitally important for organizations to mak |
big data business intelligence pdf: Management Decision-Making, Big Data and Analytics Simone Gressel, David J. Pauleen, Nazim Taskin, 2020-10-12 Accessible and concise, this exciting new textbook examines data analytics from a managerial and organizational perspective and looks at how they can help managers become more effective decision-makers. The book successfully combines theory with practical application, featuring case studies, examples and a ‘critical incidents’ feature that make these topics engaging and relevant for students of business and management. The book features chapters on cutting-edge topics, including: • Big data • Analytics • Managing emerging technologies and decision-making • Managing the ethics, security, privacy and legal aspects of data-driven decision-making The book is accompanied by an Instructor’s Manual, PowerPoint slides and access to journal articles. Suitable for management students studying business analytics and decision-making at undergraduate, postgraduate and MBA levels. |
big data business intelligence pdf: Big Data MBA Bill Schmarzo, 2015-12-11 Integrate big data into business to drive competitive advantage and sustainable success Big Data MBA brings insight and expertise to leveraging big data in business so you can harness the power of analytics and gain a true business advantage. Based on a practical framework with supporting methodology and hands-on exercises, this book helps identify where and how big data can help you transform your business. You'll learn how to exploit new sources of customer, product, and operational data, coupled with advanced analytics and data science, to optimize key processes, uncover monetization opportunities, and create new sources of competitive differentiation. The discussion includes guidelines for operationalizing analytics, optimal organizational structure, and using analytic insights throughout your organization's user experience to customers and front-end employees alike. You'll learn to “think like a data scientist” as you build upon the decisions your business is trying to make, the hypotheses you need to test, and the predictions you need to produce. Business stakeholders no longer need to relinquish control of data and analytics to IT. In fact, they must champion the organization's data collection and analysis efforts. This book is a primer on the business approach to analytics, providing the practical understanding you need to convert data into opportunity. Understand where and how to leverage big data Integrate analytics into everyday operations Structure your organization to drive analytic insights Optimize processes, uncover opportunities, and stand out from the rest Help business stakeholders to “think like a data scientist” Understand appropriate business application of different analytic techniques If you want data to transform your business, you need to know how to put it to use. Big Data MBA shows you how to implement big data and analytics to make better decisions. |
big data business intelligence pdf: Internet of Things and Big Data Analytics Toward Next-Generation Intelligence Nilanjan Dey, Aboul Ella Hassanien, Chintan Bhatt, Amira S. Ashour, Suresh Chandra Satapathy, 2017-08-14 This book highlights state-of-the-art research on big data and the Internet of Things (IoT), along with related areas to ensure efficient and Internet-compatible IoT systems. It not only discusses big data security and privacy challenges, but also energy-efficient approaches to improving virtual machine placement in cloud computing environments. Big data and the Internet of Things (IoT) are ultimately two sides of the same coin, yet extracting, analyzing and managing IoT data poses a serious challenge. Accordingly, proper analytics infrastructures/platforms should be used to analyze IoT data. Information technology (IT) allows people to upload, retrieve, store and collect information, which ultimately forms big data. The use of big data analytics has grown tremendously in just the past few years. At the same time, the IoT has entered the public consciousness, sparking people’s imaginations as to what a fully connected world can offer. Further, the book discusses the analysis of real-time big data to derive actionable intelligence in enterprise applications in several domains, such as in industry and agriculture. It explores possible automated solutions in daily life, including structures for smart cities and automated home systems based on IoT technology, as well as health care systems that manage large amounts of data (big data) to improve clinical decisions. The book addresses the security and privacy of the IoT and big data technologies, while also revealing the impact of IoT technologies on several scenarios in smart cities design. Intended as a comprehensive introduction, it offers in-depth analysis and provides scientists, engineers and professionals the latest techniques, frameworks and strategies used in IoT and big data technologies. |
big data business intelligence pdf: Big Data Intelligence for Smart Applications Youssef Baddi, Youssef Gahi, Yassine Maleh, Mamoun Alazab, Loai Tawalbeh, 2022-01-18 Today, the use of machine intelligence, expert systems, and analytical technologies combined with Big Data is the natural evolution of both disciplines. As a result, there is a pressing need for new and innovative algorithms to help us find effective and practical solutions for smart applications such as smart cities, IoT, healthcare, and cybersecurity. This book presents the latest advances in big data intelligence for smart applications. It explores several problems and their solutions regarding computational intelligence and big data for smart applications. It also discusses new models, practical solutions,and technological advances related to developing and transforming cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners. |
big data business intelligence pdf: Integration Challenges for Analytics, Business Intelligence, and Data Mining Azevedo, Ana, Santos, Manuel Filipe, 2020-12-11 As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students. |
