Data Science At The Command Line

Advertisement



  data science at the command line: Data Science at the Command Line Jeroen Janssens, 2014-09-25 This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms
  data science at the command line: Data Science at the Command Line Jeroen Janssens, 2021-08-17 This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, and model your data. To get you started, author Jeroen Janssens provides a Docker image packed with over 80 tools--useful whether you work with Windows, macOS, or Linux. You'll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you're comfortable processing data with Python or R, you'll learn how to greatly improve your data science workflow by leveraging the command line's power. This book is ideal for data scientists, analysts, and engineers; software and machine learning engineers; and system administrators. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on text, CSV, HTM, XML, and JSON files Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow Create reusable command-line tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines Model data with dimensionality reduction, clustering, regression, and classification algorithms
  data science at the command line: Cleaning Data for Effective Data Science David Mertz, 2021-03-31 Think about your data intelligently and ask the right questions Key FeaturesMaster data cleaning techniques necessary to perform real-world data science and machine learning tasksSpot common problems with dirty data and develop flexible solutions from first principlesTest and refine your newly acquired skills through detailed exercises at the end of each chapterBook Description Data cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the hard way. In a light-hearted and engaging exploration of different tools, techniques, and datasets real and fictitious, Python veteran David Mertz teaches you the ins and outs of data preparation and the essential questions you should be asking of every piece of data you work with. Using a mixture of Python, R, and common command-line tools, Cleaning Data for Effective Data Science follows the data cleaning pipeline from start to end, focusing on helping you understand the principles underlying each step of the process. You'll look at data ingestion of a vast range of tabular, hierarchical, and other data formats, impute missing values, detect unreliable data and statistical anomalies, and generate synthetic features. The long-form exercises at the end of each chapter let you get hands-on with the skills you've acquired along the way, also providing a valuable resource for academic courses. What you will learnIngest and work with common data formats like JSON, CSV, SQL and NoSQL databases, PDF, and binary serialized data structuresUnderstand how and why we use tools such as pandas, SciPy, scikit-learn, Tidyverse, and BashApply useful rules and heuristics for assessing data quality and detecting bias, like Benford’s law and the 68-95-99.7 ruleIdentify and handle unreliable data and outliers, examining z-score and other statistical propertiesImpute sensible values into missing data and use sampling to fix imbalancesUse dimensionality reduction, quantization, one-hot encoding, and other feature engineering techniques to draw out patterns in your dataWork carefully with time series data, performing de-trending and interpolationWho this book is for This book is designed to benefit software developers, data scientists, aspiring data scientists, teachers, and students who work with data. If you want to improve your rigor in data hygiene or are looking for a refresher, this book is for you. Basic familiarity with statistics, general concepts in machine learning, knowledge of a programming language (Python or R), and some exposure to data science are helpful.
  data science at the command line: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
  data science at the command line: Data Science at the Command Line Jeroen Janssens, 2021-09-30 This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, and model your data. To get you started, author Jeroen Janssens provides a Docker image packed with over 80 tools--useful whether you work with Windows, macOS, or Linux. You'll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you're comfortable processing data with Python or R, you'll learn how to greatly improve your data science workflow by leveraging the command line's power. This book is ideal for data scientists, analysts, and engineers; software and machine learning engineers; and system administrators. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on text, CSV, HTM, XML, and JSON files Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow Create reusable command-line tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines Model data with dimensionality reduction, clustering, regression, and classification algorithms
  data science at the command line: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  data science at the command line: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
  data science at the command line: Unix Power Tools Shelley Powers, 2003 With the growing popularity of Linux and the advent of Darwin, Unix has metamorphosed into something new and exciting. No longer perceived as a difficult operating system, more and more users are discovering the advantages of Unix for the first time. But whether you are a newcomer or a Unix power user, you'll find yourself thumbing through the goldmine of information in the new edition of Unix Power Tools to add to your store of knowledge. Want to try something new? Check this book first, and you're sure to find a tip or trick that will prevent you from learning things the hard way. The latest edition of this best-selling favorite is loaded with advice about almost every aspect of Unix, covering all the new technologies that users need to know. In addition to vital information on Linux, Darwin, and BSD, Unix Power Tools 3rd Edition now offers more coverage of bash, zsh, and other new shells, along with discussions about modern utilities and applications. Several sections focus on security and Internet access. And there is a new chapter on access to Unix from Windows, addressing the heterogeneous nature of systems today. You'll also find expanded coverage of software installation and packaging, as well as basic information on Perl and Python. Unix Power Tools 3rd Edition is a browser's book...like a magazine that you don't read from start to finish, but leaf through repeatedly until you realize that you've read it all. Bursting with cross-references, interesting sidebars explore syntax or point out other directions for exploration, including relevant technical details that might not be immediately apparent. The book includes articles abstracted from other O'Reilly books, new information that highlights program tricks and gotchas, tips posted to the Net over the years, and other accumulated wisdom. Affectionately referred to by readers as the Unix book, UNIX Power Tools provides access to information every Unix user is going to need to know. It will help you think creatively about UNIX, and will help you get to the point where you can analyze your own problems. Your own solutions won't be far behind.
  data science at the command line: Modern Data Science with R Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton, 2021-03-31 From a review of the first edition: Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.
  data science at the command line: Foundations of Data Science Avrim Blum, John Hopcroft, Ravindran Kannan, 2020-01-23 This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
  data science at the command line: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
  data science at the command line: The Data Science Design Manual Steven S. Skiena, 2017-07-01 This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
  data science at the command line: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.
  data science at the command line: Programming Skills For Data Science Freeman, Programming Skills for Data Science brings together all the foundation skills needed to transform raw data into actionable insights for domains ranging from urban planning to precision medicine, even if you have no programming or data science experience. Guided by expert instructors Michael Freeman and Joel Ross, this book will help learners install the tools required to solve professional-level data science problems, including widely used R language, RStudio integrated development environment, and Git version-control system. It explains how to wrangle data into a form where it can be easily used, analyzed, and visualized so others can see the patterns uncovered. Step by step, students will master powerful R programming techniques and troubleshooting skills for probing data in new ways, and at larger scales.
  data science at the command line: Python for DevOps Noah Gift, Kennedy Behrman, Alfredo Deza, Grig Gheorghiu, 2019-12-12 Much has changed in technology over the past decade. Data is hot, the cloud is ubiquitous, and many organizations need some form of automation. Throughout these transformations, Python has become one of the most popular languages in the world. This practical resource shows you how to use Python for everyday Linux systems administration tasks with today’s most useful DevOps tools, including Docker, Kubernetes, and Terraform. Learning how to interact and automate with Linux is essential for millions of professionals. Python makes it much easier. With this book, you’ll learn how to develop software and solve problems using containers, as well as how to monitor, instrument, load-test, and operationalize your software. Looking for effective ways to get stuff done in Python? This is your guide. Python foundations, including a brief introduction to the language How to automate text, write command-line tools, and automate the filesystem Linux utilities, package management, build systems, monitoring and instrumentation, and automated testing Cloud computing, infrastructure as code, Kubernetes, and serverless Machine learning operations and data engineering from a DevOps perspective Building, deploying, and operationalizing a machine learning project
  data science at the command line: An Introduction to Data Science Jeffrey S. Saltz, Jeffrey M. Stanton, 2017-08-25 An Introduction to Data Science is an easy-to-read data science textbook for those with no prior coding knowledge. It features exercises at the end of each chapter, author-generated tables and visualizations, and R code examples throughout.
  data science at the command line: Introduction to Biomedical Data Science Robert Hoyt, Robert Muenchen, 2019-11-24 Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.
  data science at the command line: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  data science at the command line: Data Science with Java Michael R. Brzustowicz, PhD, 2017-06-06 Data Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today’s data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java. You’ll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you’ll find code examples you can use in your applications. Examine methods for obtaining, cleaning, and arranging data into its purest form Understand the matrix structure that your data should take Learn basic concepts for testing the origin and validity of data Transform your data into stable and usable numerical values Understand supervised and unsupervised learning algorithms, and methods for evaluating their success Get up and running with MapReduce, using customized components suitable for data science algorithms
  data science at the command line: Python Data Science Essentials Alberto Boschetti, Luca Massaron, 2016-10-28 Become an efficient data science practitioner by understanding Python's key concepts About This Book Quickly get familiar with data science using Python 3.5 Save time (and effort) with all the essential tools explained Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will Learn Set up your data science toolbox using a Python scientific environment on Windows, Mac, and Linux Get data ready for your data science project Manipulate, fix, and explore data in order to solve data science problems Set up an experimental pipeline to test your data science hypotheses Choose the most effective and scalable learning algorithm for your data science tasks Optimize your machine learning models to get the best performance Explore and cluster graphs, taking advantage of interconnections and links in your data In Detail Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users. Style and approach The book is structured as a data science project. You will always benefit from clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.
  data science at the command line: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  data science at the command line: Introduction to Data Science Laura Igual, Santi Seguí, 2017-02-22 This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
  data science at the command line: Practical Data Science Cookbook Prabhanjan Tattar, Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort, Abhijit Dasgupta, 2017-06-29 Over 85 recipes to help you complete real-world data science projects in R and Python About This Book Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data Get beyond the theory and implement real-world projects in data science using R and Python Easy-to-follow recipes will help you understand and implement the numerical computing concepts Who This Book Is For If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python. What You Will Learn Learn and understand the installation procedure and environment required for R and Python on various platforms Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python Build a predictive model and an exploratory model Analyze the results of your model and create reports on the acquired data Build various tree-based methods and Build random forest In Detail As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python. Style and approach This step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization
  data science at the command line: Bioinformatics Data Skills Vince Buffalo, 2015-07 Learn the data skills necessary for turning large sequencing datasets into reproducible and robust biological findings. With this practical guide, youâ??ll learn how to use freely available open source tools to extract meaning from large complex biological data sets. At no other point in human history has our ability to understand lifeâ??s complexities been so dependent on our skills to work with and analyze data. This intermediate-level book teaches the general computational and data skills you need to analyze biological data. If you have experience with a scripting language like Python, youâ??re ready to get started. Go from handling small problems with messy scripts to tackling large problems with clever methods and tools Process bioinformatics data with powerful Unix pipelines and data tools Learn how to use exploratory data analysis techniques in the R language Use efficient methods to work with genomic range data and range operations Work with common genomics data file formats like FASTA, FASTQ, SAM, and BAM Manage your bioinformatics project with the Git version control system Tackle tedious data processing tasks with with Bash scripts and Makefiles
  data science at the command line: Executive Data Science Roger Peng, 2016-08-03 In this concise book you will learn what you need to know to begin assembling and leading a data science enterprise, even if you have never worked in data science before. You'll get a crash course in data science so that you'll be conversant in the field and understand your role as a leader. You'll also learn how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You'll learn the structure of the data science pipeline, the goals of each stage, and how to keep your team on target throughout. Finally, you'll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects.
  data science at the command line: Building Data Science Applications with FastAPI Francois Voron, 2021-10-08 Get well-versed with FastAPI features and best practices for testing, monitoring, and deployment to run high-quality and robust data science applications Key FeaturesCover the concepts of the FastAPI framework, including aspects relating to asynchronous programming, type hinting, and dependency injectionDevelop efficient RESTful APIs for data science with modern PythonBuild, test, and deploy high performing data science and machine learning systems with FastAPIBook Description FastAPI is a web framework for building APIs with Python 3.6 and its later versions based on standard Python-type hints. With this book, you'll be able to create fast and reliable data science API backends using practical examples. This book starts with the basics of the FastAPI framework and associated modern Python programming language concepts. You'll be taken through all the aspects of the framework, including its powerful dependency injection system and how you can use it to communicate with databases, implement authentication and integrate machine learning models. Later, you'll cover best practices relating to testing and deployment to run a high-quality and robust application. You'll also be introduced to the extensive ecosystem of Python data science packages. As you progress, you'll learn how to build data science applications in Python using FastAPI. The book also demonstrates how to develop fast and efficient machine learning prediction backends and test them to achieve the best performance. Finally, you'll see how to implement a real-time face detection system using WebSockets and a web browser as a client. By the end of this FastAPI book, you'll have not only learned how to implement Python in data science projects but also how to maintain and design them to meet high programming standards with the help of FastAPI. What you will learnExplore the basics of modern Python and async I/O programmingGet to grips with basic and advanced concepts of the FastAPI frameworkImplement a FastAPI dependency to efficiently run a machine learning modelIntegrate a simple face detection algorithm in a FastAPI backendIntegrate common Python data science libraries in a web backendDeploy a performant and reliable web backend for a data science applicationWho this book is for This Python data science book is for data scientists and software developers interested in gaining knowledge of FastAPI and its ecosystem to build data science applications. Basic knowledge of data science and machine learning concepts and how to apply them in Python is recommended.
  data science at the command line: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-28 A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook
  data science at the command line: Genomics in the Cloud Geraldine A. Van der Auwera, Brian D. O'Connor, 2020-04-02 Data in the genomics field is booming. In just a few years, organizations such as the National Institutes of Health (NIH) will host 50+ petabytesâ??or over 50 million gigabytesâ??of genomic data, and theyâ??re turning to cloud infrastructure to make that data available to the research community. How do you adapt analysis tools and protocols to access and analyze that volume of data in the cloud? With this practical book, researchers will learn how to work with genomics algorithms using open source tools including the Genome Analysis Toolkit (GATK), Docker, WDL, and Terra. Geraldine Van der Auwera, longtime custodian of the GATK user community, and Brian Oâ??Connor of the UC Santa Cruz Genomics Institute, guide you through the process. Youâ??ll learn by working with real data and genomics algorithms from the field. This book covers: Essential genomics and computing technology background Basic cloud computing operations Getting started with GATK, plus three major GATK Best Practices pipelines Automating analysis with scripted workflows using WDL and Cromwell Scaling up workflow execution in the cloud, including parallelization and cost optimization Interactive analysis in the cloud using Jupyter notebooks Secure collaboration and computational reproducibility using Terra
  data science at the command line: Introducing Data Science Davy Cielen, Arno Meysman, 2016-05-02 Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user
  data science at the command line: Building Data Science Teams DJ Patil, 2011-09-15 As data science evolves to become a business necessity, the importance of assembling a strong and innovative data teams grows. In this in-depth report, data scientist DJ Patil explains the skills, perspectives, tools and processes that position data science teams for success. Topics include: What it means to be data driven. The unique roles of data scientists. The four essential qualities of data scientists. Patil's first-hand experience building the LinkedIn data science team.
  data science at the command line: Data Science Projects with Python Stephen Klosterman, 2019-04-30 Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful.
  data science at the command line: Hands-On Data Science with the Command Line Jason Morris, Chris McCubbin, Raymond Page, 2019-01-31 Big data processing and analytics at speed and scale using command line tools. Key FeaturesPerform string processing, numerical computations, and more using CLI toolsUnderstand the essential components of data science development workflowAutomate data pipeline scripts and visualization with the command lineBook Description The Command Line has been in existence on UNIX-based OSes in the form of Bash shell for over 3 decades. However, very little is known to developers as to how command-line tools can be OSEMN (pronounced as awesome and standing for Obtaining, Scrubbing, Exploring, Modeling, and iNterpreting data) for carrying out simple-to-advanced data science tasks at speed. This book will start with the requisite concepts and installation steps for carrying out data science tasks using the command line. You will learn to create a data pipeline to solve the problem of working with small-to medium-sized files on a single machine. You will understand the power of the command line, learn how to edit files using a text-based and an. You will not only learn how to automate jobs and scripts, but also learn how to visualize data using the command line. By the end of this book, you will learn how to speed up the process and perform automated tasks using command-line tools. What you will learnUnderstand how to set up the command line for data scienceUse AWK programming language commands to search quickly in large datasets.Work with files and APIs using the command lineShare and collect data with CLI toolsPerform visualization with commands and functionsUncover machine-level programming practices with a modern approach to data scienceWho this book is for This book is for data scientists and data analysts with little to no knowledge of the command line but has an understanding of data science. Perform everyday data science tasks using the power of command line tools.
  data science at the command line: Pragmatic AI Noah Gift, 2018-07-12 Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value. Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need Quickly review all the Python you need to start building machine learning applications Master the AI and ML toolchain and project lifecycle Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more Work with Microsoft Azure AI APIs Walk through building six real-world AI applications, from start to finish Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
  data science at the command line: R Programming for Data Science Roger D. Peng, 2012-04-19 Data science has taken the world by storm. Every field of study and area of business has been affected as people increasingly realize the value of the incredible quantities of data being generated. But to extract value from those data, one needs to be trained in the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming. You will get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. With the fundamentals provided in this book, you will have a solid foundation on which to build your data science toolbox.
  data science at the command line: The Hitchhiker's Guide to Python Kenneth Reitz, Tanya Schlusser, 2016-08-30 The Hitchhiker's Guide to Python takes the journeyman Pythonista to true expertise. More than any other language, Python was created with the philosophy of simplicity and parsimony. Now 25 years old, Python has become the primary or secondary language (after SQL) for many business users. With popularity comes diversityâ??and possibly dilution. This guide, collaboratively written by over a hundred members of the Python community, describes best practices currently used by package and application developers. Unlike other books for this audience, The Hitchhikerâ??s Guide is light on reusable code and heavier on design philosophy, directing the reader to excellent sources that already exist.
  data science at the command line: Agile Data Science 2.0 Russell Jurney, 2017-06-07 Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track
  data science at the command line: Bash Command Line and Shell Scripts Pocket Primer Oswald Campesato, 2020-05-28 As part of the best-selling Pocket Primer series, this book is designed to introduce readers to an assortment of useful command-line utilities that can be combined to create simple, yet powerful shell scripts. While all examples and scripts use the “bash” command set, many of the concepts translate into other command shells (such as sh, ksh, zsh, and csh), including the concept of piping data between commands and the highly versatile sed and awk commands. Aimed at a reader relatively new to working in a bash environment, the book is comprehensive enough to be a good reference and teach a few new techniques to those who already have some experience with creating shell scripts. It contains a variety of code fragments and shell scripts for data scientists, data analysts, and other people who want shell-based solutions to “clean” various types of text files. In addition, the concepts and code samples in this book are useful for people who want to simplify routine tasks. Includes companion files with all of the source code examples (download from the publisher by writing to info@merclearning.com). Features: Takes introductory concepts and commands in bash, and then demonstrates their uses in simple, yet powerful shell scripts Contains an assortment of shell scripts for data scientists, data analysts, and other people who want shell-based solutions to “clean” various types of text files Includes companion files with all of the source code examples (available for download from the publisher)
  data science at the command line: Forecasting: principles and practice Rob J Hyndman, George Athanasopoulos, 2018-05-08 Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
  data science at the command line: Getting Started with Streamlit for Data Science Tyler Richards, 2021-08-20 Create, deploy, and test your Python applications, analyses, and models with ease using Streamlit Key Features Learn how to showcase machine learning models in a Streamlit application effectively and efficiently Become an expert Streamlit creator by getting hands-on with complex application creation Discover how Streamlit enables you to create and deploy apps effortlessly Book DescriptionStreamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time. You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you’ll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps. By the end of this book, you’ll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python.What you will learn Set up your first development environment and create a basic Streamlit app from scratch Explore methods for uploading, downloading, and manipulating data in Streamlit apps Create dynamic visualizations in Streamlit using built-in and imported Python libraries Discover strategies for creating and deploying machine learning models in Streamlit Use Streamlit sharing for one-click deployment Beautify Streamlit apps using themes, Streamlit Components, and Streamlit sidebar Implement best practices for prototyping your data science work with Streamlit Who this book is for This book is for data scientists and machine learning enthusiasts who want to create web apps using Streamlit. Whether you’re a junior data scientist looking to deploy your first machine learning project in Python to improve your resume or a senior data scientist who wants to use Streamlit to make convincing and dynamic data analyses, this book will help you get there! Prior knowledge of Python programming will assist with understanding the concepts covered.
  data science at the command line: Pandas for Everyone Daniel Y. Chen, 2017-12-15 The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …