Advertisement
experimental probability definition math: Probability Space Nancy Kress, 2004-01-05 Nancy Kress cemented her reputation in SF with the publication of her multiple-award–winning novella, “Beggars in Spain,” which became the basis for her extremely successful Beggars Trilogy (comprising Beggars in Spain, Beggars and Choosers, and Beggars Ride). And now she brings us Probability Space, the conclusion of the trilogy that began with Probability Moon and then Probability Sun, which is centered on the same world as Kress’s Nebula Award-winning novelette, “Flowers of Aulit Prison.” The Probability Trilogy has already been widely recognized as the next great work by this important SF writer. In Probability Space, humanity’s war with the alien Fallers continues, and it is a war we are losing. Our implacable foes ignore all attempts at communication, and they take no prisoners. Our only hope lies with an unlikely coalition: Major Lyle Kaufman, retired warrior; Marbet Grant, the Sensitive who’s involved with Kaufman; Amanda, a very confused fourteen-year-old girl; and Magdalena, one of the biggest power brokers in all of human space. As the action moves from Earth to Mars to the farthest reaches of known space, with civil unrest back home and alien war in deep space, four humans--armed with little more than an unproven theory--try to enter the Fallers’ home star system. It’s a desperate gamble, and the fate of the entire universe may hang in the balance. |
experimental probability definition math: Introductory Statistics Douglas S. Shafer, 2022 |
experimental probability definition math: Introduction to Probability David F. Anderson, Timo Seppäläinen, Benedek Valkó, 2017-11-02 This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work. |
experimental probability definition math: Introduction to Probability Dimitri Bertsekas, John N. Tsitsiklis, 2008-07-01 An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. |
experimental probability definition math: Introductory Business Statistics 2e Alexander Holmes, Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
experimental probability definition math: Introductory Statistics 2e Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
experimental probability definition math: CHSPE Preparation Book 2020-2021 Trivium High School Exam Prep Team, 2019-11-18 |
experimental probability definition math: Elementary Probability for Applications Rick Durrett, 2009-07-31 This clear and lively introduction to probability theory concentrates on the results that are the most useful for applications, including combinatorial probability and Markov chains. Concise and focused, it is designed for a one-semester introductory course in probability for students who have some familiarity with basic calculus. Reflecting the author's philosophy that the best way to learn probability is to see it in action, there are more than 350 problems and 200 examples. The examples contain all the old standards such as the birthday problem and Monty Hall, but also include a number of applications not found in other books, from areas as broad ranging as genetics, sports, finance, and inventory management. |
experimental probability definition math: Introduction to Statistics Wolfgang Karl Härdle, Sigbert Klinke, Bernd Rönz, 2015-12-25 This book covers all the topics found in introductory descriptive statistics courses, including simple linear regression and time series analysis, the fundamentals of inferential statistics (probability theory, random sampling and estimation theory), and inferential statistics itself (confidence intervals, testing). Each chapter starts with the necessary theoretical background, which is followed by a variety of examples. The core examples are based on the content of the respective chapter, while the advanced examples, designed to deepen students’ knowledge, also draw on information and material from previous chapters. The enhanced online version helps students grasp the complexity and the practical relevance of statistical analysis through interactive examples and is suitable for undergraduate and graduate students taking their first statistics courses, as well as for undergraduate students in non-mathematical fields, e.g. economics, the social sciences etc. |
experimental probability definition math: The Probability Tutoring Book Carol Ash, 1996-11-14 A self-study guide for practicing engineers, scientists, and students, this book offers practical, worked-out examples on continuous and discrete probability for problem-solving courses. It is filled with handy diagrams, examples, and solutions that greatly aid in the comprehension of a variety of probability problems. |
experimental probability definition math: Probability and Statistics Michael J. Evans, Jeffrey S. Rosenthal, 2004 Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students. |
experimental probability definition math: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. |
experimental probability definition math: A Mathematical Primer for Social Statistics John Fox, 2021-01-11 A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic language of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a math camp or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods. |
experimental probability definition math: Elementary Probability David Stirzaker, 2003-08-18 Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving. |
experimental probability definition math: The Book on Games of Chance Gerolamo Cardano, 2015-11-04 Mathematics was only one area of interest for Gerolamo Cardano ― the sixteenth-century astrologer, philosopher, and physician was also a prolific author and inveterate gambler. Gambling led Cardano to the study of probability, and he was the first writer to recognize that random events are governed by mathematical laws. Published posthumously in 1663, Cardano's Liber de ludo aleae (Book on Games of Chance) is often considered the major starting point of the study of mathematical probability. The Italian scholar formulated some of the field's basic ideas more than a century before the better-known correspondence of Pascal and Fermat. Although his book had no direct influence on other early thinkers about probability, it remains an important antecedent to later expressions of the science's tenets. |
experimental probability definition math: Understanding and Calculating the Odds Catalin Barboianu, 2006 This book presents not only the mathematical concept of probability, but also its philosophical aspects, the relativity of probability and its applications and even the psychology of probability. All explanations are made in a comprehensible manner and are supported with suggestive examples from nature and daily life, and even with challenging math paradoxes. (Mathematics) |
experimental probability definition math: Modern Mathematical Statistics with Applications Jay L. Devore, Kenneth N. Berk, Matthew A. Carlton, 2021-04-29 This 3rd edition of Modern Mathematical Statistics with Applications tries to strike a balance between mathematical foundations and statistical practice. The book provides a clear and current exposition of statistical concepts and methodology, including many examples and exercises based on real data gleaned from publicly available sources. Here is a small but representative selection of scenarios for our examples and exercises based on information in recent articles: Use of the “Big Mac index” by the publication The Economist as a humorous way to compare product costs across nations Visualizing how the concentration of lead levels in cartridges varies for each of five brands of e-cigarettes Describing the distribution of grip size among surgeons and how it impacts their ability to use a particular brand of surgical stapler Estimating the true average odometer reading of used Porsche Boxsters listed for sale on www.cars.com Comparing head acceleration after impact when wearing a football helmet with acceleration without a helmet Investigating the relationship between body mass index and foot load while running The main focus of the book is on presenting and illustrating methods of inferential statistics used by investigators in a wide variety of disciplines, from actuarial science all the way to zoology. It begins with a chapter on descriptive statistics that immediately exposes the reader to the analysis of real data. The next six chapters develop the probability material that facilitates the transition from simply describing data to drawing formal conclusions based on inferential methodology. Point estimation, the use of statistical intervals, and hypothesis testing are the topics of the first three inferential chapters. The remainder of the book explores the use of these methods in a variety of more complex settings. This edition includes many new examples and exercises as well as an introduction to the simulation of events and probability distributions. There are more than 1300 exercises in the book, ranging from very straightforward to reasonably challenging. Many sections have been rewritten with the goal of streamlining and providing a more accessible exposition. Output from the most common statistical software packages is included wherever appropriate (a feature absent from virtually all other mathematical statistics textbooks). The authors hope that their enthusiasm for the theory and applicability of statistics to real world problems will encourage students to pursue more training in the discipline. |
experimental probability definition math: A Modern Introduction to Probability and Statistics F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, 2006-03-30 Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books |
experimental probability definition math: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. |
experimental probability definition math: Lectures on Probability Theory and Mathematical Statistics - 3rd Edition Marco Taboga, 2017-12-08 The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance. |
experimental probability definition math: The Joy of Finite Mathematics Chris P. Tsokos, Rebecca D. Wooten, 2015-10-27 The Joy of Finite Mathematics: The Language and Art of Math teaches students basic finite mathematics through a foundational understanding of the underlying symbolic language and its many dialects, including logic, set theory, combinatorics (counting), probability, statistics, geometry, algebra, and finance. Through detailed explanations of the concepts, step-by-step procedures, and clearly defined formulae, readers learn to apply math to subjects ranging from reason (logic) to finance (personal budget), making this interactive and engaging book appropriate for non-science, undergraduate students in the liberal arts, social sciences, finance, economics, and other humanities areas. The authors utilize important historical facts, pose interesting and relevant questions, and reference real-world events to challenge, inspire, and motivate students to learn the subject of mathematical thinking and its relevance. The book is based on the authors' experience teaching Liberal Arts Math and other courses to students of various backgrounds and majors, and is also appropriate for preparing students for Florida's CLAST exam or similar core requirements. - Highlighted definitions, rules, methods, and procedures, and abundant tables, diagrams, and graphs, clearly illustrate important concepts and methods - Provides end-of-chapter vocabulary and concept reviews, as well as robust review exercises and a practice test - Contains information relevant to a wide range of topics, including symbolic language, contemporary math, liberal arts math, social sciences math, basic math for finance, math for humanities, probability, and the C.L.A.S.T. exam - Optional advanced sections and challenging problems are included for use at the discretion of the instructor - Online resources include PowerPoint Presentations for instructors and a useful student manual |
experimental probability definition math: Game-Theoretic Foundations for Probability and Finance Glenn Shafer, Vladimir Vovk, 2019-03-21 Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University |
experimental probability definition math: Subjective Probability Richard Jeffrey, 2004-04-12 Sample Text |
experimental probability definition math: All of Statistics Larry Wasserman, 2013-12-11 Taken literally, the title All of Statistics is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data. |
experimental probability definition math: Probability-Based Structural Fire Load Leo Razdolsky, 2014-08-25 This book introduces the subject of probabilistic analysis to engineers and can be used as a reference in applying this technology. |
experimental probability definition math: Research on Teaching and Learning Probability Carmen Batanero, Egan J. Chernoff, Joachim Engel, Hollylynne S. Lee, Ernesto Sánchez, 2016-07-12 This book summarizes the vast amount of research related to teaching and learning probability that has been conducted for more than 50 years in a variety of disciplines. It begins with a synthesis of the most important probability interpretations throughout history: intuitive, classical, frequentist, subjective, logical propensity and axiomatic views. It discusses their possible applications, philosophical problems, as well as their potential and the level of interest they enjoy at different educational levels. Next, the book describes the main features of probabilistic thinking and reasoning, including the contrast to classical logic, probability language features, the role of intuitions, as well as paradoxes and the relevance of modeling. It presents an analysis of the differences between conditioning and causation, the variability expression in data as a sum of random and causal variations, as well as those of probabilistic versus statistical thinking. This is followed by an analysis of probability’s role and main presence in school curricula and an outline of the central expectations in recent curricular guidelines at the primary, secondary and high school level in several countries. This book classifies and discusses in detail the three different research periods on students’ and people’s intuitions and difficulties concerning probability: early research focused on cognitive development, a period of heuristics and biases programs, and the current period marked by a multitude of foci, approaches and theoretical frameworks. |
experimental probability definition math: A Beginner's Guide to Discrete Mathematics W.D. Wallis, 2011-10-07 Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. —Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. —Zentralblatt Math (Review of the First Edition) This second edition of A Beginner’s Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students. |
experimental probability definition math: Probability and Statistics for Data Science Norman Matloff, 2019-06-21 Probability and Statistics for Data Science: Math + R + Data covers math stat—distributions, expected value, estimation etc.—but takes the phrase Data Science in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the how and why of statistics, and to see the big picture. * Not theorem/proof-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award. |
experimental probability definition math: Math in Society David Lippman, 2012-09-07 Math in Society is a survey of contemporary mathematical topics, appropriate for a college-level topics course for liberal arts major, or as a general quantitative reasoning course.This book is an open textbook; it can be read free online at http://www.opentextbookstore.com/mathinsociety/. Editable versions of the chapters are available as well. |
experimental probability definition math: OGT Math Andrea J. Lapey, 2005 OGT Exit Level Math prepares students for the Ohio Graduation Tests in mathematics at the high school level. This book is organized by Ohio state mathematics curriculum standards. Students learn what the standards say and what they need to know to pass the test. There is a pre and post test to measure progress. Examples of student work on open response questions help students see and correct mistakes. |
experimental probability definition math: Probability, Statistics, and Stochastic Processes Peter Olofsson, Mikael Andersson, 2012-05-22 Praise for the First Edition . . . an excellent textbook . . . well organized and neatly written. —Mathematical Reviews . . . amazingly interesting . . . —Technometrics Thoroughly updated to showcase the interrelationships between probability, statistics, and stochastic processes, Probability, Statistics, and Stochastic Processes, Second Edition prepares readers to collect, analyze, and characterize data in their chosen fields. Beginning with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions, the book goes on to present limit theorems and simulation. The authors combine a rigorous, calculus-based development of theory with an intuitive approach that appeals to readers' sense of reason and logic. Including more than 400 examples that help illustrate concepts and theory, the Second Edition features new material on statistical inference and a wealth of newly added topics, including: Consistency of point estimators Large sample theory Bootstrap simulation Multiple hypothesis testing Fisher's exact test and Kolmogorov-Smirnov test Martingales, renewal processes, and Brownian motion One-way analysis of variance and the general linear model Extensively class-tested to ensure an accessible presentation, Probability, Statistics, and Stochastic Processes, Second Edition is an excellent book for courses on probability and statistics at the upper-undergraduate level. The book is also an ideal resource for scientists and engineers in the fields of statistics, mathematics, industrial management, and engineering. |
experimental probability definition math: Luck, Logic, and White Lies Jörg Bewersdorff, 2021-04-28 Praise for the First Edition Luck, Logic, and White Lies teaches readers of all backgrounds about the insight mathematical knowledge can bring and is highly recommended reading among avid game players, both to better understand the game itself and to improve one’s skills. – Midwest Book Review The best book I've found for someone new to game math is Luck, Logic and White Lies by Jörg Bewersdorff. It introduces the reader to a vast mathematical literature, and does so in an enormously clear manner. . . – Alfred Wallace, Musings, Ramblings, and Things Left Unsaid The aim is to introduce the mathematics that will allow analysis of the problem or game. This is done in gentle stages, from chapter to chapter, so as to reach as broad an audience as possible . . . Anyone who likes games and has a taste for analytical thinking will enjoy this book. – Peter Fillmore, CMS Notes Luck, Logic, and White Lies: The Mathematics of Games, Second Edition considers a specific problem—generally a game or game fragment and introduces the related mathematical methods. It contains a section on the historical development of the theories of games of chance, and combinatorial and strategic games. This new edition features new and much refreshed chapters, including an all-new Part IV on the problem of how to measure skill in games. Readers are also introduced to new references and techniques developed since the previous edition. Features Provides a uniquely historical perspective on the mathematical underpinnings of a comprehensive list of games Suitable for a broad audience of differing mathematical levels. Anyone with a passion for games, game theory, and mathematics will enjoy this book, whether they be students, academics, or game enthusiasts Covers a wide selection of topics at a level that can be appreciated on a historical, recreational, and mathematical level. Jörg Bewersdorff (1958) studied mathematics from 1975 to 1982 at the University of Bonn and earned his PhD in 1985. In the same year, he started his career as game developer and mathematician. He served as the general manager of the subsidiaries of Gauselmann AG for more than two decades where he developed electronic gaming machines, automatic payment machines, and coin-operated Internet terminals. Dr. Bewersdorff has authored several books on Galois theory (translated in English and Korean), mathematical statistics, and object-oriented programming with JavaScript. |
experimental probability definition math: Introduction to Probability and Statistics Using R G. Jay Kerns, 2010-01-10 This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors. |
experimental probability definition math: Practical Discrete Mathematics Ryan T. White, Archana Tikayat Ray, 2021-02-22 A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book. |
experimental probability definition math: Probability Theory , 2013 Probability theory |
experimental probability definition math: Mathematical Statistics Richard J. Rossi, 2018-10-02 Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs. In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models. Prepares students with the tools needed to be successful in their future work in statistics data science Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties Includes sections on Bayesian estimation and credible intervals Features examples, problems, and solutions Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference. |
experimental probability definition math: Making Math Accessible to English Language Learners (Grades 6-8) r4Educated Solutions, 2011-12-30 Making Math Accessible for English Language Learners provides practical classroom tips and suggestions to strengthen the quality of classroom instruction for teachers of mathematics. The tips and suggestions are based on research in practices and strategies that address the affective, linguistic, and cognitive needs of English language learners. |
experimental probability definition math: Probability Geoffrey Grimmett, Dominic Welsh, 2014-08-21 Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit theorem. There is an account of moment generating functions and their applications. The following three chapters are about branching processes, random walks, and continuous-time random processes such as the Poisson process. The final chapter is a fairly extensive account of Markov chains in discrete time. This second edition develops the success of the first edition through an updated presentation, the extensive new chapter on Markov chains, and a number of new sections to ensure comprehensive coverage of the syllabi at major universities. |
experimental probability definition math: Math Tools Georg Glaeser, 2017-09-13 In this book, topics such as algebra, trigonometry, calculus and statistics are brought to life through over 500 applications ranging from biology, physics and chemistry to astronomy, geography and music. With over 600 illustrations emphasizing the beauty of mathematics, Math Tools complements more theoretical textbooks on the market, bringing the subject closer to the reader and providing a useful reference to students. By highlighting the ubiquity of mathematics in practical fields, the book will appeal not only to students and teachers, but to anyone with a keen interest in mathematics and its applications. |
experimental probability definition math: Statistics Using Technology, Second Edition Kathryn Kozak, 2015-12-12 Statistics With Technology, Second Edition, is an introductory statistics textbook. It uses the TI-83/84 calculator and R, an open source statistical software, for all calculations. Other technology can also be used besides the TI-83/84 calculator and the software R, but these are the ones that are presented in the text. This book presents probability and statistics from a more conceptual approach, and focuses less on computation. Analysis and interpretation of data is more important than how to compute basic statistical values. |
EXPERIMENTAL Definition & Meaning - Merriam-Webster
The meaning of EXPERIMENTAL is of, relating to, or based on experience or experiment. How to use experimental in a sentence.
EXPERIMENTAL definition | Cambridge English Dictionary
EXPERIMENTAL meaning: 1. using new methods, ideas, substances, etc. that have not been tried before, usually …
EXPERIMENTAL definition and meaning | Collins English Dict…
Something that is experimental is new or uses new ideas or methods, and might be modified later if it is unsuccessful.
Experimental - definition of experimental by The Free Dic…
1. relating to, based on, or having the nature of experiment: an experimental study. 2. based on or derived from experience; empirical: experimental …
EXPERIMENTAL Definition & Meaning - Dictionary.com
Experimental definition: pertaining to, derived from, or founded on experiment.. See examples of …
EXPERIMENTAL Definition & Meaning - Merriam-Webster
The meaning of EXPERIMENTAL is of, relating to, or based on experience or experiment. How to use experimental in a sentence.
EXPERIMENTAL definition | Cambridge English Dictionary
EXPERIMENTAL meaning: 1. using new methods, ideas, substances, etc. that have not been tried before, usually in order to…. Learn more.
EXPERIMENTAL definition and meaning | Collins English Dictionary
Something that is experimental is new or uses new ideas or methods, and might be modified later if it is unsuccessful.
Experimental - definition of experimental by The Free Dictionary
1. relating to, based on, or having the nature of experiment: an experimental study. 2. based on or derived from experience; empirical: experimental evidence. 3. tending to experiment: an …
EXPERIMENTAL Definition & Meaning - Dictionary.com
Experimental definition: pertaining to, derived from, or founded on experiment.. See examples of EXPERIMENTAL used in a sentence.
experimental adjective - Definition, pictures, pronunciation and …
Definition of experimental adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
experimental - Wiktionary, the free dictionary
Feb 19, 2025 · experimental (comparative more experimental, superlative most experimental) Pertaining to or founded on experiment. Chemistry is an experimental science. (sciences) …
experimental - 搜索 词典 - Bing
When I speak to the operators in Japan and Korea, they are still very much in an experimental mode to see how much users are willing to pay.
Experimental - Definition, Meaning & Synonyms - Vocabulary.com
Something that's experimental is at an early stage, being observed, tested out, and subjected to experiments as it's being developed. An experimental space craft might be launched and …
Experimental Definition & Meaning | Britannica Dictionary
EXPERIMENTAL meaning: 1 : relating to a scientific experiment or to scientific experiments in general; 2 : made or done in order to see how well something works