big data business intelligence pdf: Big Data Applications and Use Cases Patrick C. K. Hung, 2016-05-18 This book presents different use cases in big data applications and related practical experiences. Many businesses today are increasingly interested in utilizing big data technologies for supporting their business intelligence so that it is becoming more and more important to understand the various practical issues from different practical use cases. This book provides clear proof that big data technologies are playing an ever increasing important and critical role in a new cross-discipline research between computer science and business. |
big data business intelligence pdf: Big Data in Practice Bernard Marr, 2016-03-22 The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter |
big data business intelligence pdf: Decision Support, Analytics, and Business Intelligence, Third Edition Daniel J. Power, Ciara Heavin, 2017-06-08 Rapid technology change is impacting organizations large and small. Mobile and Cloud computing, the Internet of Things (IoT), and “Big Data” are driving forces in organizational digital transformation. Decision support and analytics are available to many people in a business or organization. Business professionals need to learn about and understand computerized decision support for organizations to succeed. This text is targeted to busy managers and students who need to grasp the basics of computerized decision support, including: What is analytics? What is a decision support system? What is “Big Data”? What are “Big Data” business use cases? Overall, it addresses 61 fundamental questions. In a short period of time, readers can “get up to speed” on decision support, analytics, and business intelligence. The book then provides a quick reference to important recurring questions. |
big data business intelligence pdf: Big Data For Dummies Judith S. Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, 2013-04-02 Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization. |
big data business intelligence pdf: Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges Aboul Ella Hassanien, Ashraf Darwish, 2020-12-14 This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications. |
big data business intelligence pdf: Big Data and Learning Analytics in Higher Education Ben Kei Daniel, 2016-08-27 This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns. |
big data business intelligence pdf: Big Data Analytics Beyond Hadoop Vijay Srinivas Agneeswaran, 2014-05-15 Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning. When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for: Spark, the next generation in-memory computing technology from UC Berkeley Storm, the parallel real-time Big Data analytics technology from Twitter GraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo) Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics. Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students. |
big data business intelligence pdf: Big Data Analytics Methods Peter Ghavami, 2019-12-16 Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics. |
big data business intelligence pdf: Sport Business Analytics C. Keith Harrison, Scott Bukstein, 2016-11-18 Developing and implementing a systematic analytics strategy can result in a sustainable competitive advantage within the sport business industry. This timely and relevant book provides practical strategies to collect data and then convert that data into meaningful, value-added information and actionable insights. Its primary objective is to help sport business organizations utilize data-driven decision-making to generate optimal revenue from such areas as ticket sales and corporate partnerships. To that end, the book includes in-depth case studies from such leading sports organizations as the Orlando Magic, Tampa Bay Buccaneers, Duke University, and the Aspire Group. The core purpose of sport business analytics is to convert raw data into information that enables sport business professionals to make strategic business decisions that result in improved company financial performance and a measurable and sustainable competitive advantage. Readers will learn about the role of big data and analytics in: Ticket pricing Season ticket member retention Fan engagement Sponsorship valuation Customer relationship management Digital marketing Market research Data visualization. This book examines changes in the ticketing marketplace and spotlights innovative ticketing strategies used in various sport organizations. It shows how to engage fans with social media and digital analytics, presents techniques to analyze engagement and marketing strategies, and explains how to utilize analytics to leverage fan engagement to enhance revenue for sport organizations. Filled with insightful case studies, this book benefits both sports business professionals and students. The concluding chapter on teaching sport analytics further enhances its value to academics. |
big data business intelligence pdf: Internet of Things in Business Transformation Parul Gandhi, Surbhi Bhatia, Abhishek Kumar, Mohammad Ali Alojail, Pramod Singh Rathore, 2021-02-03 The objective of this book is to teach what IoT is, how it works, and how it can be successfully utilized in business. This book helps to develop and implement a powerful IoT strategy for business transformation as well as project execution. Digital change, business creation/change and upgrades in the ways and manners in which we work, live, and engage with our clients and customers, are all enveloped by the Internet of Things which is now named Industry 5.0 or Industrial Internet of Things. The sheer number of IoT(a billion+), demonstrates the advent of an advanced business society led by sustainable robotics and business intelligence. This book will be an indispensable asset in helping businesses to understand the new technology and thrive. |
big data business intelligence pdf: Big Data Analytics David Loshin, 2013-08-23 Big Data Analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise. - Guides the reader in assessing the opportunities and value proposition - Overview of big data hardware and software architectures - Presents a variety of technologies and how they fit into the big data ecosystem |
big data business intelligence pdf: Guide to Big Data Applications S. Srinivasan, 2017-05-25 This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data. |
