Advertisement
examples of statistics math problems: The Humongous Book of Statistics Problems Robert Donnelly, W. Michael Kelley, 2009-12-01 Learn to solve statistics problems—and make them no problem! Most math and science study guides are dry and difficult, but this is the exception. Following the successful The Humongous Books in calculus and algebra, bestselling author Mike Kelley takes a typical statistics workbook, full of solved problems, and writes notes in the margins, adding missing steps and simplifying concepts and solutions. By learning how to interpret and solve problems as they are presented in statistics courses, students prepare to solve those difficult problems that were never discussed in class but are always on exams. There are also annotated notes throughout the book to clarify each problem—all guided by an author with a great track record for helping students and math enthusiasts. His website (calculus-help.com) reaches thousands of students every month. |
examples of statistics math problems: All of Statistics Larry Wasserman, 2013-12-11 Taken literally, the title All of Statistics is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data. |
examples of statistics math problems: Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions A. A. Sveshnikov, 2012-04-30 Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more. |
examples of statistics math problems: Introductory Business Statistics 2e Alexander Holmes, Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
examples of statistics math problems: Examples and Problems in Mathematical Statistics Shelemyahu Zacks, 2013-12-17 Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers. |
examples of statistics math problems: Introductory Statistics 2e Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
examples of statistics math problems: Statistics E. E. Bassett, 2000 What is most valuable about this book is the very high quality of the model solutions It is a problem book for those teaching or learning a first course in mathematical statistics This one is outstandingly good and highly recommended.Goeff CohenUniversity of Edinburgh, ScotlandThe authors of this useful book take the view that the ability to solve practical problems is fundamental to an understanding of statistical techniques The book is designed to be read alongside a standard text. I expect it is likely to be most useful to the teacher or to the able student forced to work largely alone.David GreenThis book not only provides a solution to each problem set but gives notes about that solution. These notes should help students to understand the reasoning behind the techniques used, so giving them confidence to deal with problems of a similar nature This book should prove a valuable addition to the library of students and teachers of statistics.M J G AnsellHatfield PolytechnicThe book consists of aseries of examples, each followed by one or more alternative solutions and accompanying notes. The solutions themselves are useful models. The notes go one stage further and explain why particular techniques were chosen to solve each problem. This approach may help to overcome the common difficulty of deciding which method to choose when answering examination questions The book is easy to read and suitable for individual study.Richard J FieldThese notes provide fascinating insights into the process that experienced statisticians go through in order to solve a problem. Students (and maybe some instructors) will benefit greatly from going through the solutions and the notes in thisbook.Gudmund R IversenSwarthmore CollegeThe approach of the authors is to improve a students understanding of statistics, and to help students appreciate which techniques might be appropriate for any problem.Zentralblatt Math., 2001 |
examples of statistics math problems: Introduction to Bayesian Statistics William M. Bolstad, James M. Curran, 2016-09-02 ...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods. There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics. |
examples of statistics math problems: Statistics for Mathematicians Victor M. Panaretos, 2016-06-01 This textbook provides a coherent introduction to the main concepts and methods of one-parameter statistical inference. Intended for students of Mathematics taking their first course in Statistics, the focus is on Statistics for Mathematicians rather than on Mathematical Statistics. The goal is not to focus on the mathematical/theoretical aspects of the subject, but rather to provide an introduction to the subject tailored to the mindset and tastes of Mathematics students, who are sometimes turned off by the informal nature of Statistics courses. This book can be used as the basis for an elementary semester-long first course on Statistics with a firm sense of direction that does not sacrifice rigor. The deeper goal of the text is to attract the attention of promising Mathematics students. |
examples of statistics math problems: Naked Statistics: Stripping the Dread from the Data Charles Wheelan, 2013-01-07 A New York Times bestseller Brilliant, funny…the best math teacher you never had. —San Francisco Chronicle Once considered tedious, the field of statistics is rapidly evolving into a discipline Hal Varian, chief economist at Google, has actually called sexy. From batting averages and political polls to game shows and medical research, the real-world application of statistics continues to grow by leaps and bounds. How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more. For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions. And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life. |
examples of statistics math problems: The Basic Practice of Statistics David S. Moore, 2010 This is a clear and innovative overview of statistics which emphasises major ideas, essential skills and real-life data. The organisation and design has been improved for the fifth edition, coverage of engaging, real-world topics has been increased and content has been updated to appeal to today's trends and research. |
examples of statistics math problems: Statistics For Dummies Deborah J. Rumsey, 2016-06-07 The fun and easy way to get down to business with statistics Stymied by statistics? No fear? this friendly guide offers clear, practical explanations of statistical ideas, techniques, formulas, and calculations, with lots of examples that show you how these concepts apply to your everyday life. Statistics For Dummies shows you how to interpret and critique graphs and charts, determine the odds with probability, guesstimate with confidence using confidence intervals, set up and carry out a hypothesis test, compute statistical formulas, and more. Tracks to a typical first semester statistics course Updated examples resonate with today's students Explanations mirror teaching methods and classroom protocol Packed with practical advice and real-world problems, Statistics For Dummies gives you everything you need to analyze and interpret data for improved classroom or on-the-job performance. |
examples of statistics math problems: Using R for Introductory Statistics John Verzani, 2018-10-03 The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package=UsingR)), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing. |
examples of statistics math problems: Open Middle Math Robert Kaplinsky, 2023-10-10 This book is an amazing resource for teachers who are struggling to help students develop both procedural fluency and conceptual understanding.. --Dr. Margaret (Peg) Smith, co-author of5 Practices for Orchestrating Productive Mathematical Discussions Robert Kaplinsky, the co-creator of Open Middle math problems, brings hisnew class of tasks designed to stimulate deeper thinking and lively discussion among middle and high school students in Open Middle Math: Problems That Unlock Student Thinking, Grades 6-12. The problems are characterized by a closed beginning,- meaning all students start with the same initial problem, and a closed end,- meaning there is only one correct or optimal answer. The key is that the middle is open- in the sense that there are multiple ways to approach and ultimately solve the problem. These tasks have proven enormously popular with teachers looking to assess and deepen student understanding, build student stamina, and energize their classrooms. Professional Learning Resource for Teachers: Open Middle Math is an indispensable resource for educators interested in teaching student-centered mathematics in middle and high schools consistent with the national and state standards. Sample Problems at Each Grade: The book demonstrates the Open Middle concept with sample problems ranging from dividing fractions at 6th grade to algebra, trigonometry, and calculus. Teaching Tips for Student-Centered Math Classrooms: Kaplinsky shares guidance on choosing problems, designing your own math problems, and teaching for multiple purposes, including formative assessment, identifying misconceptions, procedural fluency, and conceptual understanding. Adaptable and Accessible Math: The tasks can be solved using various strategies at different levels of sophistication, which means all students can access the problems and participate in the conversation. Open Middle Math will help math teachers transform the 6th -12th grade classroom into an environment focused on problem solving, student dialogue, and critical thinking. |
examples of statistics math problems: How to Lie with Statistics Darrell Huff, 2010-12-07 If you want to outsmart a crook, learn his tricks—Darrell Huff explains exactly how in the classic How to Lie with Statistics. From distorted graphs and biased samples to misleading averages, there are countless statistical dodges that lend cover to anyone with an ax to grind or a product to sell. With abundant examples and illustrations, Darrell Huff’s lively and engaging primer clarifies the basic principles of statistics and explains how they’re used to present information in honest and not-so-honest ways. Now even more indispensable in our data-driven world than it was when first published, How to Lie with Statistics is the book that generations of readers have relied on to keep from being fooled. |
examples of statistics math problems: Introduction to Mathematical Statistics, Fifth Edition Robert V. Hogg, Allen Thornton Craig, 1995 |
examples of statistics math problems: Statistical Thinking from Scratch M. D. Edge, 2019 Focuses on detailed instruction in a single statistical technique, simple linear regression (SLR), with the goal of gaining tools, understanding, and intuition that can be applied to other contexts. |
examples of statistics math problems: Statistics II for Dummies Deborah J. Rumsey, 2009-08-31 The ideal supplement and study guide for students preparing for advanced statistics Packed with fresh and practical examples appropriate for a range of degree-seeking students, Statistics II For Dummies helps any reader succeed in an upper-level statistics course. It picks up with data analysis where Statistics For Dummies left off, featuring new and updated examples, real-world applications, and test-taking strategies for success. This easy-to-understand guide covers such key topics as sorting and testing models, using regression to make predictions, performing variance analysis (ANOVA), drawing test conclusions with chi-squares, and making comparisons with the Rank Sum Test. |
examples of statistics math problems: The Math Myth Andrew Hacker, 2010-05-25 A New York Times–bestselling author looks at mathematics education in America—when it’s worthwhile, and when it’s not. Why do we inflict a full menu of mathematics—algebra, geometry, trigonometry, even calculus—on all young Americans, regardless of their interests or aptitudes? While Andrew Hacker has been a professor of mathematics himself, and extols the glories of the subject, he also questions some widely held assumptions in this thought-provoking and practical-minded book. Does advanced math really broaden our minds? Is mastery of azimuths and asymptotes needed for success in most jobs? Should the entire Common Core syllabus be required of every student? Hacker worries that our nation’s current frenzied emphasis on STEM is diverting attention from other pursuits and even subverting the spirit of the country. Here, he shows how mandating math for everyone prevents other talents from being developed and acts as an irrational barrier to graduation and careers. He proposes alternatives, including teaching facility with figures, quantitative reasoning, and understanding statistics. Expanding upon the author’s viral New York Times op-ed, The Math Myth is sure to spark a heated and needed national conversation—not just about mathematics but about the kind of people and society we want to be. “Hacker’s accessible arguments offer plenty to think about and should serve as a clarion call to students, parents, and educators who decry the one-size-fits-all approach to schooling.” —Publishers Weekly, starred review |
examples of statistics math problems: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. |
examples of statistics math problems: Foundations of Data Science Avrim Blum, John Hopcroft, Ravindran Kannan, 2020-01-23 This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data. |
examples of statistics math problems: Fifty Challenging Problems in Probability with Solutions Frederick Mosteller, 2012-04-26 Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions. |
examples of statistics math problems: Mathematical Statistics Jun Shao, 2008-02-03 This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. degree in statistics. This new edition has been revised and updated and in this fourth printing, errors have been ironed out. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are useful in statistics. The second chapter introduces some fundamental concepts in statistical decision theory and inference. Subsequent chapters contain detailed studies on some important topics: unbiased estimation, parametric estimation, nonparametric estimation, hypothesis testing, and confidence sets. A large number of exercises in each chapter provide not only practice problems for students, but also many additional results. |
examples of statistics math problems: 40 Puzzles and Problems in Probability and Mathematical Statistics Wolf Schwarz, 2007-11-25 This book is based on the view that cognitive skills are best acquired by solving challenging, non-standard probability problems. Many puzzles and problems presented here are either new within a problem solving context (although as topics in fundamental research they are long known) or are variations of classical problems which follow directly from elementary concepts. A small number of particularly instructive problems is taken from previous sources which in this case are generally given. This book will be a handy resource for professors looking for problems to assign, for undergraduate math students, and for a more general audience of amateur scientists. |
examples of statistics math problems: Understanding Probability Henk Tijms, 2007-07-26 In this fully revised second edition of Understanding Probability, the reader can learn about the world of probability in an informal way. The author demystifies the law of large numbers, betting systems, random walks, the bootstrap, rare events, the central limit theorem, the Bayesian approach and more. This second edition has wider coverage, more explanations and examples and exercises, and a new chapter introducing Markov chains, making it a great choice for a first probability course. But its easy-going style makes it just as valuable if you want to learn about the subject on your own, and high school algebra is really all the mathematical background you need. |
examples of statistics math problems: Fundamentals of Mathematical Statistics S.C. Gupta, V.K. Kapoor, 2020-09-10 Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Some prominent additions are given below: 1. Variance of Degenerate Random Variable 2. Approximate Expression for Expectation and Variance 3. Lyapounov’s Inequality 4. Holder’s Inequality 5. Minkowski’s Inequality 6. Double Expectation Rule or Double-E Rule and many others |
examples of statistics math problems: The Statistical Analysis of Experimental Data John Mandel, 2012-06-08 First half of book presents fundamental mathematical definitions, concepts, and facts while remaining half deals with statistics primarily as an interpretive tool. Well-written text, numerous worked examples with step-by-step presentation. Includes 116 tables. |
examples of statistics math problems: Applied Statistics I Rebecca M. Warner, 2020-01-14 Applied Statistics I: Basic Bivariate Techniques has been created from the first half of Rebecca M. Warner's popular Applied Statistics: From Bivariate Through Multivariate Techniques. The author's contemporary approach differs from some of the well-worn texts in the market, and reflects current thinking in the field. It spends less time on statistical significance testing, and moves in the direction of the new statistics by focusing more on confidence intervals and effect size. Instructors of upper undergraduate or beginning graduate level courses will find that the greater focus on basic concepts such as partition of variance and effect size is more useful to students, particularly as preparation for more advanced courses. Spending less time on statistical significance testing allows for more time to be devoted to more interesting and useful statistics that students will see in journal articles (such as correlation and regression). This introductory statistics text includes examples in SPSS, together with datasets on an accompanying website. A companion study guide reproducing the exercises and examples in R will also be available. |
examples of statistics math problems: Discovering Statistics Using IBM SPSS Statistics Andy Field, 2017-11-03 With an exciting new look, math diagnostic tool, and a research roadmap to navigate projects, this new edition of Andy Field’s award-winning text offers a unique combination of humor and step-by-step instruction to make learning statistics compelling and accessible to even the most anxious of students. The Fifth Edition takes students from initial theory to regression, factor analysis, and multilevel modeling, fully incorporating IBM SPSS Statistics© version 25 and fascinating examples throughout. SAGE edge offers a robust online environment featuring an impressive array of free tools and resources for review, study, and further exploration, keeping both instructors and students on the cutting edge of teaching and learning. Course cartridges available for Blackboard, Canvas, and Moodle. Andy Field is the award winning author of An Adventure in Statistics: The Reality Enigma and is the recipient of the UK National Teaching Fellowship (2010), British Psychological Society book award (2006), and has been recognized with local and national teaching awards (University of Sussex, 2015, 2016). |
examples of statistics math problems: Probability and Statistics Michael J. Evans, Jeffrey S. Rosenthal, 2004 Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students. |
examples of statistics math problems: Online Statistics Education David M Lane, 2014-12-02 Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.This print edition of the public domain textbook gives the student an opportunity to own a physical copy to help enhance their educational experience. This part I features the book Front Matter, Chapters 1-10, and the full Glossary. Chapters Include:: I. Introduction, II. Graphing Distributions, III. Summarizing Distributions, IV. Describing Bivariate Data, V. Probability, VI. Research Design, VII. Normal Distributions, VIII. Advanced Graphs, IX. Sampling Distributions, and X. Estimation. Online Statistics Education: A Multimedia Course of Study (http: //onlinestatbook.com/). Project Leader: David M. Lane, Rice University. |
examples of statistics math problems: How Not to Be Wrong Jordan Ellenberg, 2014-05-29 A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description. |
examples of statistics math problems: Introductory Statistics Douglas S. Shafer, 2022 |
examples of statistics math problems: Statistics and Probability with Applications (High School) Daren Starnes, Josh Tabor, 2016-10-07 Statistics and Probability with Applications, Third Edition is the only introductory statistics text written by high school teachers for high school teachers and students. Daren Starnes, Josh Tabor, and the extended team of contributors bring their in-depth understanding of statistics and the challenges faced by high school students and teachers to development of the text and its accompanying suite of print and interactive resources for learning and instruction. A complete re-envisioning of the authors’ Statistics Through Applications, this new text covers the core content for the course in a series of brief, manageable lessons, making it easy for students and teachers to stay on pace. Throughout, new pedagogical tools and lively real-life examples help captivate students and prepare them to use statistics in college courses and in any career. |
examples of statistics math problems: Mathematical Statistics with Applications in R Kandethody M. Ramachandran, Chris P. Tsokos, 2014-09-14 Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner.This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students.Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. - Step-by-step procedure to solve real problems, making the topic more accessible - Exercises blend theory and modern applications - Practical, real-world chapter projects - Provides an optional section in each chapter on using Minitab, SPSS and SAS commands - Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods |
examples of statistics math problems: You Failed Your Math Test, Comrade Einstein: Adventures And Misadventures Of Young Mathematicians Misha Shifman, 2005-04-27 This groundbreaking work features two essays written by the renowned mathematician Ilan Vardi. The first essay presents a thorough analysis of contrived problems suggested to “undesirable” applicants to the Department of Mathematics of Moscow University. His second essay gives an in-depth discussion of solutions to the Year 2000 International Mathematical Olympiad, with emphasis on the comparison of the olympiad problems to those given at the Moscow University entrance examinations.The second part of the book provides a historical background of a unique phenomenon in mathematics, which flourished in the 1970s-80s in the USSR. Specially designed math problems were used not to test students' ingenuity and creativity but, rather, as “killer problems,” to deny access to higher education to “undesirable” applicants. The focus of this part is the 1980 essay, “Intellectual Genocide”, written by B Kanevsky and V Senderov. It is being published for the first time. Also featured is a little-known page of the Soviet history, a rare example of the oppressed organizing to defend their dignity. This is the story of the so-called Jewish People's University, the inception of which is associated with Kanevsky, Senderov and Bella Subbotovskaya. |
examples of statistics math problems: Statistics Workbook For Dummies with Online Practice Deborah J. Rumsey, 2019-04-23 Practice your way to a higher statistics score The adage that practice makes perfect is never truer than with math problems. Statistics Workbook For Dummies with Online Practice provides succinct content reviews for every topic, with plenty of examples and practice problems for each concept, in the book and online. Every lesson begins with a concept review, followed by a few example problems and plenty of practice problems. There's a step-by-step solution for every problem, with tips and tricks to help with comprehension and retention. New for this edition, free online practice quizzes for each chapter provide extra opportunities to test your knowledge and understanding. Get FREE access to chapter quizzes in an online test bank Work along with each chapter or use the test bank for final exam review Discover which statistical measures are most meaningful Scoring high in your Statistics class has never been easier! |
examples of statistics math problems: Statistics for K-8 Educators Robert Rosenfeld, 2013 This book offers an introduction to descriptive and inferential statistics tailored to the teaching and research needs of K-8 educators. Using statistics to tell a story, veteran teacher educator Robert Rosenfeld pushes readers away from simply performing a calculation to truly understanding the statistical concepts themselves. In addition to helping educators develop this statistical habit of mind, Rosenfeld also focuses on developing an understanding of the statistics in published research and on interpreting school data, which can be applied in school assessment and educational research. Features of this must-read resource include: Numerous exercises and activities throughout that are related specifically to the world of educators and are designed to foster conversation and small group discussion. Connections drawn between statistics and the regular mathematics curriculum to aid teachers who do classroom-based action research. A section covering the basic concepts of standardized tests, such as summative versus formative assessment, and standards-based versus norm-referenced tests. Accessibly written and conversational in tone, Statistics for K-8 Eductorsprovides the technical foundation to help teachers make good sense of quantitative information connected to their classrooms and to their schools. |
examples of statistics math problems: Introduction to Mathematical Statistics and Its Applications Richard J. Larsen, Morris L. Marx, 2013-08-28 Noted for its integration of real-world data and case studies, this text offers sound coverage of the theoretical aspects of mathematical statistics. The authors demonstrate how and when to use statistical methods, while reinforcing the calculus that students have mastered in previous courses. Throughout the 5th Edition, the authors have added and updated examples and case studies, while also refining existing features that show a clear path from theory to practice. The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed. |
examples of statistics math problems: Practice Makes Perfect Statistics Sandra McCune, 2009-05-26 A no-nonsense practical guide to statistics, providing concise summaries, clear model examples, and plenty of practice, making this workbook the ideal complement to class study or self-study, preparation for exams or a brush-up on rusty skills. About the Book Established as a successful practical workbook series with over 20 titles in the language learning category, Practice Makes Perfect now provides the same clear, concise approach and extensive exercises to key fields within mathematics. The key to the Practice Makes Perfect series is the extensive exercises that provide learners with all the practice they need for mastery. Not focused on any particular test or exam, but complementary to most statistics curricula Deliberately all-encompassing approach: international perspective and balance between traditional and newer approaches. Large trim allows clear presentation of worked problems, exercises, and explained answers. Features No-nonsense approach: provides clear presentation of content. Over 500 exercises and answers covering all aspects of statistics Successful series: Practice Makes Perfect has sales of 1,000,000 copies in the language category – now applied to mathematics Workbook is not exam specific, yet it provides thorough coverage of the statistics skills required in most math tests. |
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; …
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …
Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 Apache …
Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; …
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing …
Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code Standard; Source Code (GitHub) Issues …
Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 Apache ECharts,欢迎引用本论文。
Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing …