Advertisement
big data in accounting: Analytics and Big Data for Accountants Jim Lindell, 2020-10-29 Why is big data analytics one of the hottest business topics today? This book will help accountants and financial managers better understand big data and analytics, including its history and current trends. It dives into the platforms and operating tools that will help you measure program impacts and ROI, visualize data and business processes, and uncover the relationship between key performance indicators. Key topics covered include: Evidence-based techniques for finding or generating data, selecting key performance indicators, isolating program effects Relating data to return on investment, financial values, and executive decision making Data sources including surveys, interviews, customer satisfaction, engagement, and operational data Visualizing and presenting complex results |
big data in accounting: Analytics and Big Data for Accountants Jim Lindell, 2018-03-23 Analytics is the new force driving business. Tools have been created to measure program impacts and ROI, visualize data and business processes, and uncover the relationship between key performance indicators, many using the unprecedented amount of data now flowing into organizations. Featuring updated examples and surveys, this dynamic book covers leading-edge topics in analytics and finance. It is packed with useful tips and practical guidance you can apply immediately. This book prepares accountants to: Deal with major trends in predictive analytics, optimization, correlation of metrics, and big data. Interpret and manage new trends in analytics techniques affecting your organization. Use new tools for data analytics. Critically interpret analytics reports and advise decision makers. |
big data in accounting: Analytics and Big Data for Accountants Jim Lindell, 2018-04-11 Analytics is the new force driving business. Tools have been created to measure program impacts and ROI, visualize data and business processes, and uncover the relationship between key performance indicators, many using the unprecedented amount of data now flowing into organizations. Featuring updated examples and surveys, this dynamic book covers leading-edge topics in analytics and finance. It is packed with useful tips and practical guidance you can apply immediately. This book prepares accountants to: Deal with major trends in predictive analytics, optimization, correlation of metrics, and big data. Interpret and manage new trends in analytics techniques affecting your organization. Use new tools for data analytics. Critically interpret analytics reports and advise decision makers. |
big data in accounting: Handbook of Big Data and Analytics in Accounting and Auditing Tarek Rana, Jan Svanberg, Peter Öhman, Alan Lowe, 2023-02-03 This handbook collects the most up-to-date scholarship, knowledge, and new developments of big data and data analytics by bringing together many strands of contextual and disciplinary research. In recent times, while there has been considerable research in exploring the role of big data, data analytics, and textual analytics in accounting, and auditing, we still lack evidence on what kinds of best practices academics, practitioners, and organizations can implement and use. To achieve this aim, the handbook focuses on both conventional and contemporary issues facing by academics, practitioners, and organizations particularly when technology and business environments are changing faster than ever. All the chapters in this handbook provide both retrospective and contemporary views and commentaries by leading and knowledgeable scholars in the field, who offer unique insights on the changing role of accounting and auditing in today’s data and analytics driven environment. Aimed at academics, practitioners, students, and consultants in the areas of accounting, auditing, and other business disciplines, the handbook provides high-level insight into the design, implementation, and working of big data and data analytics practices for all types of organizations worldwide. The leading scholars in the field provide critical evaluations and guidance on big data and data analytics by illustrating issues related to various sectors such as public, private, not-for-profit, and social enterprises. The handbook’s content will be highly desirable and accessible to accounting and non-accounting audiences across the globe. |
big data in accounting: Fourth Industrial Revolution and Business Dynamics Nasser Rashad Al Mawali, Anis Moosa Al Lawati, Ananda S, 2021-10-07 The book explains strategic issues, trends, challenges, and future scenario of global economy in the light of Fourth Industrial Revolution. It consists of insightful scientific essays authored by scholars and practitioners from business, technology, and economics area. The book contributes to business education by means of research, critical and theoretical reviews of issues in Fourth Industrial Revolution. |