big data business intelligence pdf: Big Data Technologies and Applications Borko Furht, Flavio Villanustre, 2016-09-16 The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors. |
big data business intelligence pdf: Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing Singh, Amandeep, 2021-06-18 The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers. Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies. |
big data business intelligence pdf: Internet of Things and Data Analytics Handbook Hwaiyu Geng, 2016-12-15 This book examines the Internet of Things (IoT) and Data Analytics from a technical, application, and business point of view. Internet of Things and Data Analytics Handbook describes essential technical knowledge, building blocks, processes, design principles, implementation, and marketing for IoT projects. It provides readers with knowledge in planning, designing, and implementing IoT projects. The book is written by experts on the subject matter, including international experts from nine countries in the consumer and enterprise fields of IoT. The text starts with an overview and anatomy of IoT, ecosystem of IoT, communication protocols, networking, and available hardware, both present and future applications and transformations, and business models. The text also addresses big data analytics, machine learning, cloud computing, and consideration of sustainability that are essential to be both socially responsible and successful. Design and implementation processes are illustrated with best practices and case studies in action. In addition, the book: Examines cloud computing, data analytics, and sustainability and how they relate to IoT overs the scope of consumer, government, and enterprise applications Includes best practices, business model, and real-world case studies Hwaiyu Geng, P.E., is a consultant with Amica Research (www.AmicaResearch.org, Palo Alto, California), promoting green planning, design, and construction projects. He has had over 40 years of manufacturing and management experience, working with Westinghouse, Applied Materials, Hewlett Packard, and Intel on multi-million high-tech projects. He has written and presented numerous technical papers at international conferences. Mr. Geng, a patent holder, is also the editor/author of Data Center Handbook (Wiley, 2015). |
big data business intelligence pdf: Research Anthology on Big Data Analytics, Architectures, and Applications Information Resources Management Association, 2022 Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians. |
big data business intelligence pdf: Big Data Analytics with Spark Mohammed Guller, 2015-12-29 Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career. |
big data business intelligence pdf: Big Data Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi, 2016-06-07 Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. - Covers computational platforms supporting Big Data applications - Addresses key principles underlying Big Data computing - Examines key developments supporting next generation Big Data platforms - Explores the challenges in Big Data computing and ways to overcome them - Contains expert contributors from both academia and industry |
big data business intelligence pdf: Business Intelligence and Agile Methodologies for Knowledge-Based Organizations: Cross-Disciplinary Applications Rahman El Sheikh, Asim Abdel, 2011-09-30 Business intelligence applications are of vital importance as they help organizations manage, develop, and communicate intangible assets such as information and knowledge. Organizations that have undertaken business intelligence initiatives have benefited from increases in revenue, as well as significant cost savings.Business Intelligence and Agile Methodologies for Knowledge-Based Organizations: Cross-Disciplinary Applications highlights the marriage between business intelligence and knowledge management through the use of agile methodologies. Through its fifteen chapters, this book offers perspectives on the integration between process modeling, agile methodologies, business intelligence, knowledge management, and strategic management. |
big data business intelligence pdf: People Analytics in the Era of Big Data Jean Paul Isson, Jesse S. Harriott, 2016-04-21 Apply predictive analytics throughout all stages of workforce management People Analytics in the Era of Big Data provides a blueprint for leveraging your talent pool through the use of data analytics. Written by the Global Vice President of Business Intelligence and Predictive Analytics at Monster Worldwide, this book is packed full of actionable insights to help you source, recruit, acquire, engage, retain, promote, and manage the exceptional talent your organization needs. With a unique approach that applies analytics to every stage of the hiring process and the entire workforce planning and management cycle, this informative guide provides the key perspective that brings analytics into HR in a truly useful way. You're already inundated with disparate employee data, so why not mine that data for insights that add value to your organization and strengthen your workforce? This book presents a practical framework for real-world talent analytics, backed by groundbreaking examples of workforce analytics in action across the U.S., Canada, Europe, Asia, and Australia. Leverage predictive analytics throughout the hiring process Utilize analytics techniques for more effective workforce management Learn how people analytics benefits organizations of all sizes in various industries Integrate analytics into HR practices seamlessly and thoroughly Corporate executives need fact-based insights into what will happen with their talent. Who should you hire? Who should you promote? Who are the top or bottom performers, and why? Who is at risk to quit, and why? Analytics can provide these answers, and give you insights based on quantifiable data instead of gut feeling and subjective assessment. People Analytics in the Era of Big Data is the essential guide to optimizing your workforce with the tools already at your disposal. |
big data business intelligence pdf: Data Analytics and Big Data Soraya Sedkaoui, 2018-05-24 The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application. |
big data business intelligence pdf: Large-Scale Data Analytics Aris Gkoulalas-Divanis, Abderrahim Labbi, 2014-01-08 This edited book collects state-of-the-art research related to large-scale data analytics that has been accomplished over the last few years. This is among the first books devoted to this important area based on contributions from diverse scientific areas such as databases, data mining, supercomputing, hardware architecture, data visualization, statistics, and privacy. There is increasing need for new approaches and technologies that can analyze and synthesize very large amounts of data, in the order of petabytes, that are generated by massively distributed data sources. This requires new distributed architectures for data analysis. Additionally, the heterogeneity of such sources imposes significant challenges for the efficient analysis of the data under numerous constraints, including consistent data integration, data homogenization and scaling, privacy and security preservation. The authors also broaden reader understanding of emerging real-world applications in domains such as customer behavior modeling, graph mining, telecommunications, cyber-security, and social network analysis, all of which impose extra requirements for large-scale data analysis. Large-Scale Data Analytics is organized in 8 chapters, each providing a survey of an important direction of large-scale data analytics or individual results of the emerging research in the field. The book presents key recent research that will help shape the future of large-scale data analytics, leading the way to the design of new approaches and technologies that can analyze and synthesize very large amounts of heterogeneous data. Students, researchers, professionals and practitioners will find this book an authoritative and comprehensive resource. |
big data business intelligence pdf: Data Science and Big Data Analytics Durgesh Kumar Mishra, Xin-She Yang, Aynur Unal, 2018-08-01 This book presents conjectural advances in big data analysis, machine learning and computational intelligence, as well as their potential applications in scientific computing. It discusses major issues pertaining to big data analysis using computational intelligence techniques, and the conjectural elements are supported by simulation and modelling applications to help address real-world problems. An extensive bibliography is provided at the end of each chapter. Further, the main content is supplemented by a wealth of figures, graphs, and tables, offering a valuable guide for researchers in the field of big data analytics and computational intelligence. |
big data business intelligence pdf: Knowledge Graphs and Big Data Processing Valentina Janev, Damien Graux, Hajira Jabeen, Emanuel Sallinger, 2020-07-15 This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required. |
BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, …
Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such as Copenhill, a waste-to energy plant with a ski slope on …
Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design in Oakland, California in 2018. The new ballpark’s roof is accentuated …
Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and Products. A plethora of in-house perspectives allows us to see …
Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 Third Street builds on years of BIG’s prior study and design …
Sankt Lukas Hospice and Lukashuset | BIG | Bjarke Ingels Group
A small step for each of us becomes a BIG LEAP for all of us. BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the …
Google Bay View | BIG | Bjarke Ingels Group
Leon Rost — Partner, BIG The campus includes 17.3 acres of high-value natural areas – including wet meadows, woodlands, and marsh – that contribute to Google’s broader efforts to …
Gelephu International Airport | BIG | Bjarke Ingels Group
As Bhutan’s second international airport, the project is a collaboration with aviation engineering firm NACO and an integral part of the Gelephu Mindfulness City (GMC) masterplan designed …
Opera and Ballet Theatre of Kosovo | BIG | Bjarke Ingels Group
BIG proposes a simple and prag matic arrangement of the performance venues draped in a soft, undulating exterior skin of photovoltaic tiles. The theatre ’s form is reminiscent of the free …
Freedom Plaza | BIG | Bjarke Ingels Group
Freedom Plaza will extend BIG’s contribution to New York City’s waterfront, alongside adjacent coastal projects that include the East Side Coastal Resiliency project, the Battery Park City …
BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, …
Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such as Copenhill, a waste-to energy plant with a ski slope on …
Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design in Oakland, California in 2018. The new ballpark’s roof is accentuated …
Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and Products. A plethora of in-house perspectives allows us to see what …
Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 Third Street builds on years of BIG’s prior study and design …
Sankt Lukas Hospice and Lukashuset | BIG | Bjarke Ingels Group
A small step for each of us becomes a BIG LEAP for all of us. BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the …
Google Bay View | BIG | Bjarke Ingels Group
Leon Rost — Partner, BIG The campus includes 17.3 acres of high-value natural areas – including wet meadows, woodlands, and marsh – that contribute to Google’s broader efforts to …
Gelephu International Airport | BIG | Bjarke Ingels Group
As Bhutan’s second international airport, the project is a collaboration with aviation engineering firm NACO and an integral part of the Gelephu Mindfulness City (GMC) masterplan designed …
Opera and Ballet Theatre of Kosovo | BIG | Bjarke Ingels Group
BIG proposes a simple and prag matic arrangement of the performance venues draped in a soft, undulating exterior skin of photovoltaic tiles. The theatre ’s form is reminiscent of the free …
Freedom Plaza | BIG | Bjarke Ingels Group
Freedom Plaza will extend BIG’s contribution to New York City’s waterfront, alongside adjacent coastal projects that include the East Side Coastal Resiliency project, the Battery Park City …