Advertisement
examples of business metadata: Business Metadata: Capturing Enterprise Knowledge W.H. Inmon, Bonnie O'Neil, Lowell Fryman, 2010-07-28 Business Metadata: Capturing Enterprise Knowledge is the first book that helps businesses capture corporate (human) knowledge and unstructured data, and offer solutions for codifying it for use in IT and management. Written by Bill Inmon, one of the fathers of the data warehouse and well-known author, the book is filled with war stories, examples, and cases from current projects. It includes a complete metadata acquisition methodology and project plan to guide readers every step of the way, and sample unstructured metadata for use in self-testing and developing skills. This book is recommended for IT professionals, including those in consulting, working on systems that will deliver better knowledge management capability. This includes people in these positions: data architects, data analysts, SOA architects, metadata analysts, repository (metadata data warehouse) managers as well as vendors that have a metadata component as part of their systems or tools. - First book that helps businesses capture corporate (human) knowledge and unstructured data, and offer solutions for codifying it for use in IT and management - Written by Bill Inmon, one of the fathers of the data warehouse and well-known author, and filled with war stories, examples, and cases from current projects - Very practical, includes a complete metadata acquisition methodology and project plan to guide readers every step of the way - Includes sample unstructured metadata for use in self-testing and developing skills |
examples of business metadata: Data Warehousing Fundamentals Paulraj Ponniah, 2004-04-07 Geared to IT professionals eager to get into the all-importantfield of data warehousing, this book explores all topics needed bythose who design and implement data warehouses. Readers will learnabout planning requirements, architecture, infrastructure, datapreparation, information delivery, implementation, and maintenance.They'll also find a wealth of industry examples garnered from theauthor's 25 years of experience in designing and implementingdatabases and data warehouse applications for majorcorporations. Market: IT Professionals, Consultants. |
examples of business metadata: Metadata Management for Information Control and Business Success Guy V. Tozer, 1999 By describing how to establish metadata management with an organization, this book provides examples of data structure architectures, and reviews issues associated with metadata management in relation to the Internet and data warehousing. It helps readers control the factors that make data useable throughout an organization and manage data so that it becomes a valuable corporate asset. The book examines real-world business departments that can benefit from this approach and ways in which sets ... |
examples of business metadata: Metadata Management with IBM InfoSphere Information Server Wei-Dong Zhu, Tuvia Alon, Gregory Arkus, Randy Duran, Marc Haber, Robert Liebke, Frank Morreale Jr., Itzhak Roth, Alan Sumano, IBM Redbooks, 2011-10-18 What do you know about your data? And how do you know what you know about your data? Information governance initiatives address corporate concerns about the quality and reliability of information in planning and decision-making processes. Metadata management refers to the tools, processes, and environment that are provided so that organizations can reliably and easily share, locate, and retrieve information from these systems. Enterprise-wide information integration projects integrate data from these systems to one location to generate required reports and analysis. During this type of implementation process, metadata management must be provided along each step to ensure that the final reports and analysis are from the right data sources, are complete, and have quality. This IBM® Redbooks® publication introduces the information governance initiative and highlights the immediate needs for metadata management. It explains how IBM InfoSphereTM Information Server provides a single unified platform and a collection of product modules and components so that organizations can understand, cleanse, transform, and deliver trustworthy and context-rich information. It describes a typical implementation process. It explains how InfoSphere Information Server provides the functions that are required to implement such a solution and, more importantly, to achieve metadata management. This book is for business leaders and IT architects with an overview of metadata management in information integration solution space. It also provides key technical details that IT professionals can use in a solution planning, design, and implementation process. |