big data in accounting: Big Data Analytics Frank J. Ohlhorst, 2012-11-15 Unique insights to implement big data analytics and reap big returns to your bottom line Focusing on the business and financial value of big data analytics, respected technology journalist Frank J. Ohlhorst shares his insights on the newly emerging field of big data analytics in Big Data Analytics. This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine markets, improve profits and identify new business opportunities. Reveals big data analytics as the next wave for businesses looking for competitive advantage Takes an in-depth look at the financial value of big data analytics Offers tools and best practices for working with big data Once the domain of large on-line retailers such as eBay and Amazon, big data is now accessible by businesses of all sizes and across industries. From how to mine the data your company collects, to the data that is available on the outside, Big Data Analytics shows how you can leverage big data into a key component in your business's growth strategy. |
big data in accounting: Data Analytics for Accounting Vernon J. Richardson, Ryan Teeter, Katie L. Terrell, 2018-05-23 |
big data in accounting: New Horizons for a Data-Driven Economy José María Cavanillas, Edward Curry, Wolfgang Wahlster, 2016-04-04 In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment. |
big data in accounting: Big Data Analytics for Internet of Things Tausifa Jan Saleem, Mohammad Ahsan Chishti, 2021-04-20 BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies. |
big data in accounting: Financial Data Analytics Sinem Derindere Köseoğlu, 2022-04-25 This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics. |
big data in accounting: Business Intelligence Strategy and Big Data Analytics Steve Williams, 2016-04-08 Business Intelligence Strategy and Big Data Analytics is written for business leaders, managers, and analysts - people who are involved with advancing the use of BI at their companies or who need to better understand what BI is and how it can be used to improve profitability. It is written from a general management perspective, and it draws on observations at 12 companies whose annual revenues range between $500 million and $20 billion. Over the past 15 years, my company has formulated vendor-neutral business-focused BI strategies and program execution plans in collaboration with manufacturers, distributors, retailers, logistics companies, insurers, investment companies, credit unions, and utilities, among others. It is through these experiences that we have validated business-driven BI strategy formulation methods and identified common enterprise BI program execution challenges. In recent years, terms like big data and big data analytics have been introduced into the business and technical lexicon. Upon close examination, the newer terminology is about the same thing that BI has always been about: analyzing the vast amounts of data that companies generate and/or purchase in the course of business as a means of improving profitability and competitiveness. Accordingly, we will use the terms BI and business intelligence throughout the book, and we will discuss the newer concepts like big data as appropriate. More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both. - Provides ideas for improving the business performance of one's company or business functions - Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies - Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans |
big data in accounting: Customer Accounting Massimiliano Bonacchi, Paolo Perego, 2018-11-04 This book is designed to meet the needs of CFOs, accounting and financial professionals interested in leveraging the power of data-driven customer insights in management accounting and financial reporting systems. While academic research in Marketing has developed increasingly sophisticated analytical tools, the role of customer analytics as a source of value creation from an Accounting and Finance perspective has received limited attention. The authors aim to fill this gap by blending interdisciplinary academic rigor with practical insights from real-world applications. Readers will find thorough coverage of advanced customer accounting concepts and techniques, including the calculation of customer lifetime value and customer equity for internal decision-making and for external financial reporting and valuation. Beyond a professional audience, the book will serve as ideal companion reading for students enrolled in undergraduate, graduate, or MBA courses. |
big data in accounting: Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing Singh, Amandeep, 2021-06-18 The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers. Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies. |
big data in accounting: Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) Cheng Few Lee, John C Lee, 2020-07-30 This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience. |
big data in accounting: Big Data Analytics David Loshin, 2013-08-23 Big Data Analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise. - Guides the reader in assessing the opportunities and value proposition - Overview of big data hardware and software architectures - Presents a variety of technologies and how they fit into the big data ecosystem |
