Exploratory Factor Analysis In R

Advertisement



  exploratory factor analysis in r: A Step-by-Step Guide to Exploratory Factor Analysis with R and RStudio Marley Watkins, 2020-12-29 This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using the open source software R. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots of R and RStudio code, and recommends evidence-based best practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon and formula to help facilitate grasp of the key issues users will face while applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper-level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences.
  exploratory factor analysis in r: Exploratory Factor Analysis Leandre R. Fabrigar, Duane T. Wegener, 2012-01-12 This book provides a non-mathematical introduction to the theory and application of Exploratory Factor Analysis. Among the issues discussed are the use of confirmatory versus exploratory factor analysis, the use of principal components analysis versus common factor analysis, and procedures for determining the appropriate number of factors.
  exploratory factor analysis in r: A Step-by-Step Guide to Exploratory Factor Analysis with R and RStudio Marley W. Watkins, 2020-12-30 This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using the open source software R. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots of R and RStudio code, and recommends evidence-based best practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon and formula to help facilitate grasp of the key issues users will face while applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper-level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences.
  exploratory factor analysis in r: Handbook of Applied Multivariate Statistics and Mathematical Modeling Howard E.A. Tinsley, Steven D. Brown, 2000-05-22 Multivariate statistics and mathematical models provide flexible and powerful tools essential in most disciplines. Nevertheless, many practicing researchers lack an adequate knowledge of these techniques, or did once know the techniques, but have not been able to keep abreast of new developments. The Handbook of Applied Multivariate Statistics and Mathematical Modeling explains the appropriate uses of multivariate procedures and mathematical modeling techniques, and prescribe practices that enable applied researchers to use these procedures effectively without needing to concern themselves with the mathematical basis. The Handbook emphasizes using models and statistics as tools. The objective of the book is to inform readers about which tool to use to accomplish which task. Each chapter begins with a discussion of what kinds of questions a particular technique can and cannot answer. As multivariate statistics and modeling techniques are useful across disciplines, these examples include issues of concern in biological and social sciences as well as the humanities.
  exploratory factor analysis in r: Exploratory Factor Analysis W. Holmes Finch, 2019-09-05 A firm knowledge of factor analysis is key to understanding much published research in the social and behavioral sciences. Exploratory Factor Analysis by W. Holmes Finch provides a solid foundation in exploratory factor analysis (EFA), which along with confirmatory factor analysis, represents one of the two major strands in this field. The book lays out the mathematical foundations of EFA; explores the range of methods for extracting the initial factor structure; explains factor rotation; and outlines the methods for determining the number of factors to retain in EFA. The concluding chapter addresses a number of other key issues in EFA, such as determining the appropriate sample size for a given research problem, and the handling of missing data. It also offers brief introductions to exploratory structural equation modeling, and multilevel models for EFA. Example computer code, and the annotated output for all of the examples included in the text are available on an accompanying website.
  exploratory factor analysis in r: Discovering Statistics Using R Andy Field, Jeremy Miles, Zoë Field, 2012-03-07 Keeping the uniquely humorous and self-deprecating style that has made students across the world fall in love with Andy Field′s books, Discovering Statistics Using R takes students on a journey of statistical discovery using R, a free, flexible and dynamically changing software tool for data analysis that is becoming increasingly popular across the social and behavioural sciences throughout the world. The journey begins by explaining basic statistical and research concepts before a guided tour of the R software environment. Next you discover the importance of exploring and graphing data, before moving onto statistical tests that are the foundations of the rest of the book (for example correlation and regression). You will then stride confidently into intermediate level analyses such as ANOVA, before ending your journey with advanced techniques such as MANOVA and multilevel models. Although there is enough theory to help you gain the necessary conceptual understanding of what you′re doing, the emphasis is on applying what you learn to playful and real-world examples that should make the experience more fun than you might expect. Like its sister textbooks, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is augmented by a cast of characters to help the reader on their way, together with hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more. Given this book′s accessibility, fun spirit, and use of bizarre real-world research it should be essential for anyone wanting to learn about statistics using the freely-available R software.
  exploratory factor analysis in r: Introduction to Statistics in Psychology Dennis Howitt, Duncan Cramer, 2008 Introduction to Statistics in Psychology4th edition is the complete guide to statistics for psychology students. Its range is exceptional in order to meet student needs throughout their undergraduate degree and beyond. By keeping to simple mathematics, step by step explanations of all the important statistical concepts, tests and procedures ensure that students understand data analysis properly. Pedagogical features such as ‘research design issues’, ‘calculations’ and the advice boxes help structure study into manageable sections whilst the overview and key points help with revision. Plus this 4th edition includes even more examples to bring to life how different statistical tests can be used in different areas of psychology.
  exploratory factor analysis in r: Handbook of Quantitative Methods for Educational Research Timothy Teo, 2014-02-07 As part of their research activities, researchers in all areas of education develop measuring instruments, design and conduct experiments and surveys, and analyze data resulting from these activities. Educational research has a strong tradition of employing state-of-the-art statistical and psychometric (psychological measurement) techniques. Commonly referred to as quantitative methods, these techniques cover a range of statistical tests and tools. Quantitative research is essentially about collecting numerical data to explain a particular phenomenon of interest. Over the years, many methods and models have been developed to address the increasingly complex issues that educational researchers seek to address. This handbook serves to act as a reference for educational researchers and practitioners who desire to acquire knowledge and skills in quantitative methods for data analysis or to obtain deeper insights from published works. Written by experienced researchers and educators, each chapter in this handbook covers a methodological topic with attention paid to the theory, procedures, and the challenges on the use of that particular methodology. It is hoped that readers will come away from each chapter with a greater understanding of the methodology being addressed as well as an understanding of the directions for future developments within that methodological area.
  exploratory factor analysis in r: Handbook of Multivariate Experimental Psychology John R. Nesselroade, Raymond B. Cattell, 2013-11-11 When the first edition of this Handbook was fields are likely to be hard reading, but anyone who wants to get in touch with the published in 1966 I scarcely gave thought to a future edition. Its whole purpose was to growing edges will find something to meet his inaugurate a radical new outlook on ex taste. perimental psychology, and if that could be Of course, this book will need teachers. As accomplished it was sufficient reward. In the it supersedes the narrow conceptions of 22 years since we have seen adequate-indeed models and statistics still taught as bivariate staggering-evidence that the growth of a new and ANOV A methods of experiment, in so branch of psychological method in science has many universities, those universities will need become established. The volume of research to expand their faculties with newly trained has grown apace in the journals and has young people. The old vicious circle of opened up new areas and a surprising increase obsoletely trained members turning out new of knowledge in methodology. obsoletely trained members has to be The credit for calling attention to the need recognized and broken. And wherever re for new guidance belongs to many members search deals with integral wholes-in per of the Society of Multivariate Experimental sonalities, processes, and groups-researchers Psychology, but the actual innervation is due will recognize the vast new future that to the skill and endurance of one man, John multivariate methods open up.
  exploratory factor analysis in r: Best Practices in Exploratory Factor Analysis Jason W. Osborne, 2014-07-23 Best Practices in Exploratory Factor Analysis (EFA) is a practitioner-oriented look at this popular and often-misunderstood statistical technique. We avoid formulas and matrix algebra, instead focusing on evidence-based best practices so you can focus on getting the most from your data.Each chapter reviews important concepts, uses real-world data to provide authentic examples of analyses, and provides guidance for interpreting the results of these analysis. Not only does this book clarify often-confusing issues like various extraction techniques, what rotation is really rotating, and how to use parallel analysis and MAP criteria to decide how many factors you have, but it also introduces replication statistics and bootstrap analysis so that you can better understand how precisely your data are helping you estimate population parameters. Bootstrap analysis also informs readers of your work as to the likelihood of replication, which can give you more credibility. At the end of each chapter, the author has recommendations as to how to enhance your mastery of the material, including access to the data sets used in the chapter through his web site. Other resources include syntax and macros for easily incorporating these progressive aspects of exploratory factor analysis into your practice. The web site will also include enrichment activities, answer keys to select exercises, and other resources. The fourth best practices book by the author, Best Practices in Exploratory Factor Analysis continues the tradition of clearly-written, accessible guides for those just learning quantitative methods or for those who have been researching for decades.NEW in August 2014! Chapters on factor scores, higher-order factor analysis, and reliability. Chapters: 1 INTRODUCTION TO EXPLORATORY FACTOR ANALYSIS 2 EXTRACTION AND ROTATION 3 SAMPLE SIZE MATTERS 4 REPLICATION STATISTICS IN EFA 5 BOOTSTRAP APPLICATIONS IN EFA 6 DATA CLEANING AND EFA 7 ARE FACTOR SCORES A GOOD IDEA? 8 HIGHER ORDER FACTORS 9 AFTER THE EFA: INTERNAL CONSISTENCY 10 SUMMARY AND CONCLUSIONS
  exploratory factor analysis in r: Confirmatory Factor Analysis for Applied Research, Second Edition Timothy A. Brown, 2015-01-07 This accessible book has established itself as the go-to resource on confirmatory factor analysis (CFA) for its emphasis on practical and conceptual aspects rather than mathematics or formulas. Detailed, worked-through examples drawn from psychology, management, and sociology studies illustrate the procedures, pitfalls, and extensions of CFA methodology. The text shows how to formulate, program, and interpret CFA models using popular latent variable software packages (LISREL, Mplus, EQS, SAS/CALIS); understand the similarities ...
  exploratory factor analysis in r: A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling Larry Hatcher, Norm O'Rourke, 2013-03-01 Annotation Structural equation modeling (SEM) has become one of the most important statistical procedures in the social and behavioral sciences. This easy-to-understand guide makes SEM accessible to all userseven those whose training in statistics is limited or who have never used SAS. It gently guides users through the basics of using SAS and shows how to perform some of the most sophisticated data-analysis procedures used by researchers: exploratory factor analysis, path analysis, confirmatory factor analysis, and structural equation modeling. It shows how to perform analyses with user-friendly PROC CALIS, and offers solutions for problems often encountered in real-world research. This second edition contains new material on sample-size estimation for path analysis and structural equation modeling. In a single user-friendly volume, students and researchers will find all the information they need in order to master SAS basics before moving on to factor analysis, path analysis, and other advanced statistical procedures.
  exploratory factor analysis in r: Handbook of Latent Variable and Related Models , 2011-08-11 This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
  exploratory factor analysis in r: Best Practices in Quantitative Methods Jason W. Osborne, 2008 The contributors to Best Practices in Quantitative Methods envision quantitative methods in the 21st century, identify the best practices, and, where possible, demonstrate the superiority of their recommendations empirically. Editor Jason W. Osborne designed this book with the goal of providing readers with the most effective, evidence-based, modern quantitative methods and quantitative data analysis across the social and behavioral sciences. The text is divided into five main sections covering select best practices in Measurement, Research Design, Basics of Data Analysis, Quantitative Methods, and Advanced Quantitative Methods. Each chapter contains a current and expansive review of the literature, a case for best practices in terms of method, outcomes, inferences, etc., and broad-ranging examples along with any empirical evidence to show why certain techniques are better. Key Features: Describes important implicit knowledge to readers: The chapters in this volume explain the important details of seemingly mundane aspects of quantitative research, making them accessible to readers and demonstrating why it is important to pay attention to these details. Compares and contrasts analytic techniques: The book examines instances where there are multiple options for doing things, and make recommendations as to what is the best choice—or choices, as what is best often depends on the circumstances. Offers new procedures to update and explicate traditional techniques: The featured scholars present and explain new options for data analysis, discussing the advantages and disadvantages of the new procedures in depth, describing how to perform them, and demonstrating their use. Intended Audience: Representing the vanguard of research methods for the 21st century, this book is an invaluable resource for graduate students and researchers who want a comprehensive, authoritative resource for practical and sound advice from leading experts in quantitative methods.
  exploratory factor analysis in r: An Introduction to Applied Multivariate Analysis with R Brian Everitt, Torsten Hothorn, 2011-04-23 The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
  exploratory factor analysis in r: Matrix-Based Introduction to Multivariate Data Analysis Kohei Adachi, 2016-10-11 This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on singular value decomposition among theorems in matrix algebra. The book begins with an explanation of fundamental matrix operations and the matrix expressions of elementary statistics, followed by the introduction of popular multivariate procedures with advancing levels of matrix algebra chapter by chapter. This organization of the book allows readers without knowledge of matrices to deepen their understanding of multivariate data analysis.
  exploratory factor analysis in r: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  exploratory factor analysis in r: Making Sense of Factor Analysis Marjorie A. Pett, Nancy R. Lackey, John J. Sullivan, 2003-03-21 Many health care practitioners and researchers are aware of the need to employ factor analysis in order to develop more sensitive instruments for data collection. Unfortunately, factor analysis is not a unidimensional approach that is easily understood by even the most experienced of researchers. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research presents a straightforward explanation of the complex statistical procedures involved in factor analysis. Authors Marjorie A. Pett, Nancy M. Lackey, and John J. Sullivan provide a step-by-step approach to analyzing data using statistical computer packages like SPSS and SAS. Emphasizing the interrelationship between factor analysis and test construction, the authors examine numerous practical and theoretical decisions that must be made to efficiently run and accurately interpret the outcomes of these sophisticated computer programs. This accessible volume will help both novice and experienced health care professionals to Increase their knowledge of the use of factor analysis in health care research Understand journal articles that report the use of factor analysis in test construction and instrument development Create new data collection instruments Examine the reliability and structure of existing health care instruments Interpret and report computer-generated output from a factor analysis run Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research offers a practical method for developing tests, validating instruments, and reporting outcomes through the use of factor analysis. To facilitate learning, the authors provide concrete testing examples, three appendices of additional information, and a glossary of key terms. Ideal for graduate level nursing students, this book is also an invaluable resource for health care researchers.
  exploratory factor analysis in r: COMPSTAT 2008 Paula Brito, 2008-08-11 18th Symposium Held in Porto, Portugal, 2008
  exploratory factor analysis in r: Exploratory Multivariate Analysis by Example Using R Francois Husson, Sebastien Le, Jérôme Pagès, 2017-04-25 Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) a
  exploratory factor analysis in r: Statistical Methods in Social Science Research S P Mukherjee, Bikas K Sinha, Asis Kumar Chattopadhyay, 2018-10-05 This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method – as distinct from a ‘science’ related to any one type of phenomena – is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.
  exploratory factor analysis in r: The SAGE Handbook of Quantitative Methodology for the Social Sciences David Kaplan, 2004-06-21 Quantitative methodology is a highly specialized field, and as with any highly specialized field, working through idiosyncratic language can be very difficult made even more so when concepts are conveyed in the language of mathematics and statistics. The Sage Handbook of Quantitative Methodology for the Social Sciences was conceived as a way of introducing applied statisticians, empirical researchers, and graduate students to the broad array of state-of-the-art quantitative methodologies in the social sciences. The contributing authors of the Handbook were asked to write about their areas of expertise in a way that would convey to the reader the utility of their respective methodologies. Relevance to real-world problems in the social sciences is an essential ingredient of each chapter. The Handbook consists of six sections comprising twenty-five chapters, from topics in scaling and measurement, to advances in statistical modelling methodologies, and finally to broad philosophical themes that transcend many of the quantitative methodologies covered in this handbook.
  exploratory factor analysis in r: Factor Analysis at 100 Robert Cudeck, Robert C. MacCallum, 2007-03-06 This book provides a retrospective look at major developments as well as a prospective view of future directions in factor analysis. In so doing, it demonstrates how and why factor analysis is considered to be one of the methodological pillars of behavioral research. Featuring an outstanding collection of contributors, this volume offers unique insights on factor analysis and its related methods. The book reviews some of the extensions of factor analysis to such techniques as latent growth curve models, models for categorical data, and structural equation models. Intended for graduate students and researchers in the behavioral, social, health, and biological sciences who use this technique in their research, a basic knowledge of factor analysis is required and a working knowledge of linear algebra is helpful.
  exploratory factor analysis in r: Practical Guide To Principal Component Methods in R Alboukadel KASSAMBARA, 2017-08-23 Although there are several good books on principal component methods (PCMs) and related topics, we felt that many of them are either too theoretical or too advanced. This book provides a solid practical guidance to summarize, visualize and interpret the most important information in a large multivariate data sets, using principal component methods in R. The visualization is based on the factoextra R package that we developed for creating easily beautiful ggplot2-based graphs from the output of PCMs. This book contains 4 parts. Part I provides a quick introduction to R and presents the key features of FactoMineR and factoextra. Part II describes classical principal component methods to analyze data sets containing, predominantly, either continuous or categorical variables. These methods include: Principal Component Analysis (PCA, for continuous variables), simple correspondence analysis (CA, for large contingency tables formed by two categorical variables) and Multiple CA (MCA, for a data set with more than 2 categorical variables). In Part III, you'll learn advanced methods for analyzing a data set containing a mix of variables (continuous and categorical) structured or not into groups: Factor Analysis of Mixed Data (FAMD) and Multiple Factor Analysis (MFA). Part IV covers hierarchical clustering on principal components (HCPC), which is useful for performing clustering with a data set containing only categorical variables or with a mixed data of categorical and continuous variables.
  exploratory factor analysis in r: Modern Psychometrics with R Patrick Mair, 2018-09-20 This textbook describes the broadening methodology spectrum of psychological measurement in order to meet the statistical needs of a modern psychologist. The way statistics is used, and maybe even perceived, in psychology has drastically changed over the last few years; computationally as well as methodologically. R has taken the field of psychology by storm, to the point that it can now safely be considered the lingua franca for statistical data analysis in psychology. The goal of this book is to give the reader a starting point when analyzing data using a particular method, including advanced versions, and to hopefully motivate him or her to delve deeper into additional literature on the method. Beginning with one of the oldest psychometric model formulations, the true score model, Mair devotes the early chapters to exploring confirmatory factor analysis, modern test theory, and a sequence of multivariate exploratory method. Subsequent chapters present special techniques useful for modern psychological applications including correlation networks, sophisticated parametric clustering techniques, longitudinal measurements on a single participant, and functional magnetic resonance imaging (fMRI) data. In addition to using real-life data sets to demonstrate each method, the book also reports each method in three parts-- first describing when and why to apply it, then how to compute the method in R, and finally how to present, visualize, and interpret the results. Requiring a basic knowledge of statistical methods and R software, but written in a casual tone, this text is ideal for graduate students in psychology. Relevant courses include methods of scaling, latent variable modeling, psychometrics for graduate students in Psychology, and multivariate methods in the social sciences.
  exploratory factor analysis in r: Modern Statistics with R Måns Thulin, 2024 The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
  exploratory factor analysis in r: Poverty in the Philippines Asian Development Bank, 2009-12-01 Against the backdrop of the global financial crisis and rising food, fuel, and commodity prices, addressing poverty and inequality in the Philippines remains a challenge. The proportion of households living below the official poverty line has declined slowly and unevenly in the past four decades, and poverty reduction has been much slower than in neighboring countries such as the People's Republic of China, Indonesia, Thailand, and Viet Nam. Economic growth has gone through boom and bust cycles, and recent episodes of moderate economic expansion have had limited impact on the poor. Great inequality across income brackets, regions, and sectors, as well as unmanaged population growth, are considered some of the key factors constraining poverty reduction efforts. This publication analyzes the causes of poverty and recommends ways to accelerate poverty reduction and achieve more inclusive growth. it also provides an overview of current government responses, strategies, and achievements in the fight against poverty and identifies and prioritizes future needs and interventions. The analysis is based on current literature and the latest available data, including the 2006 Family Income and Expenditure Survey.
  exploratory factor analysis in r: Problems and Solutions in Human Assessment Richard D. Goffin, Edward Helmes, 2012-12-06 The assessment of individual differences has generated shockwaves affecting sociology, education, and a number of other behavioral sciences as well as the fields of management and organizational behavior. In covering the assessment of individual differences, this book pays tribute to the interests and activities that Douglas N. Jackson has incorporated into his career as a psychologist. He continues to be a leader in putting academic findings to practical use. He has also inspired generations of students with his mastery of complex concepts and as a personal example of the ability to balance several simultaneous areas of research. Consistent with the focus of Jackson's research, the theme of this book will be how the use of deductive, construct-driven strategies in the assessment of individual differences leads to benefits in terms of the applicability of the assessment instruments and the clarity of the conclusions that can be drawn from the research.
  exploratory factor analysis in r: Multiple Factor Analysis by Example Using R Jérôme Pagès, 2014-11-20 Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also inc
  exploratory factor analysis in r: Statistical and Methodological Myths and Urban Legends Charles E. Lance, Charles E Lance, Robert J Vandenberg, 2010-10-18 This book provides an up-to-date review of commonly undertaken methodological and statistical practices that are sustained, in part, upon sound rationale and justification and, in part, upon unfounded lore. Some examples of these methodological urban legends, as we refer to them in this book, are characterized by manuscript critiques such as: (a) your self-report measures suffer from common method bias; (b) your item-to-subject ratios are too low; (c) you can’t generalize these findings to the real world; or (d) your effect sizes are too low. Historically, there is a kernel of truth to most of these legends, but in many cases that truth has been long forgotten, ignored or embellished beyond recognition. This book examines several such legends. Each chapter is organized to address: (a) what the legend is that we (almost) all know to be true; (b) what the kernel of truth is to each legend; (c) what the myths are that have developed around this kernel of truth; and (d) what the state of the practice should be. This book meets an important need for the accumulation and integration of these methodological and statistical practices.
  exploratory factor analysis in r: Applied Multivariate Statistical Analysis (Classic Version) Richard A. Johnson, Dean W. Wichern, 2018-03-18 This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.
  exploratory factor analysis in r: Assessing Measurement Invariance for Applied Research Craig S. Wells, 2021-06-03 This user-friendly guide illustrates how to assess measurement invariance using computer programs, statistical methods, and real data.
  exploratory factor analysis in r: An Introduction to Latent Variable Models B. Everett, 2013-03-07 Latent variable models are used in many areas of the social and behavioural sciences, and the increasing availability of computer packages for fitting such models is likely to increase their popularity. This book attempts to introduce such models to applied statisticians and research workers interested in exploring the structure of covari ance and correlation matrices in terms of a small number of unob servable constructs. The emphasis is on the practical application of the procedures rather than on detailed discussion of their mathe matical and statistical properties. It is assumed that the reader is familiar with the most commonly used statistical concepts and methods, particularly regression, and also has a fair knowledge of matrix algebra. My thanks are due to my colleagues Dr David Hand and Dr Graham Dunn for helpful comments on the book, to Mrs Bertha Lakey for her careful typing of a difficult manuscript and to Peter Cuttance for assistance with the LlSREL package. In addition the text clearly owes a great deal to the work on structural equation models published by Karl Joreskog, Dag Sorbom, Peter Bentler, Michael Browne and others.
  exploratory factor analysis in r: The Reviewer’s Guide to Quantitative Methods in the Social Sciences Gregory R. Hancock, Ralph O. Mueller, Laura M. Stapleton, 2010-04-26 Designed for reviewers of research manuscripts and proposals in the social and behavioral sciences, and beyond, this title includes chapters that address traditional and emerging quantitative methods of data analysis.
  exploratory factor analysis in r: Exploratory and Confirmatory Factor Analysis Bruce Thompson, 2004-01-01 Investigation of the structure underlying variables (or people, or time) has intrigued social scientists since the early origins of psychology. Conducting one's first factor analysis can yield a sense of awe regarding the power of these methods to inform judgment regarding the dimensions underlying constructs. This book presents the important concepts required for implementing two disciplines of factor analysis: exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). The book may be unique in its effort to present both analyses within the single rubric of the general linear model. Throughout the book canons of best factor analytic practice are presented and explained. The book has been written to strike a happy medium between accuracy and completeness versus overwhelming technical complexity. An actual data set, randomly drawn from a large-scale international study involving faculty and graduate student perceptions of academic libraries, is presented in Appendix A. Throughout the book different combinations of these variables and participants are used to illustrate EFA and CFA applications--Preface. (PsycINFO Database Record (c) 2005 APA, all rights reserved).
  exploratory factor analysis in r: Multivariate Analysis Klaus Backhaus, Bernd Erichson, Sonja Gensler, Rolf Weiber, Thomas Weiber, 2021-10-13 Data can be extremely valuable if we are able to extract information from them. This is why multivariate data analysis is essential for business and science. This book offers an easy-to-understand introduction to the most relevant methods of multivariate data analysis. It is strictly application-oriented, requires little knowledge of mathematics and statistics, demonstrates the procedures with numerical examples and illustrates each method via a case study solved with IBM’s statistical software package SPSS. Extensions of the methods and links to other procedures are discussed and recommendations for application are given. An introductory chapter presents the basic ideas of the multivariate methods covered in the book and refreshes statistical basics which are relevant to all methods. Contents Introduction to empirical data analysis Regression analysis Analysis of variance Discriminant analysis Logistic regression Contingency analysis Factor analysis Cluster analysis Conjoint analysis The original German version is now available in its 16th edition. In 2015, this book was honored by the Federal Association of German Market and Social Researchers as “the textbook that has shaped market research and practice in German-speaking countries”. A Chinese version is available in its 3rd edition. On the website www.multivariate-methods.info, the authors further analyze the data with Excel and R and provide additional material to facilitate the understanding of the different multivariate methods. In addition, interactive flashcards are available to the reader for reviewing selected focal points. Download the Springer Nature Flashcards App and use exclusive content to test your knowledge.
  exploratory factor analysis in r: Introduction to Factor Analysis Jae-On Kim, Charles W. Mueller, 1978-11 Describes the mathematical and logical foundations at a level that does not presume advanced mathematical or statistical skills. It illustrates how to do factor analysis with several of the more popular packaged computer programs.
  exploratory factor analysis in r: Factor Analysis and Related Methods Roderick P. McDonald, 1985 First Published in 1985. Routledge is an imprint of Taylor & Francis, an informa company.
  exploratory factor analysis in r: The Palgrave Handbook of Applied Linguistics Research Methodology Aek Phakiti, Peter De Costa, Luke Plonsky, Sue Starfield, 2018-11-19 This Handbook provides a comprehensive treatment of basic and more advanced research methodologies in applied linguistics and offers a state-of-the-art review of methods particular to various domains within the field. Arranged thematically in 4 parts, across 41 chapters, it covers a range of research approaches, presents current perspectives, and addresses key issues in different research methods, such as designing and implementing research instruments and techniques, and analysing different types of applied linguistics data. Innovations, challenges and trends in applied linguistics research are examined throughout the Handbook. As such it offers an up-to-date and highly accessible entry point into both established and emerging approaches that will offer fresh possibilities and perspectives as well as thorough consideration of best practices. This wide-ranging volume will prove an invaluable resource to applied linguists at all levels, including scholars in related fields such as language learning and teaching, multilingualism, corpus linguistics, critical discourse analysis, discourse analysis and pragmatics, language assessment, language policy and planning, multimodal communication, and translation.
  exploratory factor analysis in r: Longitudinal Structural Equation Modeling Todd D. Little, 2013-02-26 This book has been replaced by Longitudinal Structural Equation Modeling, Second Edition, ISBN 978-1-4625-5314-3.
EXPLORATORY Definition & Meaning - Merriam-Webster
The meaning of EXPLORATORY is of, relating to, or being exploration. How to use exploratory in a sentence.

EXPLORATORY | English meaning - Cambridge Dictionary
EXPLORATORY definition: 1. done in order to discover more about something: 2. done in order to discover more about…. Learn more.

EXPLORATORY Definition & Meaning - Dictionary.com
Exploratory definition: pertaining to or concerned with exploration.. See examples of EXPLORATORY used in a sentence.

Exploratory - definition of exploratory by The Free Dictionary
exploratory - serving in or intended for exploration or discovery; "an exploratory operation"; "exploratory reconnaissance"; "digging an exploratory well in the Gulf of Mexico"; "exploratory …

exploratory adjective - Definition, pictures, pronunciation and …
Definition of exploratory adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.

EXPLORATORY definition and meaning | Collins English Dictionary
Exploratory actions are done in order to discover something or to learn the truth about something. Exploratory surgery revealed her liver cancer. Two of Britain's biggest rival supermarket …

Exploratory - Definition, Meaning & Synonyms - Vocabulary.com
Whether you’re a teacher or a learner, Vocabulary.com can put you or your class on the path to systematic vocabulary improvement.

exploratory - Wiktionary, the free dictionary
From explore +‎ -atory. Serving to explore or investigate. An exploration or investigation.

What does exploratory mean? - Definitions.net
Exploratory refers to the act of investigating, examining, or analyzing something in a detailed way to learn more about it, especially when this involves searching for new facts or understanding. …

EXPLORATORY Synonyms: 34 Similar and Opposite Words - Merriam-Webster
Synonyms for EXPLORATORY: experimental, investigative, speculative, tentative, theoretic, preliminary, theoretical, developmental; Antonyms of EXPLORATORY: standard, established, …

EXPLORATORY Definition & Meaning - Merriam-Webster
The meaning of EXPLORATORY is of, relating to, or being exploration. How to use exploratory in a sentence.

EXPLORATORY | English meaning - Cambridge Dictionary
EXPLORATORY definition: 1. done in order to discover more about something: 2. done in order to discover more about…. Learn more.

EXPLORATORY Definition & Meaning - Dictionary.com
Exploratory definition: pertaining to or concerned with exploration.. See examples of EXPLORATORY used in a sentence.

Exploratory - definition of exploratory by The Free Dictionary
exploratory - serving in or intended for exploration or discovery; "an exploratory operation"; "exploratory reconnaissance"; "digging an exploratory well in the Gulf of Mexico"; "exploratory …

exploratory adjective - Definition, pictures, pronunciation and …
Definition of exploratory adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.

EXPLORATORY definition and meaning | Collins English Dictionary
Exploratory actions are done in order to discover something or to learn the truth about something. Exploratory surgery revealed her liver cancer. Two of Britain's biggest rival supermarket …

Exploratory - Definition, Meaning & Synonyms - Vocabulary.com
Whether you’re a teacher or a learner, Vocabulary.com can put you or your class on the path to systematic vocabulary improvement.

exploratory - Wiktionary, the free dictionary
From explore +‎ -atory. Serving to explore or investigate. An exploration or investigation.

What does exploratory mean? - Definitions.net
Exploratory refers to the act of investigating, examining, or analyzing something in a detailed way to learn more about it, especially when this involves searching for new facts or understanding. …

EXPLORATORY Synonyms: 34 Similar and Opposite Words - Merriam-Webster
Synonyms for EXPLORATORY: experimental, investigative, speculative, tentative, theoretic, preliminary, theoretical, developmental; Antonyms of EXPLORATORY: standard, established, …