Excel Monte Carlo Analysis

Advertisement



  excel monte carlo analysis: Introductory Econometrics Humberto Barreto, Frank Howland, 2006 This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.
  excel monte carlo analysis: Excel Simulations Gerard M. Verschuuren, 2013-11-01 Covering a variety of Excel simulations, from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.
  excel monte carlo analysis: Practical Monte Carlo Simulation with Excel - Part 1 of 2 Akram Najjar, 2018-04-18
  excel monte carlo analysis: Financial Modeling with Crystal Ball and Excel John Charnes, 2011-08-04 Praise for Financial Modeling with Crystal Ball(r) and Excel(r) Professor Charnes's book drives clarity into applied Monte Carlo analysis using examples and tools relevant to real-world finance. The book will prove useful for analysts of all levels and as a supplement to academic courses in multiple disciplines. -Mark Odermann, Senior Financial Analyst, Microsoft Think you really know financial modeling? This is a must-have for power Excel users. Professor Charnes shows how to make more realistic models that result in fewer surprises. Every analyst needs this credibility booster. -James Franklin, CEO, Decisioneering, Inc. This book packs a first-year MBA's worth of financial and business modeling education into a few dozen easy-to-understand examples. Crystal Ball software does the housekeeping, so readers can concentrate on the business decision. A careful reader who works the examples on a computer will master the best general-purpose technology available for working with uncertainty. -Aaron Brown, Executive Director, Morgan Stanley, author of The Poker Face of Wall Street Using Crystal Ball and Excel, John Charnes takes you step by step, demonstrating a conceptual framework that turns static Excel data and financial models into true risk models. I am astonished by the clarity of the text and the hands-on, step-by-step examples using Crystal Ball and Excel; Professor Charnes is a masterful teacher, and this is an absolute gem of a book for the new generation of analyst. -Brian Watt, Chief Operating Officer, GECC, Inc. Financial Modeling with Crystal Ball and Excel is a comprehensive, well-written guide to one of the most useful analysis tools available to professional risk managers and quantitative analysts. This is a must-have book for anyone using Crystal Ball, and anyone wanting an overview of basic risk management concepts. -Paul Dietz, Manager, Quantitative Analysis, Westar Energy John Charnes presents an insightful exploration of techniques for analysis and understanding of risk and uncertainty in business cases. By application of real options theory and Monte Carlo simulation to planning, doors are opened to analysis of what used to be impossible, such as modeling the value today of future project choices. -Bruce Wallace, Nortel
  excel monte carlo analysis: How to Measure Anything in Cybersecurity Risk Douglas W. Hubbard, Richard Seiersen, 2016-07-25 A ground shaking exposé on the failure of popular cyber risk management methods How to Measure Anything in Cybersecurity Risk exposes the shortcomings of current risk management practices, and offers a series of improvement techniques that help you fill the holes and ramp up security. In his bestselling book How to Measure Anything, author Douglas W. Hubbard opened the business world's eyes to the critical need for better measurement. This book expands upon that premise and draws from The Failure of Risk Management to sound the alarm in the cybersecurity realm. Some of the field's premier risk management approaches actually create more risk than they mitigate, and questionable methods have been duplicated across industries and embedded in the products accepted as gospel. This book sheds light on these blatant risks, and provides alternate techniques that can help improve your current situation. You'll also learn which approaches are too risky to save, and are actually more damaging than a total lack of any security. Dangerous risk management methods abound; there is no industry more critically in need of solutions than cybersecurity. This book provides solutions where they exist, and advises when to change tracks entirely. Discover the shortcomings of cybersecurity's best practices Learn which risk management approaches actually create risk Improve your current practices with practical alterations Learn which methods are beyond saving, and worse than doing nothing Insightful and enlightening, this book will inspire a closer examination of your company's own risk management practices in the context of cybersecurity. The end goal is airtight data protection, so finding cracks in the vault is a positive thing—as long as you get there before the bad guys do. How to Measure Anything in Cybersecurity Risk is your guide to more robust protection through better quantitative processes, approaches, and techniques.
  excel monte carlo analysis: Excel Data Analysis Hector Guerrero, 2018-12-14 This book offers a comprehensive and readable introduction to modern business and data analytics. It is based on the use of Excel, a tool that virtually all students and professionals have access to. The explanations are focused on understanding the techniques and their proper application, and are supplemented by a wealth of in-chapter and end-of-chapter exercises. In addition to the general statistical methods, the book also includes Monte Carlo simulation and optimization. The second edition has been thoroughly revised: new topics, exercises and examples have been added, and the readability has been further improved. The book is primarily intended for students in business, economics and government, as well as professionals, who need a more rigorous introduction to business and data analytics – yet also need to learn the topic quickly and without overly academic explanations.
  excel monte carlo analysis: Dashboards for Excel Jordan Goldmeier, Purnachandra Duggirala, 2015-10-07 This book takes a hands-on approach to developing dashboards, from instructing users on advanced Excel techniques to addressing dashboard pitfalls common in the real world. Dashboards for Excel is your key to creating informative, actionable, and interactive dashboards and decision support systems. Throughout the book, the reader is challenged to think about Excel and data analytics differently—that is, to think outside the cell. This book shows you how to create dashboards in Excel quickly and effectively. In this book, you learn how to: Apply data visualization principles for more effective dashboards Employ dynamic charts and tables to create dashboards that are constantly up-to-date and providing fresh information Use understated yet powerful formulas for Excel development Apply advanced Excel techniques mixing formulas and Visual Basic for Applications (VBA) to create interactive dashboards Create dynamic systems for decision support in your organization Avoid common problems in Excel development and dashboard creation Get started with the Excel data model, PowerPivot, and Power Query
  excel monte carlo analysis: Advanced Excel Essentials Jordan Goldmeier, 2014-11-10 Advanced Excel Essentials is the only book for experienced Excel developers who want to channel their skills into building spreadsheet applications and dashboards. This book starts from the assumption that you are well-versed in Excel and builds on your skills to take them to an advanced level. It provides the building blocks of advanced development and then takes you through the development of your own advanced spreadsheet application. For the seasoned analyst, accountant, financial professional, management consultant, or engineer—this is the book you’ve been waiting for! Author Jordan Goldmeier builds on a foundation of industry best practices, bringing his own forward-thinking approach to Excel and rich real-world experience, to distill a unique blend of advanced essentials. Among other topics, he covers advanced formula concepts like array formulas and Boolean logic and provides insight into better code and formulas development. He supports that insight by showing you how to build correctly with hands-on examples.
  excel monte carlo analysis: 100 Excel VBA Simulations Gerard M. Verschuuren, 2016-11-18 Covering a variety of Excel simulations by using Visual Basic (VBA), from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.
  excel monte carlo analysis: Monte Carlo Simulation and Resampling Methods for Social Science Thomas M. Carsey, Jeffrey J. Harden, 2013-08-05 Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator in repeated samples, the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.
  excel monte carlo analysis: 130 Excel Simulations in Action Gerard Verschuuren, 2017-10-20 This book covers a variety of Excel simulations, from gambling to genetics. The 130 simulations covered offer an exciting and fun alternative the usual Excel topics and include situations such as roulette, sex determination, population growth, and traffic patterns, among 125 others.
  excel monte carlo analysis: Microsoft Excel Data Analysis and Business Modeling (Office 2021 and Microsoft 365) Wayne Winston, 2021-12-17 Master business modeling and analysis techniques with Microsoft Excel and transform data into bottom-line results. Award-winning educator Wayne Winston's hands-on, scenario-focused guide helps you use today's Excel to ask the right questions and get accurate, actionable answers. More extensively updated than any previous edition, new coverage ranges from one-click data analysis to STOCKHISTORY, dynamic arrays to Power Query, and includes six new chapters. Practice with over 900 problems, many based on real challenges faced by working analysts. Solve real problems with Microsoft Excel—and build your competitive advantage Quickly transition from Excel basics to sophisticated analytics Use recent Power Query enhancements to connect, combine, and transform data sources more effectively Use the LAMBDA and LAMBDA helper functions to create Custom Functions without VBA Use New Data Types to import data including stock prices, weather, information on geographic areas, universities, movies, and music Build more sophisticated and compelling charts Use the new XLOOKUP function to revolutionize your lookup formulas Master new Dynamic Array formulas that allow you to sort and filter data with formulas and find all UNIQUE entries Illuminate insights from geographic and temporal data with 3D Maps Improve decision-making with probability, Bayes' theorem, and Monte Carlo simulation and scenarios Use Excel trend curves, multiple regression, and exponential smoothing for predictive analytics Use Data Model and Power Pivot to effectively build and use relational data sources inside an Excel workbook
  excel monte carlo analysis: Practical Monte Carlo Simulation with Excel - Part 2 of 2 Akram Najjar, 2018-04-18 There is a fair number of stand alone applications as well as add on’s to Microsoft Excel in the market to be used to run Monte Carlo Simulation (MCS) models. However, out of the box, Excel has all the functions you need to develop such models. What is needed are robust modeling procedures, techniques and analytic formulations. Initially, I started with one book. This grew out of proportion as more and more applications and models were identified. Some of these had not been modeled with MCS before. I had to break the book into two parts. Part 1 presents the basics of modeling always providing methods and typical models as applications of simulation. Part 1 also spends time on clarifying different ways of analyzing the simulation output using a variety of statistical functions and procedures all found within Excel. The eBook clarifies a variety of Excel facilities needed in different parts of simulation: sensitivity analysis, linear regression and the Analysis Toolpack. Finally, Part 1 presents a few standard modeling techniques that can be used in a variety of models, specifically in Part 2. Part 2 concentrates on applications such as project management, acceptance sampling, sales and budget forecasting, queuing models, reliability engineering and more. Since these operations behave according to specific statistical distributions, time is spent on clarifying a variety of these functions. When one or two are not available in Excel, alternative methods of computation are presented. A special chapter addresses Markov Processes and shows how simulation can be coupled to such an analysis. The uses and applications of statistical distributions in these operations are addressed in depth. Having covered Uniform, Normal and Discrete Distributions in Part 1, Part 2 proceeds to present and give applications for the following distributions: binomial, negative binomial, geometric, hypergeometric, triangular (not commonly used but is the basis as to why betaPERT is preferred), Poisson, exponential, Gamma and Weibull. No programming is required although in one single case, an embedded VBA module is included. It is used to formulate a method that allows the analyst to develop a two level simulation. To get the results of each of the primary runs in the model, the model runs a further “sub-simulation”. No VBA competence is required. The two eBooks come with 21 and 54 step by step models, respectively, and with supporting images. Whenever statistical functions are used, they are fully clarified using a common sense and non-theoretical approach. All the workouts are solved and are available for download from this page.
  excel monte carlo analysis: Problem Solving and Uncertainty Modeling through Optimization and Soft Computing Applications Saxena, Pratiksha, 2016-03-01 Optimization techniques have developed into a modern-day solution for real-world problems in various industries. As a way to improve performance and handle issues of uncertainty, optimization research becomes a topic of special interest across disciplines. Problem Solving and Uncertainty Modeling through Optimization and Soft Computing Applications presents the latest research trends and developments in the area of applied optimization methodologies and soft computing techniques for solving complex problems. Taking a multi-disciplinary approach, this critical publication is an essential reference source for engineers, managers, researchers, and post-graduate students.
  excel monte carlo analysis: Teaching Macroeconomics with Microsoft Excel® Humberto Barreto, 2016-05-23 Humberto Barreto shows professors how to teach macroeconomic models and incorporate data using Microsoft Excel® with free files and videos.
  excel monte carlo analysis: Elements of Numerical Mathematical Economics with Excel Giovanni Romeo, 2019-11-28 Elements of Numerical Mathematical Economics with Excel: Static and Dynamic Optimization shows readers how to apply static and dynamic optimization theory in an easy and practical manner, without requiring the mastery of specific programming languages that are often difficult and expensive to learn. Featuring user-friendly numerical discrete calculations developed within the Excel worksheets, the book includes key examples and economic applications solved step-by-step and then replicated in Excel. After introducing the fundamental tools of mathematical economics, the book explores the classical static optimization theory of linear and nonlinear programming, applying the core concepts of microeconomics and some portfolio theory. This provides a background for the more challenging worksheet applications of the dynamic optimization theory. The book also covers special complementary topics such as inventory modelling, data analysis for business and economics, and the essential elements of Monte Carlo analysis. Practical and accessible, Elements of Numerical Mathematical Economics with Excel: Static and Dynamic Optimization increases the computing power of economists worldwide. This book is accompanied by a companion website that includes Excel examples presented in the book, exercises, and other supplementary materials that will further assist in understanding this useful framework. - Explains how Excel provides a practical numerical approach to optimization theory and analytics - Increases access to the economic applications of this universally-available, relatively simple software program - Encourages readers to go to the core of theoretical continuous calculations and learn more about optimization processes
  excel monte carlo analysis: The Data-Driven Project Manager Mario Vanhoucke, 2018-03-27 Discover solutions to common obstacles faced by project managers. Written as a business novel, the book is highly interactive, allowing readers to participate and consider options at each stage of a project. The book is based on years of experience, both through the author's research projects as well as his teaching lectures at business schools. The book tells the story of Emily Reed and her colleagues who are in charge of the management of a new tennis stadium project. The CEO of the company, Jacob Mitchell, is planning to install a new data-driven project management methodology as a decision support tool for all upcoming projects. He challenges Emily and her team to start a journey in exploring project data to fight against unexpected project obstacles. Data-driven project management is known in the academic literature as “dynamic scheduling” or “integrated project management and control.” It is a project management methodology to plan, monitor, and control projects in progress in order to deliver them on time and within budget to the client. Its main focus is on the integration of three crucial aspects, as follows: Baseline Scheduling: Plan the project activities to create a project timetable with time and budget restrictions. Determine start and finish times of each project activity within the activity network and resource constraints. Know the expected timing of the work to be done as well as an expected impact on the project’s time and budget objectives. Schedule Risk Analysis: Analyze the risk of the baseline schedule and its impact on the project’s time and budget. Use Monte Carlo simulations to assess the risk of the baseline schedule and to forecast the impact of time and budget deviations on the project objectives. Project Control: Measure and analyze the project’s performance data and take actions to bring the project on track. Monitor deviations from the expected project progress and control performance in order to facilitate the decision-making process in case corrective actions are needed to bring projects back on track. Both traditional Earned Value Management (EVM) and the novel Earned Schedule (ES) methods are used. What You'll Learn Implement a data-driven project management methodology (also known as dynamic scheduling) which allows project managers to plan, monitor, and control projects while delivering them on time and within budget Study different project management tools and techniques, such as PERT/CPM, schedule risk analysis (SRA), resource buffering, and earned value management (EVM) Understand the three aspects of dynamic scheduling: baseline scheduling, schedule risk analysis, and project control Who This Book Is For Project managers looking to learn data-driven project management (or dynamic scheduling) via a novel, demonstrating real-time simulations of how project managers can solve common project obstacles
  excel monte carlo analysis: Advanced Modelling in Finance using Excel and VBA Mary Jackson, Mike Staunton, 2006-08-30 This new and unique book demonstrates that Excel and VBA can play an important role in the explanation and implementation of numerical methods across finance. Advanced Modelling in Finance provides a comprehensive look at equities, options on equities and options on bonds from the early 1950s to the late 1990s. The book adopts a step-by-step approach to understanding the more sophisticated aspects of Excel macros and VBA programming, showing how these programming techniques can be used to model and manipulate financial data, as applied to equities, bonds and options. The book is essential for financial practitioners who need to develop their financial modelling skill sets as there is an increase in the need to analyse and develop ever more complex 'what if' scenarios. Specifically applies Excel and VBA to the financial markets Packaged with a CD containing the software from the examples throughout the book Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
  excel monte carlo analysis: Hands-On Financial Modeling with Microsoft Excel 2019 Shmuel Oluwa, 2019-07-11 Explore the aspects of financial modeling with the help of clear and easy-to-follow instructions and a variety of Excel features, functions, and productivity tips Key FeaturesA non data professionals guide to exploring Excel's financial functions and pivot tablesLearn to prepare various models for income and cash flow statements, and balance sheetsLearn to perform valuations and identify growth drivers with real-world case studiesBook Description Financial modeling is a core skill required by anyone who wants to build a career in finance. Hands-On Financial Modeling with Microsoft Excel 2019 examines various definitions and relates them to the key features of financial modeling with the help of Excel. This book will help you understand financial modeling concepts using Excel, and provides you with an overview of the steps you should follow to build an integrated financial model. You will explore the design principles, functions, and techniques of building models in a practical manner. Starting with the key concepts of Excel, such as formulas and functions, you will learn about referencing frameworks and other advanced components of Excel for building financial models. Later chapters will help you understand your financial projects, build assumptions, and analyze historical data to develop data-driven models and functional growth drivers. The book takes an intuitive approach to model testing, along with best practices and practical use cases. By the end of this book, you will have examined the data from various use cases, and you will have the skills you need to build financial models to extract the information required to make informed business decisions. What you will learnIdentify the growth drivers derived from processing historical data in ExcelUse discounted cash flow (DCF) for efficient investment analysisBuild a financial model by projecting balance sheets, profit, and lossApply a Monte Carlo simulation to derive key assumptions for your financial modelPrepare detailed asset and debt schedule models in ExcelDiscover the latest and advanced features of Excel 2019Calculate profitability ratios using various profit parametersWho this book is for This book is for data professionals, analysts, traders, business owners, and students, who want to implement and develop a high in-demand skill of financial modeling in their finance, analysis, trading, and valuation work. This book will also help individuals that have and don't have any experience in data and stats, to get started with building financial models. The book assumes working knowledge with Excel.
  excel monte carlo analysis: Introductory Econometrics Humberto Barreto, Frank Howland, 2005-12-26 This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.
  excel monte carlo analysis: An Option Greeks Primer Jawwad Farid, 2015-03-23 This book provides a hands-on, practical guide to understanding derivatives pricing. Aimed at the less quantitative practitioner, it provides a balanced account of options, Greeks and hedging techniques avoiding the complicated mathematics inherent to many texts, and with a focus on modelling, market practice and intuition.
  excel monte carlo analysis: Excel Simulations in Action Gerard M. Verschuuren, 2018
  excel monte carlo analysis: Business Statistics for Competitive Advantage with Excel 2016 Cynthia Fraser, 2016-08-05 The revised Fourth Edition of this popular textbook is redesigned with Excel 2016 to encourage business students to develop competitive advantages for use in their future careers as decision makers. Students learn to build models using logic and experience, produce statistics using Excel 2016 with shortcuts, and translate results into implications for decision makers. The textbook features new examples and assignments on global markets, including cases featuring Chipotle and Costco. A number of examples focus on business in emerging global markets with particular emphasis on emerging markets in Latin America, China, and India. Results are linked to implications for decision making with sensitivity analyses to illustrate how alternate scenarios can be compared. The author emphasises communicating results effectively in plain English and with screenshots and compelling graphics in the form of memos and PowerPoints. Chapters include screenshots to make it easy to conduct analyses in Excel 2016. PivotTables and PivotCharts, used frequently in business, are introduced from the start. The Fourth Edition features Monte Carlo simulation in four chapters, as a tool to illustrate the range of possible outcomes from decision makers’ assumptions and underlying uncertainties. Model building with regression is presented as a process, adding levels of sophistication, with chapters on multicollinearity and remedies, forecasting and model validation, auto-correlation and remedies, indicator variables to represent segment differences, and seasonality, structural shifts or shocks in time series models. Special applications in market segmentation and portfolio analysis are offered, and an introduction to conjoint analysis is included. Nonlinear models are motivated with arguments of diminishing or increasing marginal response.
  excel monte carlo analysis: The Flaw of Averages Sam L. Savage, 2012-03-13 A must-read for anyone who makes business decisions that have a major financial impact. As the recent collapse on Wall Street shows, we are often ill-equipped to deal with uncertainty and risk. Yet every day we base our personal and business plans on uncertainties, whether they be next month’s sales, next year’s costs, or tomorrow’s stock price. In The Flaw of Averages, Sam Savageknown for his creative exposition of difficult subjects describes common avoidable mistakes in assessing risk in the face of uncertainty. Along the way, he shows why plans based on average assumptions are wrong, on average, in areas as diverse as healthcare, accounting, the War on Terror, and climate change. In his chapter on Sex and the Central Limit Theorem, he bravely grasps the literary third rail of gender differences. Instead of statistical jargon, Savage presents complex concepts in plain English. In addition, a tightly integrated web site contains numerous animations and simulations to further connect the seat of the reader’s intellect to the seat of their pants. The Flaw of Averages typically results when someone plugs a single number into a spreadsheet to represent an uncertain future quantity. Savage finishes the book with a discussion of the emerging field of Probability Management, which cures this problem though a new technology that can pack thousands of numbers into a single spreadsheet cell. Praise for The Flaw of Averages “Statistical uncertainties are pervasive in decisions we make every day in business, government, and our personal lives. Sam Savage’s lively and engaging book gives any interested reader the insight and the tools to deal effectively with those uncertainties. I highly recommend The Flaw of Averages.” —William J. Perry, Former U.S. Secretary of Defense “Enterprise analysis under uncertainty has long been an academic ideal. . . . In this profound and entertaining book, Professor Savage shows how to make all this practical, practicable, and comprehensible.” —Harry Markowitz, Nobel Laureate in Economics
  excel monte carlo analysis: Monte Carlo Simulation and Finance Don L. McLeish, 2011-09-13 Monte Carlo methods have been used for decades in physics, engineering, statistics, and other fields. Monte Carlo Simulation and Finance explains the nuts and bolts of this essential technique used to value derivatives and other securities. Author and educator Don McLeish examines this fundamental process, and discusses important issues, including specialized problems in finance that Monte Carlo and Quasi-Monte Carlo methods can help solve and the different ways Monte Carlo methods can be improved upon. This state-of-the-art book on Monte Carlo simulation methods is ideal for finance professionals and students. Order your copy today.
  excel monte carlo analysis: Building Winning Algorithmic Trading Systems, + Website Kevin J. Davey, 2014-07-21 Develop your own trading system with practical guidance and expert advice In Building Algorithmic Trading Systems: A Trader's Journey From Data Mining to Monte Carlo Simulation to Live Training, award-winning trader Kevin Davey shares his secrets for developing trading systems that generate triple-digit returns. With both explanation and demonstration, Davey guides you step-by-step through the entire process of generating and validating an idea, setting entry and exit points, testing systems, and implementing them in live trading. You'll find concrete rules for increasing or decreasing allocation to a system, and rules for when to abandon one. The companion website includes Davey's own Monte Carlo simulator and other tools that will enable you to automate and test your own trading ideas. A purely discretionary approach to trading generally breaks down over the long haul. With market data and statistics easily available, traders are increasingly opting to employ an automated or algorithmic trading system—enough that algorithmic trades now account for the bulk of stock trading volume. Building Algorithmic Trading Systems teaches you how to develop your own systems with an eye toward market fluctuations and the impermanence of even the most effective algorithm. Learn the systems that generated triple-digit returns in the World Cup Trading Championship Develop an algorithmic approach for any trading idea using off-the-shelf software or popular platforms Test your new system using historical and current market data Mine market data for statistical tendencies that may form the basis of a new system Market patterns change, and so do system results. Past performance isn't a guarantee of future success, so the key is to continually develop new systems and adjust established systems in response to evolving statistical tendencies. For individual traders looking for the next leap forward, Building Algorithmic Trading Systems provides expert guidance and practical advice.
  excel monte carlo analysis: Monte Carlo Simulations Using Microsoft EXCEL® Shinil Cho, 2024-06-16
  excel monte carlo analysis: Microsoft Excel 2013 Data Analysis and Business Modeling Wayne Winston, 2014-01-15 Master business modeling and analysis techniques with Microsoft Excel 2013, and transform data into bottom-line results. Written by award-winning educator Wayne Winston, this hands-on, scenario-focused guide shows you how to use the latest Excel tools to integrate data from multiple tables—and how to effectively build a relational data source inside an Excel workbook. Solve real business problems with Excel—and sharpen your edge Summarize data with PivotTables and Descriptive Statistics Explore new trends in predictive and prescriptive analytics Use Excel Trend Curves, multiple regression, and exponential smoothing Master advanced Excel functions such as OFFSET and INDIRECT Delve into key financial, statistical, and time functions Make your charts more effective with the Power View tool Tame complex optimization problems with Excel Solver Run Monte Carlo simulations on stock prices and bidding models Apply important modeling tools such as the Inquire add-in
  excel monte carlo analysis: Decision Modeling with Microsoft Excel Jeffrey H. Moore, Larry R. Weatherford, Lawrence R. Weatherford, 2001 CD-ROM contains: Premium Solver for Education -- Solver Table add-in software -- Extend LT 4.0 (simulation software) -- TreePlan -- GLP, a graphic visualization program -- Excel templates for in-text examples.
  excel monte carlo analysis: MrExcel XL Bill Jelen, Szilvia Juhasz, 2015-09 The 40 essential tips that all Excel users need to know. Crowdsourced by more than 300 contributors who collaborated on choosing the 40 best Excel tips, MrExcel XL provides users with a concise book that can be absorbed in under an hour. Includes a bonus 30 tips, keyboard shortcuts, Excel jokes, Excel cocktails. Anyone who uses Excel will be able to turn to any page and pick up tips that will save them hours of work.
  excel monte carlo analysis: The Monte Carlo Simulation in Banks Svend Reuse, 2010-06 Scientific Essay from the year 2010 in the subject Business economics - Banking, Stock Exchanges, Insurance, Accounting, grade: keine, Masaryk University (Fakultät für Wirtschaft und Verwaltung), course: ---, language: English, abstract: This article deals with the actual status quo of measuring credit risk in the German banking sector. It defines the kinds of VaR approaches and discusses the basics and models for quantifying credit risk. The VaR tools used in the German banking sector to measure credit risk are analysed in a next step. Further, the complex character of the Monte Carlo approach is explained at the example of an Excel tool. The outlook of this article consists of a critical analysis of the efficiency in the context of the actual financial crisis in Germany. The paper extends the basic aspects of three former publications of the author, published in the specialized banking magazine Bankpraktiker 07-08.2006, pp. 366 - 371, the Conference paper for the ESF Conference on 25.06. - 26.06.2008 in Brno, Czech Republic, pp. 325 - 333 and the ControllerMagazin 05.2009, pp. 84 - 92.
  excel monte carlo analysis: Data Analysis Using Microsoft Excel Michael R. Middleton, 2004 Updated to take account of Office XP, this book provides Excel users with the ability to analyse data quickly. The book's organization parallels a standard course in business statistics.
  excel monte carlo analysis: Modeling Risk Johnathan Mun, 2006-07-21 This completely revised and updated edition of Applied Risk Analysis includes new case studies in modeling risk and uncertainty as well as a new risk analysis CD-ROM prepared by Dr. Mun. On the CD-ROM you'll find his Risk Simulator and Real Options Super Lattice Solver software as well as many useful spreadsheet models. Johnathan Mun's book is a sparkling jewel in my finance library. Mun demonstrates a deep understanding of the underlying mathematical theory in his ability to reduce complex concepts to lucid explanations and applications. For this reason, he's my favorite writer in this field. —Janet Tavakoli, President, Tavakoli Structured Finance, Inc. and author of Collateralized Debt Obligations and Structured Finance A must-read for product portfolio managers . . . it captures the risk exposure of strategic investments, and provides management with estimates of potential outcomes and options for risk mitigation. —Rafael E. Gutierrez, Executive Director of Strategic Marketing and Planning, Seagate Technology, Inc. Once again, Dr. Mun has created a 'must-have, must-read' book for anyone interested in the practical application of risk analysis. Other books speak in academic generalities, or focus on one area of risk application. [This book] gets to the heart of the matter with applications for every area of risk analysis. You have a real option to buy almost any book?you should exercise your option and get this one! —Glenn Kautt, MBA, CFP, EA, President and Chairman, The Monitor Group, Inc. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
  excel monte carlo analysis: Waltzing with Bears Tom DeMarco, Timothy Lister, 2013 This is the digital version of the printed book (Copyright © 2003). If There's No Risk On Your Next Project, Don't Do It. Greater risk brings greater reward, especially in software development. A company that runs away from risk will soon find itself lagging behind its more adventurous competition. By ignoring the threat of negative outcomes-in the name of positive thinking or a can-do attitude-software managers drive their organizations into the ground. In Waltzing with Bears, Tom DeMarco and Timothy Lister-the best-selling authors of Peopleware-show readers how to identify and embrace worthwhile risks. Developers are then set free to push the limits. The authors present the benefits of risk management, including that it makes aggressive risk-taking possible, protects management from getting blindsided, provides minimum-cost downside protection, reveals invisible transfers of responsibility, isolates the failure of a subproject. Readers are armed with strategies for confronting the most common risks that software projects face: schedule flaws, requirements inflation, turnover, specification breakdown, and under-performance. Waltzing with Bears will help you mitigate the risks-before they turn into project-killing problems. Risks are out there-and they should be there-but there is a way to manage them.
  excel monte carlo analysis: Corporate Financial Analysis with Microsoft Excel Francis J. Clauss, 2009-08-23 Corporate Financial Analysis with Microsoft® Excel® visualizes spreadsheets as an effective management tool both for financial analysis and for coordinating its results and actions with marketing, sales, production and service operations, quality control, and other business functions. Taking an integrative view that promotes teamwork across corporate functions and responsibilities, the book contains dozens of charts, diagrams, and actual Excel® screenshots to reinforce the practical applications of every topic it covers. The first two sections—Financial Statements and Cash Budgeting—explain how to use spreadsheets for: Preparing income statements, balance sheets, and cash flow statements Performing vertical and horizontal analyses of financial statements Determining financial ratios and analyzing their trends and significance Combining quantitative and judgmental techniques to improve forecasts of sales revenues and customer demands Calculating and applying the time value of money Managing inventories, safety stocks, and the allocation of resources The third and final section—Capital Budgeting—covers capital structure, the cost of capital, and leverage; the basics of capital budgeting, including taxes and depreciation; applications, such as new facilities, equipment replacement, process improvement, leasing versus buying, and nonresidential real estate; and risk analysis of capital budgets and the potential impacts of unforeseen events. Corporate Financial Analysis with Microsoft® Excel® takes a broad view of financial functions and responsibilities in relation to those of other functional parts of modern corporations, and it demonstrates how to use spreadsheets to integrate and coordinate them. It provides many insightful examples and case studies of real corporations, including Wal- Mart, Sun Microsystems, Nike, H. J. Heinz, Dell, Microsoft, Apple Computer, and IBM. Corporate Financial Analysis with Microsoft® Excel® is the ideal tool for managing your firm’s short-term operations and long-term capital investments.
  excel monte carlo analysis: Simulation Modeling Using @Risk Wayne L. Winston, 1996
  excel monte carlo analysis: Risk, Opportunity, Uncertainty and Other Random Models Alan R. Jones, 2018-09-13 Risk, Opportunity, Uncertainty and Other Random Models (Volume V in the Working Guides to Estimating and Forecasting series) goes part way to debunking the myth that research and development cost are somewhat random, as under certain conditions they can be observed to follow a pattern of behaviour referred to as a Norden-Rayleigh Curve, which unfortunately has to be truncated to stop the myth from becoming a reality! However, there is a practical alternative in relation to a particular form of PERT-Beta Curve. However, the major emphasis of this volume is the use of Monte Carlo Simulation as a general technique for narrowing down potential outcomes of multiple interacting variables or cost drivers. Perhaps the most common of these in the evaluation of Risk, Opportunity and Uncertainty. The trouble is that many Monte Carlo Simulation tools are ‘black boxes’ and too few estimators and forecasters really appreciate what is happening inside the ‘black box’. This volume aims to resolve that and offers tips into things that might need to be considered to remove some of the uninformed random input that often creates a misinformed misconception of ‘it must be right!’ Monte Carlo Simulation can be used to model variable determine Critical Paths in a schedule, and is key to modelling Waiting Times and cues with random arisings. Supported by a wealth of figures and tables, this is a valuable resource for estimators, engineers, accountants, project risk specialists as well as students of cost engineering.
  excel monte carlo analysis: Credit Risk Modeling using Excel and VBA Gunter Löeffler, Peter N. Posch, 2007-06-05 In today's increasingly competitive financial world, successful risk management, portfolio management, and financial structuring demand more than up-to-date financial know-how. They also call for quantitative expertise, including the ability to effectively apply mathematical modeling tools and techniques, in this case credit. Credit Risk Modeling using Excel and VBA with DVD provides practitioners with a hands on introduction to credit risk modeling. Instead of just presenting analytical methods it shows how to implement them using Excel and VBA, in addition to a detailed description in the text a DVD guides readers step by step through the implementation. The authors begin by showing how to use option theoretic and statistical models to estimate a borrowers default risk. The second half of the book is devoted to credit portfolio risk. The authors guide readers through the implementation of a credit risk model, show how portfolio models can be validated or used to access structured credit products like CDO’s. The final chapters address modeling issues associated with the new Basel Accord.
  excel monte carlo analysis: 100 Excel Simulations Gerard M. Verschuuren, 2016-11-01 Covering a variety of Excel simulations, from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.
  excel monte carlo analysis: Introducing Monte Carlo Methods with R Christian Robert, George Casella, 2010 This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
What does the "@" symbol mean in Excel formula (outside a table)
Oct 24, 2021 · Excel has recently introduced a huge feature called Dynamic arrays. And along with that, Excel also started to make …

excel - How to show current user name in a cell? - Stack Overflow
if you don't want to create a UDF in VBA or you can't, this could be an alternative. =Cell("Filename",A1) this will give you the …

How to represent a DateTime in Excel - Stack Overflow
The underlying data type of a datetime in Excel is a 64-bit floating point number where the length of a day equals 1 and 1st Jan …

excel - Check whether a cell contains a substring - Stack Overflow
Sep 4, 2013 · Is there an in-built function to check if a cell contains a given character/substring? It would mean you …

How to keep one variable constant with other one changing with row …
The $ tells excel not to adjust that address while pasting the formula into new cells. Since you are dragging across rows, you …

What does the "@" symbol mean in Excel formula (outside a table)
Oct 24, 2021 · Excel has recently introduced a huge feature called Dynamic arrays. And along with that, Excel also started to make a " substantial upgrade " to their formula language. One …

excel - How to show current user name in a cell? - Stack Overflow
if you don't want to create a UDF in VBA or you can't, this could be an alternative. =Cell("Filename",A1) this will give you the full file name, and from this you could get the user …

How to represent a DateTime in Excel - Stack Overflow
The underlying data type of a datetime in Excel is a 64-bit floating point number where the length of a day equals 1 and 1st Jan 1900 00:00 equals 1. So 11th June 2009 17:30 is about …

excel - Check whether a cell contains a substring - Stack Overflow
Sep 4, 2013 · Is there an in-built function to check if a cell contains a given character/substring? It would mean you can apply textual functions like Left/Right/Mid on a conditional basis without …

How to keep one variable constant with other one changing with …
The $ tells excel not to adjust that address while pasting the formula into new cells. Since you are dragging across rows, you really only need to freeze the row part: =(B0+4)/A$0

Excel: Searching for multiple terms in a cell - Stack Overflow
Feb 11, 2013 · In addition to the answer of @teylyn, I would like to add that you can put the string of multiple search terms inside a SINGLE cell (as opposed to using a different cell for each …

How to freeze the =today() function once data has been entered
Aug 2, 2015 · Excel's default format handling doesn't know to format this as date - so you would need to do this separately. More work than Ctrl + ; , but there might be some other use-cases …

excel - Return values from the row above to the current row
Jun 15, 2012 · To solve this problem in Excel, usually I would just type in the literal row number of the cell above, e.g., if I'm typing in Cell A7, I would use the formula =A6. Then if I copied that …

Assign a value to a cell depending on content of another cell
Jan 16, 2020 · I am trying to use the IF function to assign a value to a cell depending on another cells value So, if the value in column 'E' is 1, then the value in column G should be the same …

excel - Remove leading or trailing spaces in an entire column of …
Mar 6, 2012 · I've found that the best (and easiest) way to delete leading, trailing (and excessive) spaces in Excel is to use a third-party plugin. I've been using ASAP Utilities for Excel and it …