big data in accounting: Big data and analytics in accounting - e-Book AGOSTINI MARISA, ARKHIPOVA DARIA, 2023-04-28 Digital technologies such as big data analytics (BDA) are being increasingly used by businesses to create economic and societal value (Ferraris et al., 2019; Constantiou and Kallinikos, 2015; Günther et al., 2017; Rana et al., 2023). As a consequence, academic literature has emphasised their “disruptive potential” for enhancing corporate sustainability performance (Etzion and Aragon-Correa, 2015), creating more equal and inclusive society (Secundo et al., 2017), fostering optimal reallocation of underutilized resources (Etter et al., 2019) and enabling more participatory and democratic forms of governance (Neu et al., 2019; Ojala et al., 2019; Uldam, 2018). Conversely, the advocates of the critical approach have raised concerns about digital technologies related to privacy and security threats (La Torre et al., 2018), limitations of autonomy and freedom (Andrew and Baker, 2019), labour exploitation (Fuchs, 2010), lack of algorithmic accountability (Martin, 2019), pervasive worker control (Chai and Scully, 2019), and ecological footprint (Corbett, 2018; Lucivero, 2020). Hence, the magnitude and pervasiveness of ethical, social and environmental risks that emerge as a consequence of user data collection, storage and algorithmic processing are imposing additional responsibility upon data processing companies. To this end, the extant literature offers three main reasons for why large technology companies still lack accountability for these consequences. First, the problem resides in the inherent power asymmetries between the companies and individual users that pre-empt the latter from holding the former accountable for their wrongdoings (Rosenblat and Stark, 2016; West, 2019). Such quasi-monopolistic concentration of power in the hands of internet corporations is exerted not only vis-a-vis individual consumers but also other organisations (i.e., suppliers, competitors) whose business survival depends on the services of the large companies (Flyverbom et al., 2019). Second, regulatory efforts in the data economy often take place post hoc (Nunan and Di Domenico, 2017) and do not adequately address the contemporary issues of digitalization (Royakkers et al., 2018). Until recently, a self-regulatory regime prevailed in technology regulation based on “soft” voluntary standards and principles which the large companies developed for themselves. Finally, wrongful practices become pervasive to the extent that the other actors take them for granted and stop questioning them (Ananny and Crawford, 2018). As a result, companies find themselves in a “dual” position in which they simultaneously need to harness the potential of BDA to generate economic and societal value on the one hand, while at the same time are required establish an effective mechanism for ensuring accountability for the negative consequences of data utilization on the other. Hence, from the accounting perspective, this raises three important questions as to (1) whether accounting scholars can explain the emergent issues with BDA using established accounting theories, (2) whether and, if so, how the processing of BD results in calls for wider organisational accountability and greater regulatory oversight and (3) how the value of BDA can be assessed from a financial accounting standpoint. The present manuscript aims to address these questions. Chapter 1 “Emerging technologies in accounting” reviews technologies that underlie the use of BDA in accounting, provide definitions, discuss their interdependencies and explain differences between different technologies, illustrating their current and potential applications. In particular, new sources of big data and their characteristics will be discussed; different analytical approaches will be reviewed. The principal goal of this chapter is to establish a clear terminology and introduce key concepts that are fundamental for understanding the role of BDA in accounting. Chapter 2 “Peculiar and established theories framing studies of BDA in accounting” examines whether and how accounting literature has rooted BDA issues inside theoretical frameworks in order to formulate new concepts and models, to support the adoption of further methods and approaches, to explain and root the solutions used in practice. Chapter 3 “Data Regulations in the European Union” provides the most recent overview of the legal frameworks and regulatory developments in the European Union with regards to the data collection, use, storage, processing and sharing. Starting with the General Data Protection Regulation (GDPR) implementation in 2018, the European Union is taking a pioneer role in data-related regulations globally, imposes greater obligations, stricter rules and accountability frameworks. The chapter provides business and competitive context to explains the nature of the problem each regulatory initiative seeks to address, provides a general overview of the legal provisions in the context of the theoretical research in law, information systems and accounting and concludes by critical assessment of the effectiveness of the regulation – enforced or proposed – in reaching its goals and formulates a series of recommendations for potential improvement. Chapter 4 “Assessing the Value of Big Data and Analytics: Issues, Opportunities and Challenges” assesses the value of data that derives, rather than from inherent conditions, from the possibility of generating insights and the actual use of the same (Ferraris et al., 2019; Günther et al., 2017). “Conclusion” summarizes key research findings useful to provide answers to the above listed three research questions. |
big data in accounting: The Routledge Companion to Accounting Information Systems Martin Quinn, Erik Strauss, 2017-12-22 Information technology has permeated all walks of life in the past two decades. Accounting is no exception. Be it financial accounting, management accounting, or audit, information technology and systems have simplified daily tasks and routine work, simplified reporting, and changed how accounting is done. The Routledge Companion to Accounting Information Systems provides a prestige reference work which offers students and researchers an introduction to current and emerging scholarship in the discipline. Contributions from an international cast of authors provides a balanced view of both the technical underpinnings and organisational consequences of accounting information systems. With a focus on the business consequences of technology, this unique reference book will be a vital resource for students and researchers involved in accounting and information management. |
big data in accounting: Community Empowerment, Sustainable Cities, and Transformative Economies Taha Chaiechi, Jacob Wood, 2022-01-12 This edited volume presents the conference papers from the 1st International Conference on Business, Economics, Management, and Sustainability (BEMAS), organized by the Centre for International Trade and Business in Asia (CITBA) at James Cook University. This book argues that the orthodox methods of external risks, climate change adaptation plans, and sustainable economic growth in cities are no longer adequate. These methods, so far, have not only ignored the ongoing structural changes associated with economic development but also failed to account for evolving industries’ composition and the emergence of new comparative advantages and skills. Specifically, this book looks at the vulnerable communities and exposed areas, particularly in urban areas, that tend to experience higher susceptibility to external risks (such as climate change, natural disasters, and public health emergencies) have been largely ignored in incremental adaptation plans. Vulnerable communities and areas not only require different adaptive responses to climate risk but also possess unlocked adaptive capacity that can motivate different patterns of sustainable development to achieve the goals of the 2030 Agenda. It is essential, therefore, to view transformative growth and fundamental reorientation of economic resources as integral parts of the solution. Social disorganisation and vulnerability are other undesired outcomes of the unpredictable and widespread external economic shocks. This is due to a sudden and tough competition between members of society to acquire precious resources, most of which may be depleted during unprecedented events such as natural disasters or pandemics resulting in an even more chaotic and disorganised conditions. |
big data in accounting: Big Data Analytics in Chemoinformatics and Bioinformatics Subhash C. Basak, Marjan Vračko, 2022-12-06 Big Data Analytics in Chemoinformatics and Bioinformatics: With Applications to Computer-Aided Drug Design, Cancer Biology, Emerging Pathogens and Computational Toxicology provides an up-to-date presentation of big data analytics methods and their applications in diverse fields. The proper management of big data for decision-making in scientific and social issues is of paramount importance. This book gives researchers the tools they need to solve big data problems in these fields. It begins with a section on general topics that all readers will find useful and continues with specific sections covering a range of interdisciplinary applications. Here, an international team of leading experts review their respective fields and present their latest research findings, with case studies used throughout to analyze and present key information. - Brings together the current knowledge on the most important aspects of big data, including analysis using deep learning and fuzzy logic, transparency and data protection, disparate data analytics, and scalability of the big data domain - Covers many applications of big data analysis in diverse fields such as chemistry, chemoinformatics, bioinformatics, computer-assisted drug/vaccine design, characterization of emerging pathogens, and environmental protection - Highlights the considerable benefits offered by big data analytics to science, in biomedical fields and in industry |
big data in accounting: Public Policies and the Industrial Economy of India Since Independence Kalipada Deb, 1987 |
big data in accounting: Auditing Information Systems Piattini, Mario, 1999-07-01 Society's growing dependence on information technology for survival has elevated the importance of controlling and evaluating information systems. A sound plan for auditing information systems and the technology that supports them is a necessity for organizations to improve the IS benefits and allow the organization to manage the risks associated with technology.Auditing Information Systems gives a global vision of auditing and control, exposing the major techniques and methods. It provides guidelines for auditing the crucial areas of IT--databases, security, maintenance, quality, and communications. |
big data in accounting: Guide to Audit Data Analytics AICPA, 2018-02-21 Designed to facilitate the use of audit data analytics (ADAs) in the financial statement audit, this title was developed by leading experts across the profession and academia. The guide defines audit data analytics as “the science and art of discovering and analyzing patterns, identifying anomalies, and extracting other useful information in data underlying or related to the subject matter of an audit through analysis, modeling, and visualization for planning or performing the audit.” Simply put, ADAs can be used to perform a variety of procedures to gather audit evidence. Each chapter focuses on an audit area and includes step-by-step guidance illustrating how ADAs can be used throughout the financial statement audit. Suggested considerations for assessing the reliability of data are also included in a separate appendix. |
big data in accounting: Continuous Auditing David Y. Chan, Victoria Chiu, Miklos A. Vasarhelyi, 2018-03-21 Continuous Auditing provides academics and practitioners with a compilation of select continuous auditing design science research, and it provides readers with an understanding of the underlying theoretical concepts of a continuous audit, ideas on how continuous audit can be applied in practice, and what has and has not worked in research. |
big data in accounting: Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics Pradeep N, Sandeep Kautish, Sheng-Lung Peng, 2021-06-10 Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians. - Provides a comprehensive reference for biomedical engineers, computer scientists, advanced industry practitioners, researchers, and clinicians to understand and develop healthcare analytics using advanced tools and technologies - Includes in-depth illustrations of advanced techniques via dataset samples, statistical tables, and graphs with algorithms and computational methods for developing new applications in healthcare informatics - Unique case study approach provides readers with insights for practical clinical implementation |
big data in accounting: Big Data Bernard Marr, 2015-01-09 Convert the promise of big data into real world results There is so much buzz around big data. We all need to know what it is and how it works - that much is obvious. But is a basic understanding of the theory enough to hold your own in strategy meetings? Probably. But what will set you apart from the rest is actually knowing how to USE big data to get solid, real-world business results - and putting that in place to improve performance. Big Data will give you a clear understanding, blueprint, and step-by-step approach to building your own big data strategy. This is a well-needed practical introduction to actually putting the topic into practice. Illustrated with numerous real-world examples from a cross section of companies and organisations, Big Data will take you through the five steps of the SMART model: Start with Strategy, Measure Metrics and Data, Apply Analytics, Report Results, Transform. Discusses how companies need to clearly define what it is they need to know Outlines how companies can collect relevant data and measure the metrics that will help them answer their most important business questions Addresses how the results of big data analytics can be visualised and communicated to ensure key decisions-makers understand them Includes many high-profile case studies from the author's work with some of the world's best known brands |
big data in accounting: Data Mining For Dummies Meta S. Brown, 2014-09-04 Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining. |
big data in accounting: Big Data , 2011 |
big data in accounting: Think Bigger Mark Van Rijmenam, 2014-04-03 Offering real-world insight and explanations, this book provides a roadmap for organizations looking to develop a profitable big data strategy and reveals why it's not something they can leave to the I.T. department. Big data--the enormous amount of data that is created as virtually every movement, transaction, and choice we make becomes digitized--is revolutionizing business. Sharing best practices from companies that have implemented a big data strategy including Walmart, InterContinental Hotel Group, Walt Disney, and Shell, this helpful resource covers the most important big data trends affecting organizations, as well as key technologies like Hadoop and MapReduce, and several crucial types of analyses. In Think Bigger, you will find guidance on topics such as: how to ensure security, respecting the privacy rights of consumers, and how big data is impacting specific industries--and where opportunities can be found. Big data is changing the way businesses--and even governments--are operated and managed. Think Bigger is an essential resource for anyone who wants to ensure that their company isn't left in the dust. |
big data in accounting: Big Data for Entrepreneurship and Sustainable Development Mohammed El Amine Abdelli, Wissem Ajili-Ben Youssef, Uğur Özgöker, Imen Ben Slimene, 2021-12-09 This book provides insight for researchers and decision-makers on the application of data in the entrepreneurship and sustainable development sector. This book covers how Big Data for Industry 4.0 and entrepreneurship are effective in resolving business, social, and economic problems. The book discusses how entrepreneurs use Big Data to cut costs and minimize the waste of time. It offers how using Big Data can increase efficiency, enables the studying of competitors, can improve the pricing of products, increase sales and loyalty, and can ensure the right people are hired. The book presents how decision-makers can make use of Big Data to resolve economic and social problems. Analyze the development of the economy and enhance the business climate. This book is for researchers, PhD students, and entrepreneurs and can also be of interest for transforming governments as well as businesses. |
big data in accounting: Big data and analytics in accounting AGOSTINI MARISA, ARKHIPOVA DARIA, 2023-04-28 Digital technologies such as big data analytics (BDA) are being increasingly used by businesses to create economic and societal value (Ferraris et al., 2019; Constantiou and Kallinikos, 2015; Günther et al., 2017; Rana et al., 2023). As a consequence, academic literature has emphasised their “disruptive potential” for enhancing corporate sustainability performance (Etzion and Aragon-Correa, 2015), creating more equal and inclusive society (Secundo et al., 2017), fostering optimal reallocation of underutilized resources (Etter et al., 2019) and enabling more participatory and democratic forms of governance (Neu et al., 2019; Ojala et al., 2019; Uldam, 2018). Conversely, the advocates of the critical approach have raised concerns about digital technologies related to privacy and security threats (La Torre et al., 2018), limitations of autonomy and freedom (Andrew and Baker, 2019), labour exploitation (Fuchs, 2010), lack of algorithmic accountability (Martin, 2019), pervasive worker control (Chai and Scully, 2019), and ecological footprint (Corbett, 2018; Lucivero, 2020). Hence, the magnitude and pervasiveness of ethical, social and environmental risks that emerge as a consequence of user data collection, storage and algorithmic processing are imposing additional responsibility upon data processing companies. To this end, the extant literature offers three main reasons for why large technology companies still lack accountability for these consequences. First, the problem resides in the inherent power asymmetries between the companies and individual users that pre-empt the latter from holding the former accountable for their wrongdoings (Rosenblat and Stark, 2016; West, 2019). Such quasi-monopolistic concentration of power in the hands of internet corporations is exerted not only vis-a-vis individual consumers but also other organisations (i.e., suppliers, competitors) whose business survival depends on the services of the large companies (Flyverbom et al., 2019). Second, regulatory efforts in the data economy often take place post hoc (Nunan and Di Domenico, 2017) and do not adequately address the contemporary issues of digitalization (Royakkers et al., 2018). Until recently, a self-regulatory regime prevailed in technology regulation based on “soft” voluntary standards and principles which the large companies developed for themselves. Finally, wrongful practices become pervasive to the extent that the other actors take them for granted and stop questioning them (Ananny and Crawford, 2018). As a result, companies find themselves in a “dual” position in which they simultaneously need to harness the potential of BDA to generate economic and societal value on the one hand, while at the same time are required establish an effective mechanism for ensuring accountability for the negative consequences of data utilization on the other. Hence, from the accounting perspective, this raises three important questions as to (1) whether accounting scholars can explain the emergent issues with BDA using established accounting theories, (2) whether and, if so, how the processing of BD results in calls for wider organisational accountability and greater regulatory oversight and (3) how the value of BDA can be assessed from a financial accounting standpoint. The present manuscript aims to address these questions. Chapter 1 “Emerging technologies in accounting” reviews technologies that underlie the use of BDA in accounting, provide definitions, discuss their interdependencies and explain differences between different technologies, illustrating their current and potential applications. In particular, new sources of big data and their characteristics will be discussed; different analytical approaches will be reviewed. The principal goal of this chapter is to establish a clear terminology and introduce key concepts that are fundamental for understanding the role of BDA in accounting. Chapter 2 “Peculiar and established theories framing studies of BDA in accounting” examines whether and how accounting literature has rooted BDA issues inside theoretical frameworks in order to formulate new concepts and models, to support the adoption of further methods and approaches, to explain and root the solutions used in practice. Chapter 3 “Data Regulations in the European Union” provides the most recent overview of the legal frameworks and regulatory developments in the European Union with regards to the data collection, use, storage, processing and sharing. Starting with the General Data Protection Regulation (GDPR) implementation in 2018, the European Union is taking a pioneer role in data-related regulations globally, imposes greater obligations, stricter rules and accountability frameworks. The chapter provides business and competitive context to explains the nature of the problem each regulatory initiative seeks to address, provides a general overview of the legal provisions in the context of the theoretical research in law, information systems and accounting and concludes by critical assessment of the effectiveness of the regulation – enforced or proposed – in reaching its goals and formulates a series of recommendations for potential improvement. Chapter 4 “Assessing the Value of Big Data and Analytics: Issues, Opportunities and Challenges” assesses the value of data that derives, rather than from inherent conditions, from the possibility of generating insights and the actual use of the same (Ferraris et al., 2019; Günther et al., 2017). “Conclusion” summarizes key research findings useful to provide answers to the above listed three research questions. |
big data in accounting: Introduction to Business Lawrence J. Gitman, Carl McDaniel, Amit Shah, Monique Reece, Linda Koffel, Bethann Talsma, James C. Hyatt, 2024-09-16 Introduction to Business covers the scope and sequence of most introductory business courses. The book provides detailed explanations in the context of core themes such as customer satisfaction, ethics, entrepreneurship, global business, and managing change. Introduction to Business includes hundreds of current business examples from a range of industries and geographic locations, which feature a variety of individuals. The outcome is a balanced approach to the theory and application of business concepts, with attention to the knowledge and skills necessary for student success in this course and beyond. This is an adaptation of Introduction to Business by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
big data in accounting: Accounting and Corporate Reporting Soner Gokten, 2017-09-20 We have spent a great deal of time on the continued development of accounting and auditing standards, which are used as a primary component of corporate reporting, to reach today's financial reporting framework. However, is it possible to say that, currently, financial statements provide full and prompt disclosure? Or will they still be useful as a primary element with their current structures in corporate reporting? Undoubtedly, we are deeply concerned about these issues in recent times. This volume contains chapters to discuss the today's and tomorrow's accounting and corporate reporting phenomena in a comprehensive and multidimensional way. Therefore, this book is organized into six sections: Achieving Sustainability through Corporate Reporting, International Standardization, Financial Reporting Quality, Accounting Profession and Behavioral Aspects, Public Sector Accounting and Reporting, and Managerial Accounting. |
big data in accounting: The Data Revolution Rob Kitchin, 2014-09-16 Carefully distinguishing between big data and open data, and exploring various data infrastructures, Kitchin vividly illustrates how the data landscape is rapidly changing and calls for a revolution in how we think about data. - Evelyn Ruppert, Goldsmiths, University of London Deconstructs the hype around the ‘data revolution’ to carefully guide us through the histories and the futures of ‘big data.’ The book skilfully engages with debates from across the humanities, social sciences, and sciences in order to produce a critical account of how data are enmeshed into enormous social, economic, and political changes that are taking place. - Mark Graham, University of Oxford Traditionally, data has been a scarce commodity which, given its value, has been either jealously guarded or expensively traded. In recent years, technological developments and political lobbying have turned this position on its head. Data now flow as a deep and wide torrent, are low in cost and supported by robust infrastructures, and are increasingly open and accessible. A data revolution is underway, one that is already reshaping how knowledge is produced, business conducted, and governance enacted, as well as raising many questions concerning surveillance, privacy, security, profiling, social sorting, and intellectual property rights. In contrast to the hype and hubris of much media and business coverage, The Data Revolution provides a synoptic and critical analysis of the emerging data landscape. Accessible in style, the book provides: A synoptic overview of big data, open data and data infrastructures An introduction to thinking conceptually about data, data infrastructures, data analytics and data markets Acritical discussion of the technical shortcomings and the social, political and ethical consequences of the data revolution An analysis of the implications of the data revolution to academic, business and government practices |
big data in accounting: The Business Of Big Data: How to Create Lasting Value in the Age of AI Uri Bram, Martin Schmalz, 2019-12-09 If you're a sentient human these days, you've heard people talking of the phenomenal riches promised by the power of big data. Over the past decade or so, the world around us has undergone a staggering transformation, and great things have been promised to anyone able to ride the AI wave.But how exactly do you catch that wave? What does all this mean for you, whether you're an investor choosing among thousands of possible investments, a manager deciding where to allocate your capital, or a student wondering how to ensure there's good work out there for you by the time you graduate?*The Business of Big Data* will show you how to think strategically about the economic impacts of AI, how to complement AI instead of competing against it, how to reap the rewards of the AI revolution, and how to find your place in our brave new data-driven world. Along the way you'll find out how AI is like (and unlike) an ox, why your bank cares how fast you fill in a form, why your car insurer judges you by your email address, and why everything you do is data - from what time you first check your phone in the morning to where you sleep at night. |
big data in accounting: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together |
big data in accounting: Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques Bart Baesens, Veronique Van Vlasselaer, Wouter Verbeke, 2015-08-17 Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence. |
big data in accounting: Big Data Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi, 2016-06-07 Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. - Covers computational platforms supporting Big Data applications - Addresses key principles underlying Big Data computing - Examines key developments supporting next generation Big Data platforms - Explores the challenges in Big Data computing and ways to overcome them - Contains expert contributors from both academia and industry |
big data in accounting: Applications of Big Data and Business Analytics in Management Sneha Kumari, K. K. Tripathy, Vidya Kumbhar, 2020-12-04 Applications of Big Data and Business Analytics in Management uses advanced analytic tools to explore the solutions to problems in society, environment and industry. The chapters within bring together researchers, engineers and practitioners, encompassing a wide and diverse set of topics in almost every field. |
big data in accounting: MOS 2016 Study Guide for Microsoft Excel Joan Lambert, 2016-10-10 This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Advance your everyday proficiency with Excel 2016. And earn the credential that proves it! Demonstrate your expertise with Microsoft Excel! Designed to help you practice and prepare for Microsoft Office Specialist (MOS): Excel 2016 Core certification, this official Study Guide delivers: In-depth preparation for each MOS objective Detailed procedures to help build the skills measured by the exam Hands-on tasks to practice what you’ve learned Practice files and sample solutions Sharpen the skills measured by these objectives: Create and manage worksheets and workbooks Manage data cells and ranges Create tables Perform operations with formulas and functions Create charts and objects About MOS A Microsoft Office Specialist (MOS) certification validates your proficiency with Microsoft Office programs, demonstrating that you can meet globally recognized performance standards. Hands-on experience with the technology is required to successfully pass Microsoft Certification exams. |
big data in accounting: Big Data Viktor Mayer-Schönberger, Kenneth Cukier, 2013 A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large. |
BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, …
Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such as Copenhill, a waste-to energy plant with a ski slope on …
Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design in Oakland, California in 2018. The new ballpark’s roof is accentuated …
Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and Products. A plethora of in-house perspectives allows us to see …
Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 Third Street builds on years of BIG’s prior study and design …
Sankt Lukas Hospice and Lukashuset | BIG | Bjarke Ingels Group
A small step for each of us becomes a BIG LEAP for all of us. BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the …
Google Bay View | BIG | Bjarke Ingels Group
Leon Rost — Partner, BIG The campus includes 17.3 acres of high-value natural areas – including wet meadows, woodlands, and marsh – that contribute to Google’s broader efforts to …
Gelephu International Airport | BIG | Bjarke Ingels Group
As Bhutan’s second international airport, the project is a collaboration with aviation engineering firm NACO and an integral part of the Gelephu Mindfulness City (GMC) masterplan designed …
Opera and Ballet Theatre of Kosovo | BIG | Bjarke Ingels Group
BIG proposes a simple and prag matic arrangement of the performance venues draped in a soft, undulating exterior skin of photovoltaic tiles. The theatre ’s form is reminiscent of the free …
Freedom Plaza | BIG | Bjarke Ingels Group
Freedom Plaza will extend BIG’s contribution to New York City’s waterfront, alongside adjacent coastal projects that include the East Side Coastal Resiliency project, the Battery Park City …
BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, …
Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such as Copenhill, a waste-to energy plant with a ski slope on …
Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design in Oakland, California in 2018. The new ballpark’s roof is accentuated …
Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and Products. A plethora of in-house perspectives allows us to see what …
Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 Third Street builds on years of BIG’s prior study and design …
Sankt Lukas Hospice and Lukashuset | BIG | Bjarke Ingels Group
A small step for each of us becomes a BIG LEAP for all of us. BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the …
Google Bay View | BIG | Bjarke Ingels Group
Leon Rost — Partner, BIG The campus includes 17.3 acres of high-value natural areas – including wet meadows, woodlands, and marsh – that contribute to Google’s broader efforts to …
Gelephu International Airport | BIG | Bjarke Ingels Group
As Bhutan’s second international airport, the project is a collaboration with aviation engineering firm NACO and an integral part of the Gelephu Mindfulness City (GMC) masterplan designed …
Opera and Ballet Theatre of Kosovo | BIG | Bjarke Ingels Group
BIG proposes a simple and prag matic arrangement of the performance venues draped in a soft, undulating exterior skin of photovoltaic tiles. The theatre ’s form is reminiscent of the free …
Freedom Plaza | BIG | Bjarke Ingels Group
Freedom Plaza will extend BIG’s contribution to New York City’s waterfront, alongside adjacent coastal projects that include the East Side Coastal Resiliency project, the Battery Park City …