Example Of Conclusion In Science

Advertisement



  example of conclusion in science: Reproducibility and Replicability in Science National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Committee on Science, Engineering, Medicine, and Public Policy, Board on Research Data and Information, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Division on Earth and Life Studies, Nuclear and Radiation Studies Board, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Board on Behavioral, Cognitive, and Sensory Sciences, Committee on Reproducibility and Replicability in Science, 2019-10-20 One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
  example of conclusion in science: Mathematics and Science Education Around the World National Research Council, Division of Behavioral and Social Sciences and Education, Mathematical Sciences Education Board, Board on Science Education, Mathematical Sciences Education Board and Committee on Science Education K-12, 1996-10-18 Amid current efforts to improve mathematics and science education in the United States, people often ask how these subjects are organized and taught in other countries. They hear repeatedly that other countries produce higher student achievement. Teachers and parents wonder about the answers to questions like these: Why do the children in Asian cultures seem to be so good at science and mathematics? How are biology and physics taught in the French curriculum? What are textbooks like elsewhere, and how much latitude do teachers have in the way they follow the texts? Do all students receive the same education, or are they grouped by ability or perceived educational promise? If students are grouped, how early is this done? What are tests like, and what are the consequences for students? Are other countries engaged in Standards-like reforms? Does anything like standards play a role in other countries? Questions such as these reflect more than a casual interest in other countries' educational practices. They grow out of an interest in identifying ways to improve mathematics and science education in the United States. The focus of this short report is on what the Third International Mathematics and Science Study (TIMSS), a major international investigation of curriculum, instruction, and learning in mathematics and science, will be able to contribute to understandings of mathematics and science education around the world as well as to current efforts to improve student learning, particularly in the United States.
  example of conclusion in science: Janice VanCleave's Great Science Project Ideas from Real Kids Janice VanCleave, 2006-10-20 There's plenty for you to choose from in this collection of forty terrific science project ideas from real kids, chosen by well-known children's science writer Janice VanCleave. Developing your own science project requires planning, research, and lots of hard work. This book saves you time and effort by showing you how to develop your project from start to finish and offering useful design and presentation techniques. Projects are in an easy-to-follow format, use easy-to-find materials, and include dozens illustrations and diagrams that show you what kinds of charts and graphs to include in your science project and how to set up your project display. You’ll also find clear scientific explanations, tips for developing your own unique science project, and 100 additional ideas for science projects in all science categories.
  example of conclusion in science: Concepts of Biology Samantha Fowler, Rebecca Roush, James Wise, 2023-05-12 Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
  example of conclusion in science: How People Learn National Research Council, Division of Behavioral and Social Sciences and Education, Board on Behavioral, Cognitive, and Sensory Sciences, Committee on Developments in the Science of Learning with additional material from the Committee on Learning Research and Educational Practice, 2000-08-11 First released in the Spring of 1999, How People Learn has been expanded to show how the theories and insights from the original book can translate into actions and practice, now making a real connection between classroom activities and learning behavior. This edition includes far-reaching suggestions for research that could increase the impact that classroom teaching has on actual learning. Like the original edition, this book offers exciting new research about the mind and the brain that provides answers to a number of compelling questions. When do infants begin to learn? How do experts learn and how is this different from non-experts? What can teachers and schools do-with curricula, classroom settings, and teaching methodsâ€to help children learn most effectively? New evidence from many branches of science has significantly added to our understanding of what it means to know, from the neural processes that occur during learning to the influence of culture on what people see and absorb. How People Learn examines these findings and their implications for what we teach, how we teach it, and how we assess what our children learn. The book uses exemplary teaching to illustrate how approaches based on what we now know result in in-depth learning. This new knowledge calls into question concepts and practices firmly entrenched in our current education system. Topics include: How learning actually changes the physical structure of the brain. How existing knowledge affects what people notice and how they learn. What the thought processes of experts tell us about how to teach. The amazing learning potential of infants. The relationship of classroom learning and everyday settings of community and workplace. Learning needs and opportunities for teachers. A realistic look at the role of technology in education.
  example of conclusion in science: Conducting Biosocial Surveys National Research Council, Division of Behavioral and Social Sciences and Education, Committee on Population, Committee on National Statistics, Panel on Collecting, Storing, Accessing, and Protecting Biological Specimens and Biodata in Social Surveys, 2010-10-02 Recent years have seen a growing tendency for social scientists to collect biological specimens such as blood, urine, and saliva as part of large-scale household surveys. By combining biological and social data, scientists are opening up new fields of inquiry and are able for the first time to address many new questions and connections. But including biospecimens in social surveys also adds a great deal of complexity and cost to the investigator's task. Along with the usual concerns about informed consent, privacy issues, and the best ways to collect, store, and share data, researchers now face a variety of issues that are much less familiar or that appear in a new light. In particular, collecting and storing human biological materials for use in social science research raises additional legal, ethical, and social issues, as well as practical issues related to the storage, retrieval, and sharing of data. For example, acquiring biological data and linking them to social science databases requires a more complex informed consent process, the development of a biorepository, the establishment of data sharing policies, and the creation of a process for deciding how the data are going to be shared and used for secondary analysis-all of which add cost to a survey and require additional time and attention from the investigators. These issues also are likely to be unfamiliar to social scientists who have not worked with biological specimens in the past. Adding to the attraction of collecting biospecimens but also to the complexity of sharing and protecting the data is the fact that this is an era of incredibly rapid gains in our understanding of complex biological and physiological phenomena. Thus the tradeoffs between the risks and opportunities of expanding access to research data are constantly changing. Conducting Biosocial Surveys offers findings and recommendations concerning the best approaches to the collection, storage, use, and sharing of biospecimens gathered in social science surveys and the digital representations of biological data derived therefrom. It is aimed at researchers interested in carrying out such surveys, their institutions, and their funding agencies.
  example of conclusion in science: Statistics Done Wrong Alex Reinhart, 2015-03-01 Scientific progress depends on good research, and good research needs good statistics. But statistical analysis is tricky to get right, even for the best and brightest of us. You'd be surprised how many scientists are doing it wrong. Statistics Done Wrong is a pithy, essential guide to statistical blunders in modern science that will show you how to keep your research blunder-free. You'll examine embarrassing errors and omissions in recent research, learn about the misconceptions and scientific politics that allow these mistakes to happen, and begin your quest to reform the way you and your peers do statistics. You'll find advice on: –Asking the right question, designing the right experiment, choosing the right statistical analysis, and sticking to the plan –How to think about p values, significance, insignificance, confidence intervals, and regression –Choosing the right sample size and avoiding false positives –Reporting your analysis and publishing your data and source code –Procedures to follow, precautions to take, and analytical software that can help Scientists: Read this concise, powerful guide to help you produce statistically sound research. Statisticians: Give this book to everyone you know. The first step toward statistics done right is Statistics Done Wrong.
  example of conclusion in science: Science Literacy National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Committee on Science Literacy and Public Perception of Science, 2016-11-14 Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to scienceâ€whether using knowledge or creating itâ€necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary definitions of science literacy have expanded to include understandings of scientific processes and practices, familiarity with how science and scientists work, a capacity to weigh and evaluate the products of science, and an ability to engage in civic decisions about the value of science. Although science literacy has traditionally been seen as the responsibility of individuals, individuals are nested within communities that are nested within societiesâ€and, as a result, individual science literacy is limited or enhanced by the circumstances of that nesting. Science Literacy studies the role of science literacy in public support of science. This report synthesizes the available research literature on science literacy, makes recommendations on the need to improve the understanding of science and scientific research in the United States, and considers the relationship between scientific literacy and support for and use of science and research.
  example of conclusion in science: Science, Medicine, and Animals Committee on the Use of Animals in Research (U.S.), Institute of Medicine (U.S.), 1991 The necessity for animal use in biomedical research is a hotly debated topic in classrooms throughout the country. Frequently teachers and students do not have access to balanced,  factual material to foster an informed discussion on the topic. This colorful, 50-page booklet is designed to educate teenagers about the role of animal research in combating disease, past and present; the perspective of animal use within the whole spectrum of biomedical research; the regulations and oversight that govern animal research; and the continuing efforts to use animals more efficiently and humanely.
  example of conclusion in science: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
  example of conclusion in science: Attribution of Extreme Weather Events in the Context of Climate Change National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Board on Atmospheric Sciences and Climate, Committee on Extreme Weather Events and Climate Change Attribution, 2016-07-28 As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.
  example of conclusion in science: Lab Reports and Science Books Lucy Calkins, Lauren Kolbeck, Monique Knight, 2013