examples of business metadata: Universal Meta Data Models David Marco, Michael Jennings, 2004-03-25 * The heart of the book provides the complete set of models that will support most of an organization's core business functions, including universal meta models for enterprise-wide systems, business meta data and data stewardship, portfolio management, business rules, and XML, messaging, and transactions * Developers can directly adapt these models to their own businesses, saving countless hours of development time * Building effective meta data repositories is complicated and time-consuming, and few IT departments have the necessary expertise to do it right-which is why this book is sure to find a ready audience * Begins with a quick overview of the Meta Data Repository Environment and the business uses of meta data, then goes on to describe the technical architecture followed by the detailed models |
examples of business metadata: Data Model Patterns: A Metadata Map David C. Hay, 2010-07-20 Data Model Patterns: A Metadata Map not only presents a conceptual model of a metadata repository but also demonstrates a true enterprise data model of the information technology industry itself. It provides a step-by-step description of the model and is organized so that different readers can benefit from different parts. It offers a view of the world being addressed by all the techniques, methods, and tools of the information processing industry (for example, object-oriented design, CASE, business process re-engineering, etc.) and presents several concepts that need to be addressed by such tools. This book is pertinent, with companies and government agencies realizing that the data they use represent a significant corporate resource recognize the need to integrate data that has traditionally only been available from disparate sources. An important component of this integration is management of the metadata that describe, catalogue, and provide access to the various forms of underlying business data. The metadata repository is essential to keep track of the various physical components of these systems and their semantics. The book is ideal for data management professionals, data modeling and design professionals, and data warehouse and database repository designers. - A comprehensive work based on the Zachman Framework for information architecture—encompassing the Business Owner's, Architect's, and Designer's views, for all columns (data, activities, locations, people, timing, and motivation) - Provides a step-by-step description of model and is organized so that different readers can benefit from different parts - Provides a view of the world being addressed by all the techniques, methods and tools of the information processing industry (for example, object-oriented design, CASE, business process re-engineering, etc.) - Presents many concepts that are not currently being addressed by such tools — and should be |
examples of business metadata: How to Build a Business Rules Engine Malcolm Chisholm, 2004 Demonstrating how to develop a business rules engine, this guide covers user requirements, data modelling, metadata and more. A sample application is used throughout the book to illustrate concepts. The text includes conceptual overview chapters suitable for management-level readers, including a general introduction, business justification, development and implementation considerations and more. Demonstrating how to develop a business rules engine, this guide covers user requirements, data modelling and metadata. It includes conceptual overview chapters suitable for management-level readers, a general introduction, business justification, development and implementation considerations. |
examples of business metadata: Metadata Solutions Adrienne Tannenbaum, 2002 Introduces concepts for organizing data within a company to make it more accessible and meaningful. The author explains where databases went wrong in the 1990s, describes metadata-based technologies and standards, and illustrates the various implementation options by depicting five distinct metadata solutions for the same problem. |
examples of business metadata: Introduction to Metadata , 2004 An overview of metadata: what it is, its types and uses, and how it can help to make Web resources more accessible and comprehensible. Contains articles, a glossary, and a list of acronyms relating to metadata. |
examples of business metadata: Performing Information Governance Anthony David Giordano, 2015 Using case studies and hands-on activities, this book discusses topics in information governance (IG): recognizing hidden development and operational implications of IG--and why it needs to be integrated in the broader organization; integrating IG activities with transactional processing, BI, MDM, and other enterprise information management functions; the information governance organization: defining roles, launching projects, and integrating with ongoing operations; performing IG in transactional projects, including those using agile methods and COTS products; bringing stronger information governance to MDM: strategy, architecture, development, and beyond; governing information throughout the BI or big data project lifecycle; performing ongoing IG and data stewardship operational processes; auditing and enforcing data quality management in the context of enterprise information management; maintaining and evolving metadata management for maximum business value. -- $c Edited summary from book. |
examples of business metadata: Metadata Richard Gartner, 2016-08-12 This book offers a comprehensive guide to the world of metadata, from its origins in the ancient cities of the Middle East, to the Semantic Web of today. The author takes us on a journey through the centuries-old history of metadata up to the modern world of crowdsourcing and Google, showing how metadata works and what it is made of. The author explores how it has been used ideologically and how it can never be objective. He argues how central it is to human cultures and the way they develop. Metadata: Shaping Knowledge from Antiquity to the Semantic Web is for all readers with an interest in how we humans organize our knowledge and why this is important. It is suitable for those new to the subject as well as those know its basics. It also makes an excellent introduction for students of information science and librarianship. |
examples of business metadata: The Microsoft Data Warehouse Toolkit Joy Mundy, Warren Thornthwaite, 2011-03-08 Best practices and invaluable advice from world-renowned data warehouse experts In this book, leading data warehouse experts from the Kimball Group share best practices for using the upcoming “Business Intelligence release” of SQL Server, referred to as SQL Server 2008 R2. In this new edition, the authors explain how SQL Server 2008 R2 provides a collection of powerful new tools that extend the power of its BI toolset to Excel and SharePoint users and they show how to use SQL Server to build a successful data warehouse that supports the business intelligence requirements that are common to most organizations. Covering the complete suite of data warehousing and BI tools that are part of SQL Server 2008 R2, as well as Microsoft Office, the authors walk you through a full project lifecycle, including design, development, deployment and maintenance. Features more than 50 percent new and revised material that covers the rich new feature set of the SQL Server 2008 R2 release, as well as the Office 2010 release Includes brand new content that focuses on PowerPivot for Excel and SharePoint, Master Data Services, and discusses updated capabilities of SQL Server Analysis, Integration, and Reporting Services Shares detailed case examples that clearly illustrate how to best apply the techniques described in the book The accompanying Web site contains all code samples as well as the sample database used throughout the case studies The Microsoft Data Warehouse Toolkit, Second Edition provides you with the knowledge of how and when to use BI tools such as Analysis Services and Integration Services to accomplish your most essential data warehousing tasks. |
examples of business metadata: Querying XML Jim Melton, Stephen Buxton, 2011-04-08 XML has become the lingua franca for representing business data, for exchanging information between business partners and applications, and for adding structure–and sometimes meaning—to text-based documents. XML offers some special challenges and opportunities in the area of search: querying XML can produce very precise, fine-grained results, if you know how to express and execute those queries.For software developers and systems architects: this book teaches the most useful approaches to querying XML documents and repositories. This book will also help managers and project leaders grasp how “querying XML fits into the larger context of querying and XML. Querying XML provides a comprehensive background from fundamental concepts (What is XML?) to data models (the Infoset, PSVI, XQuery Data Model), to APIs (querying XML from SQL or Java) and more. * Presents the concepts clearly, and demonstrates them with illustrations and examples; offers a thorough mastery of the subject area in a single book. * Provides comprehensive coverage of XML query languages, and the concepts needed to understand them completely (such as the XQuery Data Model).* Shows how to query XML documents and data using: XPath (the XML Path Language); XQuery, soon to be the new W3C Recommendation for querying XML; XQuery's companion XQueryX; and SQL, featuring the SQL/XML * Includes an extensive set of XQuery, XPath, SQL, Java, and other examples, with links to downloadable code and data samples. |
examples of business metadata: The Kimball Group Reader Ralph Kimball, Margy Ross, 2016-02-01 The final edition of the incomparable data warehousing and business intelligence reference, updated and expanded The Kimball Group Reader, Remastered Collection is the essential reference for data warehouse and business intelligence design, packed with best practices, design tips, and valuable insight from industry pioneer Ralph Kimball and the Kimball Group. This Remastered Collection represents decades of expert advice and mentoring in data warehousing and business intelligence, and is the final work to be published by the Kimball Group. Organized for quick navigation and easy reference, this book contains nearly 20 years of experience on more than 300 topics, all fully up-to-date and expanded with 65 new articles. The discussion covers the complete data warehouse/business intelligence lifecycle, including project planning, requirements gathering, system architecture, dimensional modeling, ETL, and business intelligence analytics, with each group of articles prefaced by original commentaries explaining their role in the overall Kimball Group methodology. Data warehousing/business intelligence industry's current multi-billion dollar value is due in no small part to the contributions of Ralph Kimball and the Kimball Group. Their publications are the standards on which the industry is built, and nearly all data warehouse hardware and software vendors have adopted their methods in one form or another. This book is a compendium of Kimball Group expertise, and an essential reference for anyone in the field. Learn data warehousing and business intelligence from the field's pioneers Get up to date on best practices and essential design tips Gain valuable knowledge on every stage of the project lifecycle Dig into the Kimball Group methodology with hands-on guidance Ralph Kimball and the Kimball Group have continued to refine their methods and techniques based on thousands of hours of consulting and training. This Remastered Collection of The Kimball Group Reader represents their final body of knowledge, and is nothing less than a vital reference for anyone involved in the field. |
examples of business metadata: Data Warehousing Fundamentals for IT Professionals Paulraj Ponniah, 2011-09-20 CUTTING-EDGE CONTENT AND GUIDANCE FROM A DATA WAREHOUSING EXPERT NOW EXPANDED TO REFLECT FIELD TRENDS Data warehousing has revolutionized the way businesses in a wide variety of industries perform analysis and make strategic decisions. Since the first edition of Data Warehousing Fundamentals, numerous enterprises have implemented data warehouse systems and reaped enormous benefits. Many more are in the process of doing so. Now, this new, revised edition covers the essential fundamentals of data warehousing and business intelligence as well as significant recent trends in the field. The author provides an enhanced, comprehensive overview of data warehousing together with in-depth explanations of critical issues in planning, design, deployment, and ongoing maintenance. IT professionals eager to get into the field will gain a clear understanding of techniques for data extraction from source systems, data cleansing, data transformations, data warehouse architecture and infrastructure, and the various methods for information delivery. This practical Second Edition highlights the areas of data warehousing and business intelligence where high-impact technological progress has been made. Discussions on developments include data marts, real-time information delivery, data visualization, requirements gathering methods, multi-tier architecture, OLAP applications, Web clickstream analysis, data warehouse appliances, and data mining techniques. The book also contains review questions and exercises for each chapter, appropriate for self-study or classroom work, industry examples of real-world situations, and several appendices with valuable information. Specifically written for professionals responsible for designing, implementing, or maintaining data warehousing systems, Data Warehousing Fundamentals presents agile, thorough, and systematic development principles for the IT professional and anyone working or researching in information management. |
examples of business metadata: Managing Data in Motion April Reeve, 2013-02-26 Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the data in motion in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and big data applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of Big Data |
examples of business metadata: IBM InfoSphere Information Server Deployment Architectures Chuck Ballard, Tuvia Alon, Naveen Dronavalli, Stephen Jennings, Mark Lee, Sachiko Toratani, IBM Redbooks, 2013-01-17 Typical deployment architectures introduce challenges to fully using the shared metadata platform across products, environments, and servers. Data privacy and information security requirements add even more levels of complexity. IBM® InfoSphere® Information Server provides a comprehensive, metadata-driven platform for delivering trusted information across heterogeneous systems. This IBM Redbooks® publication presents guidelines and criteria for the successful deployment of InfoSphere Information Server components in typical logical infrastructure topologies that use shared metadata capabilities of the platform, and support development lifecycle, data privacy, information security, high availability, and performance requirements. This book can help you evaluate information requirements to determine an appropriate deployment architecture, based on guidelines that are presented here, and that can fulfill specific use cases. It can also help you effectively use the functionality of your Information Server product modules and components to successfully achieve your business goals. This book is for IT architects, information management and integration specialists, and system administrators who are responsible for delivering the full suite of information integration capabilities of InfoSphere Information Server. |
examples of business metadata: Architecture of Reliable Web Applications Software Radaideh, Moh?d A., Al-Ameed, Hayder, 2006-12-31 This book presents new concepts regarding reliability, availability, manageability, performance, scalability, and secured-ability of applications, particularly those that run over the Web. It examines causes of failure in Web-based information system development projects, and indicates that to exploit the unprecedented opportunities offered by e-service applications, businesses and users alike need a highly available, reliable, and efficient telecommunication infrastructure--Provided by publisher. |
examples of business metadata: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve. |
examples of business metadata: Data Integration Blueprint and Modeling Anthony David Giordano, 2010-12-27 Making Data Integration Work: How to Systematically Reduce Cost, Improve Quality, and Enhance Effectiveness Today’s enterprises are investing massive resources in data integration. Many possess thousands of point-to-point data integration applications that are costly, undocumented, and difficult to maintain. Data integration now accounts for a major part of the expense and risk of typical data warehousing and business intelligence projects--and, as businesses increasingly rely on analytics, the need for a blueprint for data integration is increasing now more than ever. This book presents the solution: a clear, consistent approach to defining, designing, and building data integration components to reduce cost, simplify management, enhance quality, and improve effectiveness. Leading IBM data management expert Tony Giordano brings together best practices for architecture, design, and methodology, and shows how to do the disciplined work of getting data integration right. Mr. Giordano begins with an overview of the “patterns” of data integration, showing how to build blueprints that smoothly handle both operational and analytic data integration. Next, he walks through the entire project lifecycle, explaining each phase, activity, task, and deliverable through a complete case study. Finally, he shows how to integrate data integration with other information management disciplines, from data governance to metadata. The book’s appendices bring together key principles, detailed models, and a complete data integration glossary. Coverage includes Implementing repeatable, efficient, and well-documented processes for integrating data Lowering costs and improving quality by eliminating unnecessary or duplicative data integrations Managing the high levels of complexity associated with integrating business and technical data Using intuitive graphical design techniques for more effective process and data integration modeling Building end-to-end data integration applications that bring together many complex data sources |
examples of business metadata: Information Technology and Innovation Trends in Organizations Alessandro D'Atri, Maria Ferrara, Joey F. George, Paolo Spagnoletti, 2011-07-07 The book examines a wide range of issues that characterize the current IT based innovation trends in organisations. It contains a collection of research papers focusing on themes of growing interest in the field of Information System, Organization Studies, and Management. The book offers a multi-disciplinary view on Information Systems aiming to disseminate academic knowledge. It might be particularly relevant to IT practitioners such as information systems managers, business managers and IT consultants. The volume is divided into XIV sections, each one focusing on a specific theme. A preface written by Joey George, president of the Association for Information Systems opens the text. The content of each section is based on a selection of the best papers (original double blind peer reviewed contributions) presented at the annual conference of the Italian chapter of AIS, which has been held in Naples, Italy, on October 2010. |
examples of business metadata: Business Analytics Thomas W. Jackson, Steven Lockwood, 2018-09-21 This innovative new textbook, co-authored by an established academic and a leading practitioner, is the first to bring together issues of cloud computing, business intelligence and big data analytics in order to explore how organisations use cloud technology to analyse data and make decisions. In addition to offering an up-to-date exploration of key issues relating to data privacy and ethics, information governance, and the future of analytics, the text describes the options available in deploying analytic solutions to the cloud and draws on real-world, international examples from companies such as Rolls Royce, Lego, Volkswagen and Samsung. Combining academic and practitioner perspectives that are crucial to the understanding of this growing field, Business Analytics acts an ideal core text for undergraduate, postgraduate and MBA modules on Big Data, Business and Data Analytics, and Business Intelligence, as well as functioning as a supplementary text for modules in Marketing Analytics. The book is also an invaluable resource for practitioners and will quickly enable the next generation of 'Information Builders' within organisations to understand innovative cloud based-analytic solutions. |
examples of business metadata: Metadata Matters John Horodyski, 2022-04-03 In what is certain to be a seminal work on metadata, John Horodyski masterfully affirms the value of metadata while providing practical examples of its role in our personal and professional lives. He does more than tell us that metadata matters—he vividly illustrates why it matters. —Patricia C. Franks, PhD, CA, CRM, IGP, CIGO, FAI, President, NAGARA, Professor Emerita, San José State University, USA If data is the language upon which our modern society will be built, then metadata will be its grammar, the construction of its meaning, the building for its content, and the ability to understand what data can be for us all. We are just starting to bring change into the management of the data that connects our experiences. Metadata Matters explains how metadata is the foundation of digital strategy. If digital assets are to be discovered, they want to be found. The path to good metadata design begins with the realization that digital assets need to be identified, organized, and made available for discovery. This book explains how metadata will help ensure that an organization is building the right system for the right users at the right time. Metadata matters and is the best chance for a return on investment on digital assets and is also a line of defense against lost opportunities. It matters to the digital experience of users. It helps organizations ensure that users can identify, discover, and experience their brands in the ways organizations intend. It is a necessary defense, which this book shows how to build. |
examples of business metadata: The Data Warehouse Lifecycle Toolkit Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Mundy, Bob Becker, 2011-03-08 A thorough update to the industry standard for designing, developing, and deploying data warehouse and business intelligence systems The world of data warehousing has changed remarkably since the first edition of The Data Warehouse Lifecycle Toolkit was published in 1998. In that time, the data warehouse industry has reached full maturity and acceptance, hardware and software have made staggering advances, and the techniques promoted in the premiere edition of this book have been adopted by nearly all data warehouse vendors and practitioners. In addition, the term business intelligence emerged to reflect the mission of the data warehouse: wrangling the data out of source systems, cleaning it, and delivering it to add value to the business. Ralph Kimball and his colleagues have refined the original set of Lifecycle methods and techniques based on their consulting and training experience. The authors understand first-hand that a data warehousing/business intelligence (DW/BI) system needs to change as fast as its surrounding organization evolves. To that end, they walk you through the detailed steps of designing, developing, and deploying a DW/BI system. You'll learn to create adaptable systems that deliver data and analyses to business users so they can make better business decisions. |
examples of business metadata: Executing Data Quality Projects Danette McGilvray, 2021-05-27 Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online |
examples of business metadata: Building a Scalable Data Warehouse with Data Vault 2.0 Daniel Linstedt, Michael Olschimke, 2015-09-15 The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. Building a Scalable Data Warehouse covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: - How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. - Important data warehouse technologies and practices. - Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. - Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast - Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse - Demystifies data vault modeling with beginning, intermediate, and advanced techniques - Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0 |
examples of business metadata: Data Quality Rupa Mahanti, 2019-03-18 This is not the kind of book that youll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective. from the foreword by Thomas C. Redman, Ph.D., the Data Doc Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout. |
examples of business metadata: Tagging Gene Smith, 2007-12-27 Tagging is fast becoming one of the primary ways people organize and manage digital information. Tagging complements traditional organizational tools like folders and search on users desktops as well as on the web. These developments mean that tagging has broad implications for information management, information architecture and interface design. And its reach extends beyond these technical domains to our culture at large. We can imagine, for example, the scrapbookers of the future curating their digital photos, emails, ticket stubs and other mementos with tags. This book explains the value of tagging, explores why people tag, how tagging works and when it can be used to improve the user experience. It exposes tagging's superficial simplicity to reveal interesting issues related to usability, information architecture, online community and collective intelligence. |
examples of business metadata: IBM Spectrum Discover: Metadata Management for Deep Insight of Unstructured Storage Joseph Dain, Norman Bogard, Isom Crawford Jr., Mathias Defiebre, Larry Coyne, IBM Redbooks, 2019-10-01 This IBM® Redpaper publication provides a comprehensive overview of the IBM Spectrum® Discover metadata management software platform. We give a detailed explanation of how the product creates, collects, and analyzes metadata. Several in-depth use cases are used that show examples of analytics, governance, and optimization. We also provide step-by-step information to install and set up the IBM Spectrum Discover trial environment. More than 80% of all data that is collected by organizations is not in a standard relational database. Instead, it is trapped in unstructured documents, social media posts, machine logs, and so on. Many organizations face significant challenges to manage this deluge of unstructured data such as: Pinpointing and activating relevant data for large-scale analytics Lacking the fine-grained visibility that is needed to map data to business priorities Removing redundant, obsolete, and trivial (ROT) data Identifying and classifying sensitive data IBM Spectrum Discover is a modern metadata management software that provides data insight for petabyte-scale file and Object Storage, storage on premises, and in the cloud. This software enables organizations to make better business decisions and gain and maintain a competitive advantage. IBM Spectrum Discover provides a rich metadata layer that enables storage administrators, data stewards, and data scientists to efficiently manage, classify, and gain insights from massive amounts of unstructured data. It improves storage economics, helps mitigate risk, and accelerates large-scale analytics to create competitive advantage and speed critical research. |
examples of business metadata: EPUB 3 Best Practices Matt Garrish, Markus Gylling, 2013-01-24 Ready to take your ebooks to the next level with EPUB 3? This concise guide includes best practices and advice to help you navigate the format’s wide range of technologies and functionality. EPUB 3 is set to turn electronic publishing on its head with rich multimedia reading experiences and scripted interactivity, but this specification can be daunting to learn. This book provides you with a solid foundation. Written by people involved in the development of this specification, EPUB 3 Best Practices includes chapters that cover unique aspects of the EPUB publishing process, such as technology, content creation, and distribution. Get a comprehensive survey of accessible production features Learn new global language-support features, including right-to-left page progressions Embed content with EPUB 3’s new multimedia elements Make your content dynamic through scripting and interactive elements Work with publication and distribution metadata Create synchronized text and audio playback in reading systems Learn techniques for fixed and adaptive layouts |
examples of business metadata: Handbook of Financial Data and Risk Information II Margarita S. Brose, Mark D. Flood, Dilip Krishna, Bill Nichols, 2014-01-09 A comprehensive resource for understanding the issues involved in collecting, measuring and managing data in the financial services industry. |
examples of business metadata: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration |
examples of business metadata: Data Modeling for the Business Steve Hoberman, Donna Burbank, Chris Bradley, 2009 Did you ever try getting Business and IT to agree on the project scope for a new application? Or try getting the Sales & Marketing department to agree on the target audience? Or try bringing new team members up to speed on the hundreds of tables in your data warehouse -- without them dozing off? You can be the hero in each of these and hundreds of other scenarios by building a High-Level Data Model. The High-Level Data Model is a simplified view of our complex environment. It can be a powerful communication tool of the key concepts within our application development projects, business intelligence and master data management programs, and all enterprise and industry initiatives. Learn about the High-Level Data Model and master the techniques for building one, including a comprehensive ten-step approach. Know how to evaluate toolsets for building and storing your models. Practice exercises and walk through a case study to reinforce your modelling skills. |
examples of business metadata: Definitions in Information Management Malcolm D. Chisholm, 2010-04 Dr. Chisholm's book is an important work and should be required reading for all senior executives, regulators, and market authorities. What we need before we can develop systems, is a set of clear cut definitions of each data element. This is an excellent book on definitions for data modelers and data managers. Data modeling is the art of defining data elements and is all about definitions. Establishing a common understanding of financial instruments, including the nuances of their underlying contractual structure, is the very foundation of systemic oversight, business process automation, and analytical modeling. |
examples of business metadata: Beyond Big Data Martin Oberhofer, Eberhard Hechler, Ivan Milman, Scott Schumacher, Dan Wolfson, 2014-10-17 Drive Powerful Business Value by Extending MDM to Social, Mobile, Local, and Transactional Data Enterprises have long relied on Master Data Management (MDM) to improve customer-related processes. But MDM was designed primarily for structured data. Today, crucial information is increasingly captured in unstructured, transactional, and social formats: from tweets and Facebook posts to call center transcripts. Even with tools like Hadoop, extracting usable insight is difficult—often, because it’s so difficult to integrate new and legacy data sources. In Beyond Big Data, five of IBM’s leading data management experts introduce powerful new ways to integrate social, mobile, location, and traditional data. Drawing on pioneering experience with IBM’s enterprise customers, they show how Social MDM can help you deepen relationships, improve prospect targeting, and fully engage customers through mobile channels. Business leaders and practitioners will discover powerful new ways to combine social and master data to improve performance and uncover new opportunities. Architects and other technical leaders will find a complete reference architecture, in-depth coverage of relevant technologies and use cases, and domain-specific best practices for their own projects. Coverage Includes How Social MDM extends fundamental MDM concepts and techniques Architecting Social MDM: components, functions, layers, and interactions Identifying high value relationships: person to product and person to organization Mapping Social MDM architecture to specific products and technologies Using Social MDM to create more compelling customer experiences Accelerating your transition to highly-targeted, contextual marketing Incorporating mobile data to improve employee productivity Avoiding privacy and ethical pitfalls throughout your ecosystem Previewing Semantic MDM and other emerging trends |
examples of business metadata: IBM Cognos Business Intelligence Dustin Adkison, 2013-05-07 Written as a practical guide, this book will show you how to manage your reporting environment using IBM Cognos 10 and make the most out of BI tools within your business - taking a hands-on approach to stimulate learning and develop your understanding, If you are an IBM Cognos or Business Intelligence developer or consultant, have a basic knowledge of Cognos 10 BI and a good level of understanding of Cognos 8 then this book is for you |
examples of business metadata: Beginning Relational Data Modeling Sharon Lee Allen, Evan Terry, 2006-11-03 *Immediately accessible to anyone who must design a relational data model—regardless of prior experience *Concise, straightforward explanations to a usually complex/ jargon-rich discipline *Examples are based on extensive author experience modeling for real business systems |
examples of business metadata: REST API Design Rulebook Mark Masse, 2011-10-25 The basic rules of REST APIs - many nouns, few verbs, stick with HTTP - seem easy, but that simplicity and power require discipline to work smoothly. This brief guide provides next steps for implementing complex projects on simple and extensible foundations. |
examples of business metadata: Understanding Metadata Jenn Riley, 2017 |
examples of business metadata: Handbook Of Metadata, Semantics And Ontologies Miguel-angel Sicilia, 2013-12-17 Metadata research has emerged as a discipline cross-cutting many domains, focused on the provision of distributed descriptions (often called annotations) to Web resources or applications. Such associated descriptions are supposed to serve as a foundation for advanced services in many application areas, including search and location, personalization, federation of repositories and automated delivery of information. Indeed, the Semantic Web is in itself a concrete technological framework for ontology-based metadata. For example, Web-based social networking requires metadata describing people and their interrelations, and large databases with biological information use complex and detailed metadata schemas for more precise and informed search strategies.There is a wide diversity in the languages and idioms used for providing meta-descriptions, from simple structured text in metadata schemas to formal annotations using ontologies, and the technologies for storing, sharing and exploiting meta-descriptions are also diverse and evolve rapidly. In addition, there is a proliferation of schemas and standards related to metadata, resulting in a complex and moving technological landscape — hence, the need for specialized knowledge and skills in this area.The Handbook of Metadata, Semantics and Ontologies is intended as an authoritative reference for students, practitioners and researchers, serving as a roadmap for the variety of metadata schemas and ontologies available in a number of key domain areas, including culture, biology, education, healthcare, engineering and library science. |
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code Standard; …
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code Standard; …
Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 Apache …
Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code Standard; …
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …
Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …
Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …
Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …