Advertisement
examples of business intelligence in healthcare: Healthcare Business Intelligence Laura Madsen, 2012 This book will be constructed as a guidebook for healthcare organizations that are attempting BI/DW. It will address the primary functions of a business intelligence capability and how BI can ease the increasing regulatory reporting pressures on all healthcare organizations. Also included will be tables, checklists and a few forms. Tenative chapter contents: Chapter 1: What is Healthcare BI? Chapter 2: The Five Disciplines of Business Intelligence Chapter 3: The Importance of ETL Chapter 4: Starting with Data Governance Chapter 5: Creating a BI team Chapter 6: Data Modeling for Healthcare Chapter 7: Gaining Support for your BI program Chapter 8: Ensuring good User Adoption Chapter 9: Marketing Your BI Program Chapter 10: Maintaining Your BI Program-- |
examples of business intelligence in healthcare: Theory and Practice of Business Intelligence in Healthcare Khuntia, Jiban, Ning, Xue, Tanniru, Mohan, 2019-12-27 Business intelligence supports managers in enterprises to make informed business decisions in various levels and domains such as in healthcare. These technologies can handle large structured and unstructured data (big data) in the healthcare industry. Because of the complex nature of healthcare data and the significant impact of healthcare data analysis, it is important to understand both the theories and practices of business intelligence in healthcare. Theory and Practice of Business Intelligence in Healthcare is a collection of innovative research that introduces data mining, modeling, and analytic techniques to health and healthcare data; articulates the value of big volumes of data to health and healthcare; evaluates business intelligence tools; and explores business intelligence use and applications in healthcare. While highlighting topics including digital health, operations intelligence, and patient empowerment, this book is ideally designed for healthcare professionals, IT consultants, hospital directors, data management staff, data analysts, hospital administrators, executives, managers, academicians, students, and researchers seeking current research on the digitization of health records and health systems integration. |
examples of business intelligence in healthcare: Analytics in Healthcare Christo El Morr, Hossam Ali-Hassan, 2019-01-21 This book offers a practical introduction to healthcare analytics that does not require a background in data science or statistics. It presents the basics of data, analytics and tools and includes multiple examples of their applications in the field. The book also identifies practical challenges that fuel the need for analytics in healthcare as well as the solutions to address these problems. In the healthcare field, professionals have access to vast amount of data in the form of staff records, electronic patient record, clinical findings, diagnosis, prescription drug, medical imaging procedure, mobile health, resources available, etc. Managing the data and analyzing it to properly understand it and use it to make well-informed decisions can be a challenge for managers and health care professionals. A new generation of applications, sometimes referred to as end-user analytics or self-serve analytics, are specifically designed for non-technical users such as managers and business professionals. The ability to use these increasingly accessible tools with the abundant data requires a basic understanding of the core concepts of data, analytics, and interpretation of outcomes. This book is a resource for such individuals to demystify and learn the basics of data management and analytics for healthcare, while also looking towards future directions in the field. |
examples of business intelligence in healthcare: Artificial Intelligence in Healthcare Adam Bohr, Kaveh Memarzadeh, 2020-06-21 Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data |
examples of business intelligence in healthcare: Healthcare Business Intelligence, + Website Laura Madsen, 2012-09-04 Solid business intelligence guidance uniquely designed for healthcare organizations Increasing regulatory pressures on healthcare organizations have created a national conversation on data, reporting and analytics in healthcare. Behind the scenes, business intelligence (BI) and data warehousing (DW) capabilities are key drivers that empower these functions. Healthcare Business Intelligence is designed as a guidebook for healthcare organizations dipping their toes into the areas of business intelligence and data warehousing. This volume is essential in how a BI capability can ease the increasing regulatory reporting pressures on all healthcare organizations. Explores the five tenets of healthcare business intelligence Offers tips for creating a BI team Identifies what healthcare organizations should focus on first Shows you how to gain support for your BI program Provides tools and techniques that will jump start your BI Program Explains how to market and maintain your BI Program The risk associated with doing BI/DW wrong is high, and failures are well documented. Healthcare Business Intelligence helps you get it right, with expert guidance on getting your BI program started and successfully keep it going. |
examples of business intelligence in healthcare: Implementing Business Intelligence in Your Healthcare Organization Cynthia McKinney, MBA, FHIMSS, PMP, Ray Hess, RRT, 2012-02-18 Implementing business intelligence is a strategic activity that channels the outcomes of performance throughout the healthcare organization and its stakeholders. Additionally, business intelligence provides a visual, high-level view of historical trends, current operations and predictive analysis. Through insightful chapters written by industry experts and numerous, real-world case studies, this book demonstrates myriad practical and proven steps to developing a business intelligence solution, including pre- and post-implementation issues. This book is packed with information that will help you and your organization raise awareness of hidden business intelligence, generate improved analytical data and spread the access to this new information across the continuum of care. 2012. |
examples of business intelligence in healthcare: Analytics in Healthcare and the Life Sciences Thomas H. Davenport, Dwight McNeill, 2013-11-04 Make healthcare analytics work: leverage its powerful opportunities for improving outcomes, cost, and efficiency.This book gives you thepractical frameworks, strategies, tactics, and case studies you need to go beyond talk to action. The contributing healthcare analytics innovators survey the field’s current state, present start-to-finish guidance for planning and implementation, and help decision-makers prepare for tomorrow’s advances. They present in-depth case studies revealing how leading organizations have organized and executed analytic strategies that work, and fully cover the primary applications of analytics in all three sectors of the healthcare ecosystem: Provider, Payer, and Life Sciences. Co-published with the International Institute for Analytics (IIA), this book features the combined expertise of IIA’s team of leading health analytics practitioners and researchers. Each chapter is written by a member of the IIA faculty, and bridges the latest research findings with proven best practices. This book will be valuable to professionals and decision-makers throughout the healthcare ecosystem, including provider organization clinicians and managers; life sciences researchers and practitioners; and informaticists, actuaries, and managers at payer organizations. It will also be valuable in diverse analytics, operations, and IT courses in business, engineering, and healthcare certificate programs. |
examples of business intelligence in healthcare: Big Data Analytics and Intelligence Poonam Tanwar, Vishal Jain, Chuan-Ming Liu, Vishal Goyal, 2020-09-30 Big Data Analytics and Intelligence is essential reading for researchers and experts working in the fields of health care, data science, analytics, the internet of things, and information retrieval. |
examples of business intelligence in healthcare: Demystifying Big Data and Machine Learning for Healthcare Prashant Natarajan, John C. Frenzel, Detlev H. Smaltz, 2017-02-15 Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them. |
examples of business intelligence in healthcare: Healthcare Analytics for Quality and Performance Improvement Trevor L. Strome, 2013-10-02 Improve patient outcomes, lower costs, reduce fraud—all with healthcare analytics Healthcare Analytics for Quality and Performance Improvement walks your healthcare organization from relying on generic reports and dashboards to developing powerful analytic applications that drive effective decision-making throughout your organization. Renowned healthcare analytics leader Trevor Strome reveals in this groundbreaking volume the true potential of analytics to harness the vast amounts of data being generated in order to improve the decision-making ability of healthcare managers and improvement teams. Examines how technology has impacted healthcare delivery Discusses the challenge facing healthcare organizations: to leverage advances in both clinical and information technology to improve quality and performance while containing costs Explores the tools and techniques to analyze and extract value from healthcare data Demonstrates how the clinical, business, and technology components of healthcare organizations (HCOs) must work together to leverage analytics Other industries are already taking advantage of big data. Healthcare Analytics for Quality and Performance Improvement helps the healthcare industry make the most of the precious data already at its fingertips for long-overdue quality and performance improvement. |
examples of business intelligence in healthcare: Applying Business Intelligence Initiatives in Healthcare and Organizational Settings Miah, Shah J., Yeoh, William, 2018-07-13 Data analysis is an important part of modern business administration, as efficient compilation of information allows managers and business leaders to make the best decisions for the financial solvency of their organizations. Understanding the use of analytics, reporting, and data mining in everyday business environments is imperative to the success of modern businesses. Applying Business Intelligence Initiatives in Healthcare and Organizational Settings incorporates emerging concepts, methods, models, and relevant applications of business intelligence systems within problem contexts of healthcare and other organizational boundaries. Featuring coverage on a broad range of topics such as rise of embedded analytics, competitive advantage, and strategic capability, this book is ideally designed for business analysts, investors, corporate managers, and entrepreneurs seeking to advance their understanding and practice of business intelligence. |
examples of business intelligence in healthcare: Big Data and Health Analytics Katherine Marconi, Harold Lehmann, 2014-12-20 This book provides frameworks, use cases, and examples that illustrate the role of big data and analytics in modern health care, including how public health information can inform health delivery. Written for health care professionals and executives, this book presents the current thinking of academic and industry researchers and leaders from around the world. Using non-technical language, it includes case studies that illustrate the business processes that underlie the use of big data and health analytics to improve health care delivery. |
examples of business intelligence in healthcare: Healthcare Analytics Made Simple Vikas (Vik) Kumar, 2018-07-31 Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare. |
examples of business intelligence in healthcare: Business Intelligence: Concepts, Methodologies, Tools, and Applications Management Association, Information Resources, 2015-12-29 Data analysis is an important part of modern business administration, as efficient compilation of information allows managers and business leaders to make the best decisions for the financial solvency of their organizations. Understanding the use of analytics, reporting, and data mining in everyday business environments is imperative to the success of modern businesses. Business Intelligence: Concepts, Methodologies, Tools, and Applications presents a comprehensive examination of business data analytics along with case studies and practical applications for businesses in a variety of fields and corporate arenas. Focusing on topics and issues such as critical success factors, technology adaptation, agile development approaches, fuzzy logic tools, and best practices in business process management, this multivolume reference is of particular use to business analysts, investors, corporate managers, and entrepreneurs in a variety of prominent industries. |
examples of business intelligence in healthcare: Better Data, Better Decisions Nate Moore, Mona Reimers, 2013 Data flows into medical practices daily from practice management systems, electronic medical record (EMR) systems, accounting systems and many other sources. Too many practices extract only the bare minimum of data to file claims and meet reporting obligations, without recognizing the value in the flood of data that passes through the practice. |
examples of business intelligence in healthcare: Big Data Analytics in Healthcare Anand J. Kulkarni, Patrick Siarry, Pramod Kumar Singh, Ajith Abraham, Mengjie Zhang, Albert Zomaya, Fazle Baki, 2019-10-01 This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms. |
examples of business intelligence in healthcare: Artificial Intelligence in Medicine David Riaño, Szymon Wilk, Annette ten Teije, 2019-06-19 This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning. |
examples of business intelligence in healthcare: Integrating Social Care into the Delivery of Health Care National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division, Board on Health Care Services, Committee on Integrating Social Needs Care into the Delivery of Health Care to Improve the Nation's Health, 2020-01-30 Integrating Social Care into the Delivery of Health Care: Moving Upstream to Improve the Nation's Health was released in September 2019, before the World Health Organization declared COVID-19 a global pandemic in March 2020. Improving social conditions remains critical to improving health outcomes, and integrating social care into health care delivery is more relevant than ever in the context of the pandemic and increased strains placed on the U.S. health care system. The report and its related products ultimately aim to help improve health and health equity, during COVID-19 and beyond. The consistent and compelling evidence on how social determinants shape health has led to a growing recognition throughout the health care sector that improving health and health equity is likely to depend †at least in part †on mitigating adverse social determinants. This recognition has been bolstered by a shift in the health care sector towards value-based payment, which incentivizes improved health outcomes for persons and populations rather than service delivery alone. The combined result of these changes has been a growing emphasis on health care systems addressing patients' social risk factors and social needs with the aim of improving health outcomes. This may involve health care systems linking individual patients with government and community social services, but important questions need to be answered about when and how health care systems should integrate social care into their practices and what kinds of infrastructure are required to facilitate such activities. Integrating Social Care into the Delivery of Health Care: Moving Upstream to Improve the Nation's Health examines the potential for integrating services addressing social needs and the social determinants of health into the delivery of health care to achieve better health outcomes. This report assesses approaches to social care integration currently being taken by health care providers and systems, and new or emerging approaches and opportunities; current roles in such integration by different disciplines and organizations, and new or emerging roles and types of providers; and current and emerging efforts to design health care systems to improve the nation's health and reduce health inequities. |
examples of business intelligence in healthcare: Artificial Intelligence and Machine Learning in Healthcare Ankur Saxena, Shivani Chandra, 2021-05-06 This book reviews the application of artificial intelligence and machine learning in healthcare. It discusses integrating the principles of computer science, life science, and statistics incorporated into statistical models using existing data, discovering patterns in data to extract the information, and predicting the changes and diseases based on this data and models. The initial chapters of the book cover the practical applications of artificial intelligence for disease prognosis & management. Further, the role of artificial intelligence and machine learning is discussed with reference to specific diseases like diabetes mellitus, cancer, mycobacterium tuberculosis, and Covid-19. The chapters provide working examples on how different types of healthcare data can be used to develop models and predict diseases using machine learning and artificial intelligence. The book also touches upon precision medicine, personalized medicine, and transfer learning, with the real examples. Further, it also discusses the use of machine learning and artificial intelligence for visualization, prediction, detection, and diagnosis of Covid -19. This book is a valuable source of information for programmers, healthcare professionals, and researchers interested in understanding the applications of artificial intelligence and machine learning in healthcare. |
examples of business intelligence in healthcare: Hierarchical Decision Modeling Tugrul U. Daim, 2015-07-25 This volume, developed in honor of Dr. Dundar F. Kocaoglu, aims to demonstrate the applications of the Hierarchical Decision Model (HDM) in different sectors and its capacity in decision analysis. It is comprised of essays from noted scholars, academics and researchers of engineering and technology management around the world. This book is organized into five parts: Technology Policy Planning, Strategic Technology Planning, Technology Assessment, Application Extensions, and Methodology Extensions. Dr. Dundar F. Kocaoglu is one of the pioneers of multiple decision models using hierarchies, and creator of the HDM in decision analysis. HDM is a mission-oriented method for evaluation and/or selection among alternatives. A wide range of alternatives can be considered, including but not limited to, different technologies, projects, markets, jobs, products, cities to live in, houses to buy, apartments to rent, and schools to attend. Dr. Kocaoglu’s approach has been adopted for decision problems in many industrial sectors, including electronics research and development, education, government planning, agriculture, energy, technology transfer, semiconductor manufacturing, and has influenced policy locally, nationally, and internationally. Moreover, his students developed advanced tools and software applications to further improve and enhance the robustness of the HDM approach. Dr. Kocaoglu has made many contributions to the field of Engineering and Technology Management. During his tenure at Portland State University, he founded the Engineering and Technology Management program, where he served as Program Director and later, Department Chair. He also started the Portland International Conference on Management of Engineering and Technology (PICMET), which organizes an annual conference in international locations such as Korea, Turkey, South Africa, Thailand, and Japan. His teaching has won awards and resulted in a strong sense of student loyalty among his students even decades later. Through his academic work and research, Dr. Kocaoglu has strongly supported researchers of engineering management and has provided tremendous service to the field. This volume recognizes and celebrates Dr. Kocaoglu’s profound contributions to the field, and will serve as a resource for generations of researchers, practitioners and students. |
examples of business intelligence in healthcare: Predictive Analytics Eric Siegel, 2016-01-12 Mesmerizing & fascinating... —The Seattle Post-Intelligencer The Freakonomics of big data. —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a |
examples of business intelligence in healthcare: Deep Medicine Eric Topol, 2019-03-12 A Science Friday pick for book of the year, 2019 One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved. |
examples of business intelligence in healthcare: Handbook of Research on Applied AI for International Business and Marketing Applications Christiansen, Bryan, Škrinjari?, Tihana, 2020-09-25 Artificial intelligence (AI) describes machines/computers that mimic cognitive functions that humans associate with other human minds, such as learning and problem solving. As businesses have evolved to include more automation of processes, it has become more vital to understand AI and its various applications. Additionally, it is important for workers in the marketing industry to understand how to coincide with and utilize these techniques to enhance and make their work more efficient. The Handbook of Research on Applied AI for International Business and Marketing Applications is a critical scholarly publication that provides comprehensive research on artificial intelligence applications within the context of international business. Highlighting a wide range of topics such as diversification, risk management, and artificial intelligence, this book is ideal for marketers, business professionals, academicians, practitioners, researchers, and students. |
examples of business intelligence in healthcare: Healthcare Business Intelligence Laura Madsen, 2012-07-20 Solid business intelligence guidance uniquely designed for healthcare organizations Increasing regulatory pressures on healthcare organizations have created a national conversation on data, reporting and analytics in healthcare. Behind the scenes, business intelligence (BI) and data warehousing (DW) capabilities are key drivers that empower these functions. Healthcare Business Intelligence is designed as a guidebook for healthcare organizations dipping their toes into the areas of business intelligence and data warehousing. This volume is essential in how a BI capability can ease the increasing regulatory reporting pressures on all healthcare organizations. Explores the five tenets of healthcare business intelligence Offers tips for creating a BI team Identifies what healthcare organizations should focus on first Shows you how to gain support for your BI program Provides tools and techniques that will jump start your BI Program Explains how to market and maintain your BI Program The risk associated with doing BI/DW wrong is high, and failures are well documented. Healthcare Business Intelligence helps you get it right, with expert guidance on getting your BI program started and successfully keep it going. |
examples of business intelligence in healthcare: A Primer on Multiple Intelligences Matthew N. O. Sadiku, Sarhan M. Musa, 2021-07-24 This book provides an introduction to nineteen popular multiple intelligences. Part One discusses general intelligence, psychological testing, naturalistic intelligence, social intelligence, emotional intelligence, interpersonal intelligence, and cultural intelligence. Part Two tackles machine intelligence, the development of artificial intelligence, computational intelligence, and digital intelligence, or the ability for humans to adapt to a digital environment. Finally, Part Three discusses the role of intelligence in business development, using technology to augment intelligence, abstract thinking, swarm and animal intelligence, military intelligence, and musical intelligence. A Primer on Multiple Intelligences is a must-read for graduate students or scholars considering researching cognition, perception, motivation, and artificial intelligence. It will also be of use to those in social psychology, computer science, and pedagogy. It is as a valuable resource for anyone interested in learning more about the multifaceted study of intelligence. |
examples of business intelligence in healthcare: Artificial Intelligence Sandeep Reddy, 2020-12-02 The rediscovery of the potential of artificial intelligence (AI) to improve healthcare delivery and patient outcomes has led to an increasing application of AI techniques such as deep learning, computer vision, natural language processing, and robotics in the healthcare domain. Many governments and health authorities have prioritized the application of AI in the delivery of healthcare. Also, technological giants and leading universities have established teams dedicated to the application of AI in medicine. These trends will mean an expanded role for AI in the provision of healthcare. Yet, there is an incomplete understanding of what AI is and its potential for use in healthcare. This book discusses the different types of AI applicable to healthcare and their application in medicine, population health, genomics, healthcare administration, and delivery. Readers, especially healthcare professionals and managers, will find the book useful to understand the different types of AI and how they are relevant to healthcare delivery. The book provides examples of AI being applied in medicine, population health, genomics, healthcare administration, and delivery and how they can commence applying AI in their health services. Researchers and technology professionals will also find the book useful to note current trends in the application of AI in healthcare and initiate their own projects to enable the application of AI in healthcare/medical domains. |
examples of business intelligence in healthcare: Artificial Intelligence Harvard Business Review, 2019 Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business. |
examples of business intelligence in healthcare: Applying Business Intelligence to Clinical and Healthcare Organizations Machado, José, Abelha, António, 2016-02-10 Business intelligence (BI) tools are capable of working with healthcare data in an efficient manner to generate real-time information and knowledge relevant to the success of healthcare organizations. Further, BI tools benefit healthcare professionals making critical decisions within hospitals, clinics, and physicians’ offices. Applying Business Intelligence to Clinical and Healthcare Organizations presents new solutions for data analysis within the healthcare sector in order to improve the quality of medical care and patient quality of life. Business intelligence models and techniques are explored and their benefits for the healthcare sector exposed in this timely research-based publication comprised of chapters written by professionals and researchers from around the world. Hospital administrators, healthcare professionals, biomedical engineers, informatics engineers, and students in graduate-level healthcare management programs will find this publication essential to their professional development and research needs. |
examples of business intelligence in healthcare: Data Analytics in Medicine Information Resources Management Association, 2019-11-18 This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations-- |
examples of business intelligence in healthcare: Business Intelligence Jerzy Surma, 2011-03-06 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration. |
examples of business intelligence in healthcare: Artificial Intelligence and Big Data Analytics for Smart Healthcare Miltiadis Lytras, Akila Sarirete, Anna Visvizi, Kwok Tai Chui, 2021-10-22 Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers |
examples of business intelligence in healthcare: Precision Medicine and Artificial Intelligence Michael Mahler, 2021-03-12 Precision Medicine and Artificial Intelligence: The Perfect Fit for Autoimmunity covers background on artificial intelligence (AI), its link to precision medicine (PM), and examples of AI in healthcare, especially autoimmunity. The book highlights future perspectives and potential directions as AI has gained significant attention during the past decade. Autoimmune diseases are complex and heterogeneous conditions, but exciting new developments and implementation tactics surrounding automated systems have enabled the generation of large datasets, making autoimmunity an ideal target for AI and precision medicine. More and more diagnostic products utilize AI, which is also starting to be supported by regulatory agencies such as the Food and Drug Administration (FDA). Knowledge generation by leveraging large datasets including demographic, environmental, clinical and biomarker data has the potential to not only impact the diagnosis of patients, but also disease prediction, prognosis and treatment options. - Allows the readers to gain an overview on precision medicine for autoimmune diseases leveraging AI solutions - Provides background, milestone and examples of precision medicine - Outlines the paradigm shift towards precision medicine driven by value-based systems - Discusses future applications of precision medicine research using AI - Other aspects covered in the book include regulatory insights, data analytics and visualization, types of biomarkers as well as the role of the patient in precision medicine |