  example of conclusion in science: A Research Agenda for Transforming Separation Science National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Board on Chemical Sciences and Technology, Committee on a Research Agenda for a New Era in Separation Science, 2019-10-30 Separation science plays a critical role in maintaining our standard of living and quality of life. Many industrial processes and general necessities such as chemicals, medicines, clean water, safe food, and energy sources rely on chemical separations. However, the process of chemical separations is often overlooked during product development and this has led to inefficiency, unnecessary waste, and lack of consensus among chemists and engineers. A reevaluation of system design, establishment of standards, and an increased focus on the advancement of separation science are imperative in supporting increased efficiency, continued U.S. manufacturing competitiveness, and public welfare. A Research Agenda for Transforming Separation Science explores developments in the industry since the 1987 National Academies report, Separation and Purification: Critical Needs and Opportunities. Many needs stated in the original report remain today, in addition to a variety of new challenges due to improved detection limits, advances in medicine, and a recent emphasis on sustainability and environmental stewardship. This report examines emerging chemical separation technologies, relevant developments in intersecting disciplines, and gaps in existing research, and provides recommendations for the application of improved separation science technologies and processes. This research serves as a foundation for transforming separation science, which could reduce global energy use, improve human and environmental health, and advance more efficient practices in various industries.
  example of conclusion in science: From Scarcity to Visibility National Research Council, Policy and Global Affairs, Committee on Women in Science and Engineering, Panel for the Study of Gender Differences in the Career Outcomes of Science and Engineering Ph.D.s, 2001-11-16 Although women have made important inroads in science and engineering since the early 1970s, their progress in these fields has stalled over the past several years. This study looks at women in science and engineering careers in the 1970s and 1980s, documenting differences in career outcomes between men and women and between women of different races and ethnic backgrounds. The panel presents what is known about the following questions and explores their policy implications: In what sectors are female Ph.D.s employed? What salary disparities exist between men and women in these fields? How is marital status associated with career attainment? Does it help a career to have a postdoctoral appointment? How well are female scientists and engineers represented in management? Within the broader context of education and the labor market, the book provides detailed comparisons between men and women Ph.D.s in a number of measures: financial support for education, academic rank achieved, salary, and others. The study covers engineering; the mathematical, physical, life, and social and behavioral sciences; medical school faculty; and recipients of National Institutes of Health grants. Findings and recommendations in this volume will be of interest to practitioners, faculty, and students in science and engineering as well as education administrators, employers, and researchers in these fields.
  example of conclusion in science: Delta Wedding Eudora Welty, 1979-03-21 This novel of a Mississippi family in the 1920s “presents the essence of the Deep South and does it with infinite finesse” (The Christian Science Monitor). From one of the most treasured American writers, winner of a National Book Award and Pulitzer Prize, comes Delta Wedding, a vivid and charming portrait of Southern life. Set in 1923, the story is centered on the Fairchilds, a big and clamorous family, who live on a plantation in the Mississippi delta. They are in the midst of planning their daughter’s wedding when a nine-year-old relative, Laura McRaven, whose mother has just died, comes to visit. Drama leads to drama, revelation to revelation, in a novel that is “nothing short of wonderful” (The New Yorker). The result is a sometimes-riotous view of a Southern family, and the parentless child who learns to become one of them.
  example of conclusion in science: Development Research in Practice Kristoffer Bjärkefur, Luíza Cardoso de Andrade, Benjamin Daniels, Maria Ruth Jones, 2021-07-16 Development Research in Practice leads the reader through a complete empirical research project, providing links to continuously updated resources on the DIME Wiki as well as illustrative examples from the Demand for Safe Spaces study. The handbook is intended to train users of development data how to handle data effectively, efficiently, and ethically. “In the DIME Analytics Data Handbook, the DIME team has produced an extraordinary public good: a detailed, comprehensive, yet easy-to-read manual for how to manage a data-oriented research project from beginning to end. It offers everything from big-picture guidance on the determinants of high-quality empirical research, to specific practical guidance on how to implement specific workflows—and includes computer code! I think it will prove durably useful to a broad range of researchers in international development and beyond, and I learned new practices that I plan on adopting in my own research group.†? —Marshall Burke, Associate Professor, Department of Earth System Science, and Deputy Director, Center on Food Security and the Environment, Stanford University “Data are the essential ingredient in any research or evaluation project, yet there has been too little attention to standardized practices to ensure high-quality data collection, handling, documentation, and exchange. Development Research in Practice: The DIME Analytics Data Handbook seeks to fill that gap with practical guidance and tools, grounded in ethics and efficiency, for data management at every stage in a research project. This excellent resource sets a new standard for the field and is an essential reference for all empirical researchers.†? —Ruth E. Levine, PhD, CEO, IDinsight “Development Research in Practice: The DIME Analytics Data Handbook is an important resource and a must-read for all development economists, empirical social scientists, and public policy analysts. Based on decades of pioneering work at the World Bank on data collection, measurement, and analysis, the handbook provides valuable tools to allow research teams to more efficiently and transparently manage their work flows—yielding more credible analytical conclusions as a result.†? —Edward Miguel, Oxfam Professor in Environmental and Resource Economics and Faculty Director of the Center for Effective Global Action, University of California, Berkeley “The DIME Analytics Data Handbook is a must-read for any data-driven researcher looking to create credible research outcomes and policy advice. By meticulously describing detailed steps, from project planning via ethical and responsible code and data practices to the publication of research papers and associated replication packages, the DIME handbook makes the complexities of transparent and credible research easier.†? —Lars Vilhuber, Data Editor, American Economic Association, and Executive Director, Labor Dynamics Institute, Cornell University
  example of conclusion in science: Scientific Explanation Philip Kitcher, Wesley C. Salmon, 1962-05-25 Scientific Explanation was first published in 1962. Minnesota Archive Editions uses digital technology to make long-unavailable books once again accessible, and are published unaltered from the original University of Minnesota Press editions. Is a new consensus emerging in the philosophy of science? The nine distinguished contributors to this volume apply that question to the realm of scientific explanation and, although their conclusions vary, they agree in one respect: there definitely was an old consensus. Co-editor Wesley Salmon's opening essay, Four Decades of Scientific Explanation, grounds the entire discussion. His point of departure is the founding document of the old consensus: a 1948 paper by Carl G. Hempel and Paul Oppenheim, Studies in the Logic of Explanation, that set forth, with remarkable clarity, a mode of argument that came to be known as the deductive-nomological model. This approach, holding that explanation dies not move beyond the sphere of empirical knowledge, remained dominant during the hegemony of logical empiricism from 1950 to 1975. Salmon traces in detail the rise and breakup of the old consensus, and examines the degree to which there is, if not a new consensus, at least a kind of reconciliation on this issue among contemporary philosophers of science and clear agreement that science can indeed tell us why. The other contributors, in the order of their presentations, are: Peter Railton, Matti Sintonen, Paul W. Humphreys, David Papineau, Nancy Cartwright, James Woodward, Merrilee H. Salmon, and Philip Kitcher.
  example of conclusion in science: Interview Research in Political Science Maria Elayna Mosley, 2013-05-15 Interviews are a frequent and important part of empirical research in political science, but graduate programs rarely offer discipline-specific training in selecting interviewees, conducting interviews, and using the data thus collected. Interview Research in Political Science addresses this vital need, offering hard-won advice for both graduate students and faculty members. The contributors to this book have worked in a variety of field locations and settings and have interviewed a wide array of informants, from government officials to members of rebel movements and victims of wartime violence, from lobbyists and corporate executives to workers and trade unionists. The authors encourage scholars from all subfields of political science to use interviews in their research, and they provide a set of lessons and tools for doing so. The book addresses how to construct a sample of interviewees; how to collect and report interview data; and how to address ethical considerations and the Institutional Review Board process. Other chapters discuss how to link interview-based evidence with causal claims; how to use proxy interviews or an interpreter to improve access; and how to structure interview questions. A useful appendix contains examples of consent documents, semistructured interview prompts, and interview protocols.
  example of conclusion in science: Science and Engineering for Grades 6-12 National Academies of Sciences, Engineering, and Medicine (U.S.). Committee on Science Investigations and Engineering Design Experiences in Grades 6-12, National Academies of Sciences, Engineering, and Medicine (U.S.). Board on Science Education, National Academies of Sciences, Engineering, and Medicine (U.S.). Division of Behavioral and Social Sciences and Education, National Academy of Engineering, 2018 Students learn by doing. Science investigation and engineering design provide an opportunity for students to do. When students engage in science investigation and engineering design, they are able to engage deeply with phenomena as they ask questions, collect and analyze data, generate and utilize evidence, and develop models to support explanations and solutions. Research studies demonstrate that deeper engagement leads to stronger conceptual understandings of science content than what is demonstrated through more traditional, memorization-intensive approaches. Investigations provide the evidence student need to construct explanations for the causes of phenomena. Constructing understanding by actively engaging in investigation and design also creates meaningful and memorable learning experiences for all students. These experiences pique students' curiosity and lead to greater interest and identity in science--Preface.
  example of conclusion in science: Objectivity: A Very Short Introduction Stephen Gaukroger, 2012-05-24 - Is objectivity possible? - Can there be objectivity in matters of morals, or tastes? - What would a truly objective account of the world be like? - Is everything subjective, or relative? - Are moral judgments objective or culturally relative? Objectivity is both an essential and elusive philosophical concept. An account is generally considered to be objective if it attempts to capture the nature of the object studied without judgement of a conscious entity or subject. Objectivity stands in contrast to subjectivity: an objective account is impartial, one which could ideally be accepted by any subject, because it does not draw on any assumptions, prejudices, or values of particular subjects. Stephen Gaukroger shows that it is far from clear that we can resolve moral or aesthetic disputes in this way and it has often been argued that such an approach is not always appropriate for disciplines that deal with human, rather than natural, phenomena. Moreover, even in those cases where we seek to be objective, it may be difficult to judge what a truly objective account would look like, and whether it is achievable. This Very Short Introduction demonstrates that there are a number of common misunderstandings about what objectivity is, and explores the theoretical and practical problems of objectivity by assessing the basic questions raised by it. As well as considering the core philosophical issues, Gaukroger also deals with the way in which particular understandings of objectivity impinge on social research, science, and art. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
  example of conclusion in science: A Framework for K-12 Science Education National Research Council, Division of Behavioral and Social Sciences and Education, Board on Science Education, Committee on a Conceptual Framework for New K-12 Science Education Standards, 2012-02-28 Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
  example of conclusion in science: Communicating Science Effectively National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Committee on the Science of Science Communication: A Research Agenda, 2017-03-08 Science and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances are not obvious. Fortunately, there is an expanding science base from diverse disciplines that can support science communicators in making these determinations. Communicating Science Effectively offers a research agenda for science communicators and researchers seeking to apply this research and fill gaps in knowledge about how to communicate effectively about science, focusing in particular on issues that are contentious in the public sphere. To inform this research agenda, this publication identifies important influences †psychological, economic, political, social, cultural, and media-related †on how science related to such issues is understood, perceived, and used.
  example of conclusion in science: Science And Human Behavior B.F Skinner, 2012-12-18 The psychology classic—a detailed study of scientific theories of human nature and the possible ways in which human behavior can be predicted and controlled—from one of the most influential behaviorists of the twentieth century and the author of Walden Two. “This is an important book, exceptionally well written, and logically consistent with the basic premise of the unitary nature of science. Many students of society and culture would take violent issue with most of the things that Skinner has to say, but even those who disagree most will find this a stimulating book.” —Samuel M. Strong, The American Journal of Sociology “This is a remarkable book—remarkable in that it presents a strong, consistent, and all but exhaustive case for a natural science of human behavior…It ought to be…valuable for those whose preferences lie with, as well as those whose preferences stand against, a behavioristic approach to human activity.” —Harry Prosch, Ethics
  example of conclusion in science: Social Science Research Anol Bhattacherjee, 2012-04-01 This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.
  example of conclusion in science: How to Practice Academic Medicine and Publish from Developing Countries? Samiran Nundy, Atul Kakar, Zulfiqar A. Bhutta, 2021-10-23 This is an open access book. The book provides an overview of the state of research in developing countries – Africa, Latin America, and Asia (especially India) and why research and publications are important in these regions. It addresses budding but struggling academics in low and middle-income countries. It is written mainly by senior colleagues who have experienced and recognized the challenges with design, documentation, and publication of health research in the developing world. The book includes short chapters providing insight into planning research at the undergraduate or postgraduate level, issues related to research ethics, and conduct of clinical trials. It also serves as a guide towards establishing a research question and research methodology. It covers important concepts such as writing a paper, the submission process, dealing with rejection and revisions, and covers additional topics such as planning lectures and presentations. The book will be useful for graduates, postgraduates, teachers as well as physicians and practitioners all over the developing world who are interested in academic medicine and wish to do medical research.
  example of conclusion in science: Laboratory Life Bruno Latour, Steve Woolgar, 2013-04-04 This highly original work presents laboratory science in a deliberately skeptical way: as an anthropological approach to the culture of the scientist. Drawing on recent work in literary criticism, the authors study how the social world of the laboratory produces papers and other texts,' and how the scientific vision of reality becomes that set of statements considered, for the time being, too expensive to change. The book is based on field work done by Bruno Latour in Roger Guillemin's laboratory at the Salk Institute and provides an important link between the sociology of modern sciences and laboratory studies in the history of science.
  example of conclusion in science: High-School Biology Today and Tomorrow National Research Council, Division on Earth and Life Studies, Commission on Life Sciences, Committee on High-School Biology Education, 1989-02-01 Biology is where many of science's most exciting and relevant advances are taking place. Yet, many students leave school without having learned basic biology principles, and few are excited enough to continue in the sciences. Why is biology education failing? How can reform be accomplished? This book presents information and expert views from curriculum developers, teachers, and others, offering suggestions about major issues in biology education: what should we teach in biology and how should it be taught? How can we measure results? How should teachers be educated and certified? What obstacles are blocking reform?
  example of conclusion in science: Monte Carlo Simulation Christopher Z. Mooney, 1997-04-07 Aimed at researchers across the social sciences, this book explains the logic behind the Monte Carlo simulation method and demonstrates its uses for social and behavioural research.
  example of conclusion in science: Information Technology and the U.S. Workforce National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Committee on Information Technology, Automation, and the U.S. Workforce, 2017-04-18 Recent years have yielded significant advances in computing and communication technologies, with profound impacts on society. Technology is transforming the way we work, play, and interact with others. From these technological capabilities, new industries, organizational forms, and business models are emerging. Technological advances can create enormous economic and other benefits, but can also lead to significant changes for workers. IT and automation can change the way work is conducted, by augmenting or replacing workers in specific tasks. This can shift the demand for some types of human labor, eliminating some jobs and creating new ones. Information Technology and the U.S. Workforce explores the interactions between technological, economic, and societal trends and identifies possible near-term developments for work. This report emphasizes the need to understand and track these trends and develop strategies to inform, prepare for, and respond to changes in the labor market. It offers evaluations of what is known, notes open questions to be addressed, and identifies promising research pathways moving forward.
  example of conclusion in science: Logically Fallacious Bo Bennett, 2012-02-19 This book is a crash course in effective reasoning, meant to catapult you into a world where you start to see things how they really are, not how you think they are. The focus of this book is on logical fallacies, which loosely defined, are simply errors in reasoning. With the reading of each page, you can make significant improvements in the way you reason and make decisions. Logically Fallacious is one of the most comprehensive collections of logical fallacies with all original examples and easy to understand descriptions, perfect for educators, debaters, or anyone who wants to improve his or her reasoning skills. Expose an irrational belief, keep a person rational for a day. Expose irrational thinking, keep a person rational for a lifetime. - Bo Bennett This 2021 Edition includes dozens of more logical fallacies with many updated examples.
  example of conclusion in science: Bartholomew and the Oobleck Dr. Seuss, 2013-11-05 Join Bartholomew Cubbins in Dr. Seuss’s Caldecott Honor–winning picture book about a king’s magical mishap! Bored with rain, sunshine, fog, and snow, King Derwin of Didd summons his royal magicians to create something new and exciting to fall from the sky. What he gets is a storm of sticky green goo called Oobleck—which soon wreaks havock all over his kingdom! But with the assistance of the wise page boy Bartholomew, the king (along with young readers) learns that the simplest words can sometimes solve the stickiest problems.
  example of conclusion in science: The Great Mental Models, Volume 1 Shane Parrish, Rhiannon Beaubien, 2024-10-15 Discover the essential thinking tools you’ve been missing with The Great Mental Models series by Shane Parrish, New York Times bestselling author and the mind behind the acclaimed Farnam Street blog and “The Knowledge Project” podcast. This first book in the series is your guide to learning the crucial thinking tools nobody ever taught you. Time and time again, great thinkers such as Charlie Munger and Warren Buffett have credited their success to mental models–representations of how something works that can scale onto other fields. Mastering a small number of mental models enables you to rapidly grasp new information, identify patterns others miss, and avoid the common mistakes that hold people back. The Great Mental Models: Volume 1, General Thinking Concepts shows you how making a few tiny changes in the way you think can deliver big results. Drawing on examples from history, business, art, and science, this book details nine of the most versatile, all-purpose mental models you can use right away to improve your decision making and productivity. This book will teach you how to: Avoid blind spots when looking at problems. Find non-obvious solutions. Anticipate and achieve desired outcomes. Play to your strengths, avoid your weaknesses, … and more. The Great Mental Models series demystifies once elusive concepts and illuminates rich knowledge that traditional education overlooks. This series is the most comprehensive and accessible guide on using mental models to better understand our world, solve problems, and gain an advantage.
  example of conclusion in science: Biotechnology Research in an Age of Terrorism National Research Council, Policy and Global Affairs, Development, Security, and Cooperation, Committee on Research Standards and Practices to Prevent the Destructive Application of Biotechnology, 2004-03-02 In recent years much has happened to justify an examination of biological research in light of national security concerns. The destructive application of biotechnology research includes activities such as spreading common pathogens or transforming them into even more lethal forms. Policymakers and the scientific community at large must put forth a vigorous and immediate response to this challenge. This new book by the National Research Council recommends that the government expand existing regulations and rely on self-governance by scientists rather than adopt intrusive new policies. One key recommendation of the report is that the government should not attempt to regulate scientific publishing but should trust scientists and journals to screen their papers for security risks, a task some journals have already taken up. With biological information and tools widely distributed, regulating only U.S. researchers would have little effect. A new International Forum on Biosecurity should encourage the adoption of similar measures around the world. Seven types of risky studies would require approval by the Institutional Biosafety Committees that already oversee recombinant DNA research at some 400 U.S. institutions. These experiments of concern include making an infectious agent more lethal and rendering vaccines powerless.
  example of conclusion in science: Decentralization on the Example of the Yemeni Water Sector Katharina Mewes, 2011-04-22 Decentralization is widely discussed in the literature. Katharina Mewes gives an introduction to the theoretical and practical dimensions of decentralization in an accessible and systematic way. On the example of the reform process for the Yemeni Urban Water Supply and Sanitation (UWSS) sector, she links the theoretical, conceptual, and methodological aspects of decentralization to empiric problems. This book is valuable reading for researchers and students of political science, environmental and water studies, development researchers and regional experts.
  example of conclusion in science: Epidemiology Matters Katherine M. Keyes, Sandro Galea, 2014 Epidemiology Matters offers a new approach to understanding and identifying the causes of disease -- and with it, how to prevent disease and improve human health. Utilizing visual explanations and examples, this text provides an accessible, step-by-step introduction to the fundamentals of epidemiologic study, from design to analysis. Across fourteen chapters, Epidemiology Matters teaches the individual competencies that underlie the conduct of an epidemiologic study: identifying populations; measuring exposures and health indicators; taking a sample; estimating associations between exposures and health indicators; assessing evidence for causes working together; assessing internal and external validity of results. With its consequentialist approach -- designing epidemiologic studies that aim to inform our understanding, and therefore improve public health -- Epidemiology Matters is an introductory text for the next generation of students in medicine and public health.
  example of conclusion in science: Enhancing the Effectiveness of Team Science National Research Council, Division of Behavioral and Social Sciences and Education, Board on Behavioral, Cognitive, and Sensory Sciences, Committee on the Science of Team Science, 2015-07-15 The past half-century has witnessed a dramatic increase in the scale and complexity of scientific research. The growing scale of science has been accompanied by a shift toward collaborative research, referred to as team science. Scientific research is increasingly conducted by small teams and larger groups rather than individual investigators, but the challenges of collaboration can slow these teams' progress in achieving their scientific goals. How does a team-based approach work, and how can universities and research institutions support teams? Enhancing the Effectiveness of Team Science synthesizes and integrates the available research to provide guidance on assembling the science team; leadership, education and professional development for science teams and groups. It also examines institutional and organizational structures and policies to support science teams and identifies areas where further research is needed to help science teams and groups achieve their scientific and translational goals. This report offers major public policy recommendations for science research agencies and policymakers, as well as recommendations for individual scientists, disciplinary associations, and research universities. Enhancing the Effectiveness of Team Science will be of interest to university research administrators, team science leaders, science faculty, and graduate and postdoctoral students.
  example of conclusion in science: The Age of the Gas Mask Susan R. Grayzel, 2022-08-11 The First World War introduced the widespread use of lethal chemical weapons. In its aftermath, the British government, like that of many states, had to prepare civilians to confront such weapons in a future war. Over the course of the interwar period, it developed individual anti-gas protection as a cornerstone of civil defence. Susan R. Grayzel traces the fascinating history of one object – the civilian gas mask – through the years 1915–1945 and, in so doing, reveals the reach of modern, total war and the limits of the state trying to safeguard civilian life in an extensive empire. Drawing on records from Britain's Colonial, Foreign, War and Home Offices and other archives alongside newspapers, journals, personal accounts and cultural sources, she connects the histories of the First and Second World Wars, combatants and civilians, men and women, metropole and colony, illuminating how new technologies of warfare shaped culture, politics, and society.
  example of conclusion in science: The Primary Science and Technology Encyclopedia Christopher Collier, Dan Davies, Alan Howe, Kendra McMahon, 2010-12-13 The book provides clear descriptions, definitions and explanations of difficult scientific concepts, carefully chosen to reflect the needs of those involved in primary science education.
  example of conclusion in science: The Popular Science Monthly , 1888
  example of conclusion in science: International Encyclopedia of Unified Science Otto Neurath, 1938
EXAMPLE Definition & Meaning - Merriam-Webster
The meaning of EXAMPLE is one that serves as a pattern to be imitated or not to be imitated. How to use example in a sentence. Synonym Discussion of Example.

EXAMPLE | English meaning - Cambridge Dictionary
EXAMPLE definition: 1. something that is typical of the group of things that it is a member of: 2. a way of helping…. Learn more.

EXAMPLE Definition & Meaning | Dictionary.com
one of a number of things, or a part of something, taken to show the character of the whole. This painting is an example of his early work. a pattern or model, as of something to be imitated or …

Example - definition of example by The Free Dictionary
1. one of a number of things, or a part of something, taken to show the character of the whole. 2. a pattern or model, as of something to be imitated or avoided: to set a good example. 3. an …

Example Definition & Meaning - YourDictionary
To be illustrated or exemplified (by). Wear something simple; for example, a skirt and blouse.

EXAMPLE - Meaning & Translations | Collins English Dictionary
An example of something is a particular situation, object, or person which shows that what is being claimed is true. 2. An example of a particular class of objects or styles is something that …

example noun - Definition, pictures, pronunciation and usage …
used to emphasize something that explains or supports what you are saying; used to give an example of what you are saying. There is a similar word in many languages, for example in …

Example - Definition, Meaning & Synonyms - Vocabulary.com
An example is a particular instance of something that is representative of a group, or an illustration of something that's been generally described. Example comes from the Latin word …

example - definition and meaning - Wordnik
noun Something that serves as a pattern of behaviour to be imitated (a good example) or not to be imitated (a bad example). noun A person punished as a warning to others. noun A parallel …

EXAMPLE Synonyms: 20 Similar Words - Merriam-Webster
Some common synonyms of example are case, illustration, instance, sample, and specimen. While all these words mean "something that exhibits distinguishing characteristics in its …

EXAMPLE Definition & Meaning - Merriam-Webster
The meaning of EXAMPLE is one that serves as a pattern to be imitated or not to be imitated. How to use example in a sentence. Synonym Discussion of Example.

EXAMPLE | English meaning - Cambridge Dictionary
EXAMPLE definition: 1. something that is typical of the group of things that it is a member of: 2. a way of helping…. Learn more.

EXAMPLE Definition & Meaning | Dictionary.com
one of a number of things, or a part of something, taken to show the character of the whole. This painting is an example of his early work. a pattern or model, as of something to be imitated or …

Example - definition of example by The Free Dictionary
1. one of a number of things, or a part of something, taken to show the character of the whole. 2. a pattern or model, as of something to be imitated or avoided: to set a good example. 3. an …

Example Definition & Meaning - YourDictionary
To be illustrated or exemplified (by). Wear something simple; for example, a skirt and blouse.

EXAMPLE - Meaning & Translations | Collins English Dictionary
An example of something is a particular situation, object, or person which shows that what is being claimed is true. 2. An example of a particular class of objects or styles is something that has …

example noun - Definition, pictures, pronunciation and usage notes ...
used to emphasize something that explains or supports what you are saying; used to give an example of what you are saying. There is a similar word in many languages, for example in French …

Example - Definition, Meaning & Synonyms - Vocabulary.com
An example is a particular instance of something that is representative of a group, or an illustration of something that's been generally described. Example comes from the Latin word for …

example - definition and meaning - Wordnik
noun Something that serves as a pattern of behaviour to be imitated (a good example) or not to be imitated (a bad example). noun A person punished as a warning to others. noun A parallel or …

EXAMPLE Synonyms: 20 Similar Words - Merriam-Webster
Some common synonyms of example are case, illustration, instance, sample, and specimen. While all these words mean "something that exhibits distinguishing characteristics in its category," …