examples of business intelligence in healthcare: Using the Data Warehouse W. H. Inmon, Richard D. Hackathorn, 1994-07-27 This book describes exactly how to use a data warehouse once it's been constructed. The discussion of how to use information to capture and maintain competitive advantage will be of particular strategic interest to marketing, production, and other line managers. Database professionals will appreciate the tactical advice on this topic. |
examples of business intelligence in healthcare: The Health Care Data Guide Lloyd P. Provost, Sandra K. Murray, 2011-12-06 The Health Care Data Guide is designed to help students and professionals build a skill set specific to using data for improvement of health care processes and systems. Even experienced data users will find valuable resources among the tools and cases that enrich The Health Care Data Guide. Practical and step-by-step, this book spotlights statistical process control (SPC) and develops a philosophy, a strategy, and a set of methods for ongoing improvement to yield better outcomes. Provost and Murray reveal how to put SPC into practice for a wide range of applications including evaluating current process performance, searching for ideas for and determining evidence of improvement, and tracking and documenting sustainability of improvement. A comprehensive overview of graphical methods in SPC includes Shewhart charts, run charts, frequency plots, Pareto analysis, and scatter diagrams. Other topics include stratification and rational sub-grouping of data and methods to help predict performance of processes. Illustrative examples and case studies encourage users to evaluate their knowledge and skills interactively and provide opportunity to develop additional skills and confidence in displaying and interpreting data. Companion Web site: www.josseybass.com/go/provost |
examples of business intelligence in healthcare: Business Intelligence and Analytics for Healthcare Organizations Scott Wanless, Thomas Ludwig, 2012-02 This publication provides a roadmap to help healthcare organizations understand BI and its benefits from a strategic and business perspective particular to the healthcare industry by providing valuable and innovative examples of BI applications for improving clinical, financial and operational success. |
examples of business intelligence in healthcare: Applied Health Analytics and Informatics Using SAS Joseph M. Woodside, 2018-11 Leverage health data into insight! Applied Health Analytics and Informatics Using SAS describes health anamatics, a result of the intersection of data analytics and health informatics. Healthcare systems generate nearly a third of the world's data, and analytics can help to eliminate medical errors, reduce readmissions, provide evidence-based care, demonstrate quality outcomes, and add cost-efficient care. This comprehensive textbook includes data analytics and health informatics concepts, along with applied experiential learning exercises and case studies using SAS Enterprise MinerTM within the healthcare industry setting. Topics covered include: Sampling and modeling health data - both structured and unstructured Exploring health data quality Developing health administration and health data assessment procedures Identifying future health trends Analyzing high-performance health data mining models Applied Health Analytics and Informatics Using SAS is intended for professionals, lifelong learners, senior-level undergraduates, graduate-level students in professional development courses, health informatics courses, health analytics courses, and specialized industry track courses. This textbook is accessible to a wide variety of backgrounds and specialty areas, including administrators, clinicians, and executives. |
examples of business intelligence in healthcare: Administrative Healthcare Data Craig Dickstein, Renu Gehring, 2014-10 Explains the source and content of administrative healthcare data, which is the product of financial reimbursement for healthcare services. The book integrates the business knowledge of healthcare data with practical and pertinent case studies as shown in SAS Enterprise Guide. |
examples of business intelligence in healthcare: Encyclopedia of Public Health Wilhelm Kirch, 2008-06-13 The Encyclopedic Reference of Public Health presents the most important definitions, principles and general perspectives of public health, written by experts of the different fields. The work includes more than 2,500 alphabetical entries. Entries comprise review-style articles, detailed essays and short definitions. Numerous figures and tables enhance understanding of this little-understood topic. Solidly structured and inclusive, this two-volume reference is an invaluable tool for clinical scientists and practitioners in academia, health care and industry, as well as students, teachers and interested laypersons. |
examples of business intelligence in healthcare: Advancement in Business Analytics Tools for Higher Financial Performance Gharoie Ahangar, Reza, Napier, Mark, 2023-08-08 The relentless growth of data in financial markets has boosted the demand for more advanced analytical tools to facilitate and improve financial planning. The ability to constructively use this data is limited for managers and investors without the proper theoretical support. Within this context, there is an unmet demand for combining analytical finance methods with business analytics topics to inform better investment decisions. Advancement in Business Analytics Tools for Higher Financial Performance explores the financial applications of business analytics tools that can help financial managers and investors to better understand financial theory and improve institutional investment practices. This book explores the value extraction process using more accurate financial data via business analytical tools to help investors and portfolio managers develop more modern financial planning processes. Covering topics such as financial markets, investment analysis, and statistical tools, this book is ideal for accountants, data analysts, researchers, students, business professionals, academicians, and more. |
examples of business intelligence in healthcare: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress. |
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …
Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Business model innovation in healthcare: A theoretical …
technologies, or therapies, business model innovation entails rethinking the fundamental logic and mechanisms through which value is created, delivered, and captured within an organization. In …
Business Intelligence And Reporting
Healthcare Business Intelligence Laura Madsen,2012-07-20 Solid business intelligence guidance uniquely designed for healthcare organizations Increasing regulatory pressures on healthcare …
Business Intelligence Guidebook - resources.caih.jhu.edu
interested in the concepts behind business intelligence will benefit from the clear explanations and many examples Business Intelligence Guidebook From Data Integration To … Chapter 1: …
Business Intelligence Guidebook From Data - vols.wta.org
Business Intelligence Roadmap is a clear and comprehensive guide to negotiating the complexities inherent in the development of valuable business intelligence decision-support …
Data Governance Policies and Procedures - Wiley Online Library
Healthcare Business Intelligence There can only be one group accountable for any task; there is no limit to the number that is responsible, consulted, or informed. Glossary Business …
Patient Safety and Artificial Intelligence - Institute for …
the Institute for Healthcare Improvement, guiding the global patient safety community. How to Cite This Document:Lucian Leape Institute. Patient Safety and Artificial Intelligence: ... evolution of …
IMPLEMENTING ARTIFICIAL INTELLIGENCE IN CANADIAN …
IMPLEMENTING ARTIFICIAL INTELLIGENCE IN CANADIAN HEALTHCARE: A Kit for Getting Started 2 About Healthcare Excellence Canada Healthcare Excellence Canada (HEC) is an …
Tenets of Healthcare BI - Wiley Online Library
to any industry, but it is absolutely critical to healthcare busi-ness intelligence (BI)—no one dies if a retail report misrepre-sents inventory in an end cap—so it lands in our number‐one spot as …
Artificial Intelligence in Healthcare Sector: A Literature …
tificial intelligence (AI) are some examples of innovation areas that have the potential to meet the healthcare industry’s needs (Amjad et al., 2023). The healthcare leaders’ desire to capitalize …
Business Intelligence Guidebook From Data Full PDF
Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with …
Emotional Intelligence - CHEST
Emotional Intelligence Leadership Essentials for Chest Medicine Professionals James K. Stoller, MD Emotional intelligence (EI) has become widely appreciated as an important leadership …
Hospital service line organization: Innovation in ... - Modern …
data and analysis to understand and manage their business. “Data doesn’t make decisions for you, but it allows you to go forward knowing what you’re getting into,” Gershon said.
Cerner Millennium CCL Report Writing Service - Dell
• An important addition to your Business Intelligence programs Summary Many healthcare organizations share similar challenges, and in-house solutions can be expensive. CCL reports …
The Role of Power BI in Transforming Business Decision
The Role of Power BI in Transforming Business Decision-Making: A Case Study on Healthcare Reporting Afroz Shaik 1 , Imran Khan 2 , Murali Mohana Krishna Dandu 3 , Prof. (Dr) Punit …
Business Intelligence Guidebook From Data [PDF]
Business Intelligence Guidebook From Data: Business Intelligence Guidebook Rick Sherman,2014-11-04 Between the high level concepts of business intelligence and the nitty …
Developing Emotional Intelligence for Healthcare Leaders
13 Developing Emotional Intelligence for Healthcare Leaders Claudia S. P. Fernandez 1, Herbert B. Peterson 1, Shelly W. Holmstr m 2 and AnnaMarie Connolly 1 1The University of North …
Developing Emotional Intelligence for Healthcare Leaders
13 Developing Emotional Intelligence for Healthcare Leaders Claudia S. P. Fernandez1, Herbert B. Peterson1, Shelly W. Holmstrőm2 and AnnaMarie Connolly1 1The University of North …
Business Intelligence Guidebook Data Management B Full …
Healthcare Business Intelligence DAMA-DMBOK ICT: Applications and Social Interfaces Mathematics for Machine Learning ... examples. Business Intelligence Elsevier "While …
Business Intelligence Guidebook Full PDF - dmi.bdna.com
Business Intelligence Guidebook Business Intelligence Guidebook Rick Sherman 2014 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using …
Business Intelligence Guidebook From Data
Nov 1, 2021 · Behind the scenes, business intelligence (BI) and data warehousing (DW) capabilities are key drivers that empower these functions. Healthcare Business Intelligence is …
Safe and Responsible Artificial Intelligence in Health Care ...
Artificial Intelligence (AI) can help solve urgent and emerging challenges in our health care ... Leveraging Digital Technology in Healthcare,1 suggested automating low-complexity tasks …
Fundamentals Of Business Intelligence [Book]
Apr 3, 2025 · Digital Economy Global Business Intelligence Healthcare Business Intelligence, + Website Business Intelligence Techniques The. ... in computer science and the dedicated …
The U.A.E.’s Big Bet on Artificial Intelligence
The use of artificial intelligence (AI) in business operations has exploded in the past year. AI is poised to fundamentally transform all key sectors of the global economy, including technology, …
Strategic Use of Analytics in Government - Business of …
literature (on both business intelligence and “the business of government”) to identify agencies or external suppliers to government agencies as adopters of analytics within the four areas of …
(PDF) Data Mining For Business Intelligence Answer
Integration of Data Mining in Business Intelligence Systems Azevedo, Ana,2014-09-30 Uncovering and analyzing data associated with the current business environment is essential …
Business Intelligence Guidebook From Data Copy
Business Intelligence Guidebook Rick Sherman,2014-11-04 Between the high level concepts of business intelligence and the nitty gritty instructions for using vendors tools lies the essential …
Artificial Intelligence in Medical Technology: Delivering …
Artificial Intelligence (AI – please refer to Annex I for our definition) holds the promise to support humans in ... These promises apply also to healthcare. In this paper, we will outline the …
Business Intelligence Guidebook From Data [PDF]
the scenes, business intelligence (BI) and data warehousing (DW) capabilities are key drivers that empower these functions. Healthcare Business Intelligence is designed as a guidebook for …
LEVERAGING BUSINESS INTELLIGENCE DASHBOARDS FOR …
This transformation positions BI as a cornerstone in the ongoing shift toward performance-based healthcare models. Keywords: Business intelligence, healthcare dashboards, clinical …
The Use of Business Intelligence Systems in Healthcare …
healthcare area. Intelligent techniques provide an effective computational methods and robust environment for business intelligence in the healthcare domain. It seems to be very im-portant, …
Business Intelligence Reporting Systems (Download Only)
Healthcare Business Intelligence helps you get it right with expert guidance on getting your BI program started and successfully keep it going Business Intelligence Carlo Vercellis,2011-08 …
Tech M&A Monthly - corumgroup.com
4 Private Equity Panel Buyers Panel Top Acquirer Profiles: Google, Accenture Valuation Strategy Planning for Post-Acquisition Success
Principles for Artificial Intelligence (AI) and its application in ...
AI in healthcare includes a range of applications aimed at enhancing efficiency, diagnosis, and treatment. Though AI lacks a single definition, it broadly refers to technologies simulating …
Generative AI in Healthcare - Cognizant
generative AI is poised to reshape healthcare operating and business models across the value chain. This article explores the potential of generative AI and large language models, …
Smart use of artificial intelligence in health care
• Their core capabilities are like human intelligence. Pattern recognition, categorization, anomaly detection, and regression and prediction are good examples. AI can apply these capabilities to …
Business Intelligence Guidebook From Data (book)
approaches so readers can put them into action. Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted …
Business Intelligence And Analytics Systems For Decision …
Healthcare Business Intelligence Concepts and Competitive Analytics BUSINESS INTELLIGENCE AND ANALYTICS Progressive Methods in Data Warehousing and Business …
Healthcare Sector Cybersecurity - ASPR
Healthcare facilities are attractive targets for cyber criminals in light of their size, technological dependence, sensitive data, and unique vulnerability to disruptions. ... • Sharing cyber threat …
Business Intelligence Guidebook From Data Integration To …
includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry ... sources. Business Intelligence Guidebook Rick Sherman,2014 …
SUSTAINABLE INNOVATIONS AND IMPACT OF ARTIFICIAL …
offer proactive care, lowering healthcare costs and enhancing patient outcomes. The lack of regulatory frameworks and the pressing ethical questions are just two of the difficulties the …
Business Case Sample - Institute for Healthcare Improvement
Institute for Healthcare Improvement / National Patient Safety Foundation • ihi.org Optimizing a Business Case for Safe Health Care: An Integrated Approach to Finance and Safety Business …
Business Intelligence Guidebook Pdf [PDF] - bgb.cyb.co.uk
Business Intelligence Guidebook Pdf Business Intelligence Guidebook Rick Sherman,2014-11-04 Between the high level concepts of business intelligence and the nitty gritty instructions for …
Current Regulatory Landscape of AI in Public Health & Health …
ening and Democratizing Artificial Intelligence Innovation.” Done in part-nership with the National Science Foundation. • In May 2023, the Select Committee on Artificial Intelligence issued its …
Business Intelligence And Big Data(3) Full PDF
business world Risk Marketing Healthcare Financial Services etc Explains this new technology and how companies can use ... interested in the concepts behind business intelligence will …
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …
Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …
Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …