Factor Analysis Of Mixed Data

Advertisement



  factor analysis of mixed data: Practical Guide To Principal Component Methods in R Alboukadel KASSAMBARA, 2017-08-23 Although there are several good books on principal component methods (PCMs) and related topics, we felt that many of them are either too theoretical or too advanced. This book provides a solid practical guidance to summarize, visualize and interpret the most important information in a large multivariate data sets, using principal component methods in R. The visualization is based on the factoextra R package that we developed for creating easily beautiful ggplot2-based graphs from the output of PCMs. This book contains 4 parts. Part I provides a quick introduction to R and presents the key features of FactoMineR and factoextra. Part II describes classical principal component methods to analyze data sets containing, predominantly, either continuous or categorical variables. These methods include: Principal Component Analysis (PCA, for continuous variables), simple correspondence analysis (CA, for large contingency tables formed by two categorical variables) and Multiple CA (MCA, for a data set with more than 2 categorical variables). In Part III, you'll learn advanced methods for analyzing a data set containing a mix of variables (continuous and categorical) structured or not into groups: Factor Analysis of Mixed Data (FAMD) and Multiple Factor Analysis (MFA). Part IV covers hierarchical clustering on principal components (HCPC), which is useful for performing clustering with a data set containing only categorical variables or with a mixed data of categorical and continuous variables.
  factor analysis of mixed data: Multiple Factor Analysis by Example Using R Jérôme Pagès, 2014-11-20 Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also inc
  factor analysis of mixed data: Advanced Information Networking and Applications Leonard Barolli, Isaac Woungang, Tomoya Enokido, 2021-04-23 ​This book covers the theory, design and applications of computer networks, distributed computing and information systems. Networks of today are going through a rapid evolution, and there are many emerging areas of information networking and their applications. Heterogeneous networking supported by recent technological advances in low-power wireless communications along with silicon integration of various functionalities such as sensing, communications, intelligence and actuations is emerging as a critically important disruptive computer class based on a new platform, networking structure and interface that enable novel, low-cost and high-volume applications. Several of such applications have been difficult to realize because of many interconnections problems. To fulfill their large range of applications, different kinds of networks need to collaborate, and wired and next-generation wireless systems should be integrated in order to develop high-performance computing solutions to problems arising from the complexities of these networks. The aim of the book “Advanced Information Networking and Applications” is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of information networking and applications.
  factor analysis of mixed data: Making Sense of Factor Analysis Marjorie A. Pett, Nancy R. Lackey, John J. Sullivan, 2003-03-21 Many health care practitioners and researchers are aware of the need to employ factor analysis in order to develop more sensitive instruments for data collection. Unfortunately, factor analysis is not a unidimensional approach that is easily understood by even the most experienced of researchers. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research presents a straightforward explanation of the complex statistical procedures involved in factor analysis. Authors Marjorie A. Pett, Nancy M. Lackey, and John J. Sullivan provide a step-by-step approach to analyzing data using statistical computer packages like SPSS and SAS. Emphasizing the interrelationship between factor analysis and test construction, the authors examine numerous practical and theoretical decisions that must be made to efficiently run and accurately interpret the outcomes of these sophisticated computer programs. This accessible volume will help both novice and experienced health care professionals to Increase their knowledge of the use of factor analysis in health care research Understand journal articles that report the use of factor analysis in test construction and instrument development Create new data collection instruments Examine the reliability and structure of existing health care instruments Interpret and report computer-generated output from a factor analysis run Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research offers a practical method for developing tests, validating instruments, and reporting outcomes through the use of factor analysis. To facilitate learning, the authors provide concrete testing examples, three appendices of additional information, and a glossary of key terms. Ideal for graduate level nursing students, this book is also an invaluable resource for health care researchers.
  factor analysis of mixed data: Analysis of Mixed Data Alexander R. de Leon, Keumhee Carrière Chough, 2013-01-16 A comprehensive source on mixed data analysis, Analysis of Mixed Data: Methods & Applications summarizes the fundamental developments in the field. Case studies are used extensively throughout the book to illustrate interesting applications from economics, medicine and health, marketing, and genetics. Carefully edited for smooth readability and seamless transitions between chapters All chapters follow a common structure, with an introduction and a concluding summary, and include illustrative examples from real-life case studies in developmental toxicology, economics, medicine and health, marketing, and genetics An introductory chapter provides a wide angle introductory overview and comprehensive survey of mixed data analysis Blending theory and methodology, this book illustrates concepts via data from different disciplines. Analysis of Mixed Data: Methods & Applications traces important developments, collates basic results, presents terminology and methodologies, and gives an overview of statistical research applications. It is a valuable resource to methodologically interested as well as subject matter-motivated researchers in many disciplines.
  factor analysis of mixed data: Latent Variable Models and Factor Analysis David J. Bartholomew, Martin Knott, 1999-08-10 Hitherto latent variable modelling has hovered on the fringes of the statistical mainstream but if the purpose of statistics is to deal with real problems, there is every reason for it to move closer to centre stage. In the social sciences especially, latent variables are common and if they are to be handled in a truly scientific manner, statistical theory must be developed to include them. This book aims to show how that should be done. This second edition is a complete re-working of the book of the same name which appeared in the Griffin’s Statistical Monographs in 1987. Since then there has been a surge of interest in latent variable methods which has necessitated a radical revision of the material but the prime object of the book remains the same. It provides a unified and coherent treatment of the field from a statistical perspective. This is achieved by setting up a sufficiently general framework to enable the derivation of the commonly used models. The subsequent analysis is then done wholly within the realm of probability calculus and the theory of statistical inference. Numerical examples are provided as well as the software to carry them out ( where this is not otherwise available). Additional data sets are provided in some cases so that the reader can aquire a wider experience of analysis and interpretation.
  factor analysis of mixed data: The Routledge Reviewer’s Guide to Mixed Methods Analysis Anthony J. Onwuegbuzie, R. Burke Johnson, 2021-07-12 The Routledge Reviewer’s Guide to Mixed Methods Analysis is a groundbreaking edited book – the first devoted solely to mixed methods research analyses, or mixed analyses. Each of the 30 seminal chapters, authored by internationally renowned scholars, provides a simple and practical introduction to a method of mixed analysis. Each chapter demonstrates how to conduct the analysis in easy-to-understand language. Many of the chapters present new topics that have never been written before, and all chapters offer cutting-edge approaches to analysis. The book contains the following four sections: Part I Quantitative Approaches to Qualitative Data (e.g., factor analysis of text, multidimensional scaling of qualitative data); Part II Qualitative Approaches to Quantitative Data (e.g., qualitizing data, mixed methodological discourse analysis); Part III Inherently Mixed Analysis Approaches (e.g., qualitative comparative analysis, mixed methods social network analysis, social media analytics as mixed analysis, GIS as mixed analysis); and Part IV Use of Software for Mixed Data Analysis (e.g., QDA Miner, WordStat, MAXQDA, NVivo, SPSS). The audience for this book includes (a) researchers, evaluators, and practitioners who conduct a variety of research projects and who are interested in using innovative analyses that will allow them to extract more from their data; (b) academics, including faculty who would use this book in their scholarship, as well as in their graduate-level courses, and graduate students who need access to a comprehensive set of mixed analysis tools for their dissertations/theses and other research assignments and projects; and (c) computer-assisted data analysis software developers who are seeking additional mixed analyses to include within their software programs. Chapter 24 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.
  factor analysis of mixed data: Multiple Correspondence Analysis and Related Methods Michael Greenacre, Jorg Blasius, 2006-06-23 As a generalization of simple correspondence analysis, multiple correspondence analysis (MCA) is a powerful technique for handling larger, more complex datasets, including the high-dimensional categorical data often encountered in the social sciences, marketing, health economics, and biomedical research. Until now, however, the literature on the su
  factor analysis of mixed data: Exploratory Factor Analysis Leandre R. Fabrigar, Duane T. Wegener, 2012-01-12 This book provides a non-mathematical introduction to the theory and application of Exploratory Factor Analysis. Among the issues discussed are the use of confirmatory versus exploratory factor analysis, the use of principal components analysis versus common factor analysis, and procedures for determining the appropriate number of factors.
  factor analysis of mixed data: Practical Guide to Cluster Analysis in R Alboukadel Kassambara, 2017-08-23 Although there are several good books on unsupervised machine learning, we felt that many of them are too theoretical. This book provides practical guide to cluster analysis, elegant visualization and interpretation. It contains 5 parts. Part I provides a quick introduction to R and presents required R packages, as well as, data formats and dissimilarity measures for cluster analysis and visualization. Part II covers partitioning clustering methods, which subdivide the data sets into a set of k groups, where k is the number of groups pre-specified by the analyst. Partitioning clustering approaches include: K-means, K-Medoids (PAM) and CLARA algorithms. In Part III, we consider hierarchical clustering method, which is an alternative approach to partitioning clustering. The result of hierarchical clustering is a tree-based representation of the objects called dendrogram. In this part, we describe how to compute, visualize, interpret and compare dendrograms. Part IV describes clustering validation and evaluation strategies, which consists of measuring the goodness of clustering results. Among the chapters covered here, there are: Assessing clustering tendency, Determining the optimal number of clusters, Cluster validation statistics, Choosing the best clustering algorithms and Computing p-value for hierarchical clustering. Part V presents advanced clustering methods, including: Hierarchical k-means clustering, Fuzzy clustering, Model-based clustering and Density-based clustering.
  factor analysis of mixed data: Handbook of Applied Multivariate Statistics and Mathematical Modeling Howard E.A. Tinsley, Steven D. Brown, 2000-05-22 Multivariate statistics and mathematical models provide flexible and powerful tools essential in most disciplines. Nevertheless, many practicing researchers lack an adequate knowledge of these techniques, or did once know the techniques, but have not been able to keep abreast of new developments. The Handbook of Applied Multivariate Statistics and Mathematical Modeling explains the appropriate uses of multivariate procedures and mathematical modeling techniques, and prescribe practices that enable applied researchers to use these procedures effectively without needing to concern themselves with the mathematical basis. The Handbook emphasizes using models and statistics as tools. The objective of the book is to inform readers about which tool to use to accomplish which task. Each chapter begins with a discussion of what kinds of questions a particular technique can and cannot answer. As multivariate statistics and modeling techniques are useful across disciplines, these examples include issues of concern in biological and social sciences as well as the humanities.
  factor analysis of mixed data: Advancing Grounded Theory with Mixed Methods Elizabeth G. Creamer, 2021-08-30 This groundbreaking book introduces an innovative new perspective on mixed method grounded theory methodology (MM-GTM) by conceptualizing it holistically as a distinct, qualitatively driven methodology that appreciates the integrity of each of the methods it embraces. This practical and accessible text advocates for using MM-GTM in a way that promote meaningful interaction between qualitative and quantitative data during analysis. Its principal contribution is to provide a set of research tools to develop or refine a multi-faceted analytical framework in applied fields in the social and behavioral sciences, including nursing. Used as either a resource or a textbook in a survey course about research methods, the text references dozens of examples about how a dialectical exchange between different sources of data can be built into core grounded theory procedures, including theoretical sampling, coding, case-based memoing, and integrated visual displays. With a whole chapter devoted to reporting, the book also considers the way that indexes of quality that extend beyond methodological transparency can be used to evaluate research that partners mixed methods with grounded theory and other qualitative methods. Featuring student-friendly pedagogy throughout, including self-assessment questions, a glossary, and a framework that summarizes key points, this text is an essential read for all research methods students or early career researchers ambitious to develop a theoretical perspective with qualitative, mixed methods, or evaluation.
  factor analysis of mixed data: Mixed Effects Models for Complex Data Lang Wu, 2009-11-11 Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
  factor analysis of mixed data: Handbook of Latent Variable and Related Models , 2011-08-11 This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
  factor analysis of mixed data: Exploratory Factor Analysis W. Holmes Finch, 2019-09-05 A firm knowledge of factor analysis is key to understanding much published research in the social and behavioral sciences. Exploratory Factor Analysis by W. Holmes Finch provides a solid foundation in exploratory factor analysis (EFA), which along with confirmatory factor analysis, represents one of the two major strands in this field. The book lays out the mathematical foundations of EFA; explores the range of methods for extracting the initial factor structure; explains factor rotation; and outlines the methods for determining the number of factors to retain in EFA. The concluding chapter addresses a number of other key issues in EFA, such as determining the appropriate sample size for a given research problem, and the handling of missing data. It also offers brief introductions to exploratory structural equation modeling, and multilevel models for EFA. Example computer code, and the annotated output for all of the examples included in the text are available on an accompanying website.
  factor analysis of mixed data: Encyclopedia of Research Design Neil J. Salkind, 2010-06-22 Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases.--Publisher's description.
  factor analysis of mixed data: Integrating Analyses in Mixed Methods Research Patricia Bazeley, 2017-09-25 Integrating Analyses in Mixed Methods Research goes beyond mixed methods research design and data collection, providing a pragmatic discussion of the challenges of effectively integrating data to facilitate a more comprehensive and rigorous level of analysis. Showcasing a range of strategies for integrating different sources and forms of data as well as different approaches in analysis, it helps you plan, conduct, and disseminate complex analyses with confidence. Key techniques include: Building an integrative framework Analysing sequential, complementary and comparative data Identifying patterns and contrasts in linked data Categorizing, counting, and blending mixed data Managing dissonance and divergence Transforming analysis into warranted assertions With clear steps that can be tailored to any project, this book is perfect for students and researchers undertaking their own mixed methods research.
  factor analysis of mixed data: Factor Analysis in Chemistry Edmund R. Malinowski, Darryl G. Howery, 1980-05-13 Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
  factor analysis of mixed data: An Introduction to Categorical Data Analysis Alan Agresti, 2018-10-11 A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
  factor analysis of mixed data: Machine Learning Essentials Alboukadel Kassambara, 2018-03-10 Discovering knowledge from big multivariate data, recorded every days, requires specialized machine learning techniques. This book presents an easy to use practical guide in R to compute the most popular machine learning methods for exploring real word data sets, as well as, for building predictive models. The main parts of the book include: A) Unsupervised learning methods, to explore and discover knowledge from a large multivariate data set using clustering and principal component methods. You will learn hierarchical clustering, k-means, principal component analysis and correspondence analysis methods. B) Regression analysis, to predict a quantitative outcome value using linear regression and non-linear regression strategies. C) Classification techniques, to predict a qualitative outcome value using logistic regression, discriminant analysis, naive bayes classifier and support vector machines. D) Advanced machine learning methods, to build robust regression and classification models using k-nearest neighbors methods, decision tree models, ensemble methods (bagging, random forest and boosting). E) Model selection methods, to select automatically the best combination of predictor variables for building an optimal predictive model. These include, best subsets selection methods, stepwise regression and penalized regression (ridge, lasso and elastic net regression models). We also present principal component-based regression methods, which are useful when the data contain multiple correlated predictor variables. F) Model validation and evaluation techniques for measuring the performance of a predictive model. G) Model diagnostics for detecting and fixing a potential problems in a predictive model. The book presents the basic principles of these tasks and provide many examples in R. This book offers solid guidance in data mining for students and researchers. Key features: - Covers machine learning algorithm and implementation - Key mathematical concepts are presented - Short, self-contained chapters with practical examples.
  factor analysis of mixed data: Dyadic Data Analysis David A. Kenny, Deborah A. Kashy, William L. Cook, 2020-11-26 Interpersonal phenomena such as attachment, conflict, person perception, learning, and influence have traditionally been studied by examining individuals in isolation, which falls short of capturing their truly interpersonal nature. This book offers state-of-the-art solutions to this age-old problem by presenting methodological and data-analytic approaches useful in investigating processes that take place among dyads: couples, coworkers, parent and child, teacher and student, or doctor and patient, to name just a few. Rich examples from psychology and across the behavioral and social sciences help build the researcher's ability to conceptualize relationship processes; model and test for actor effects, partner effects, and relationship effects; and model and control for the statistical interdependence that can exist between partners. The companion website provides clarifications, elaborations, corrections, and data and files for each chapter.
  factor analysis of mixed data: Factor Analysis Jae-On Kim, Charles W. Mueller, 1978-11 Describes various commonly used methods of initial factoring and factor rotation. In addition to a full discussion of exploratory factor analysis, confirmatory factor analysis and various methods of constructing factor scales are also presented.
  factor analysis of mixed data: An Introduction to Applied Multivariate Analysis with R Brian Everitt, Torsten Hothorn, 2011-04-23 The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
  factor analysis of mixed data: Multiple Factor Analysis by Example Using R Jérôme Pagès, 2014-11-20 Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR). The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The next chapter discusses factor analysis for mixed data (FAMD), a little-known method for simultaneously analyzing quantitative and qualitative variables without group distinction. Focusing on MFA, subsequent chapters examine the key points of MFA in the context of quantitative variables as well as qualitative and mixed data. The author also compares MFA and Procrustes analysis and presents a natural extension of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of matrix calculation and metric spaces used in the book.
  factor analysis of mixed data: SAS for Mixed Models Walter W. Stroup, George A. Milliken, Elizabeth A. Claassen, Russell D. Wolfinger, 2018-12-12 Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.
  factor analysis of mixed data: Factor Analysis Edward E. Cureton, Ralph B. D'Agostino, 2013-11-19 First published in 1993. Routledge is an imprint of Taylor & Francis, an informa company.
  factor analysis of mixed data: Macroeconomic Forecasting in the Era of Big Data Peter Fuleky, 2019-11-28 This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
  factor analysis of mixed data: Introduction to Factor Analysis Jae-On Kim, Charles W. Mueller, 1978-11 Describes the mathematical and logical foundations at a level that does not presume advanced mathematical or statistical skills. It illustrates how to do factor analysis with several of the more popular packaged computer programs.
  factor analysis of mixed data: ggplot2 Hadley Wickham, 2009-10-03 Provides both rich theory and powerful applications Figures are accompanied by code required to produce them Full color figures
  factor analysis of mixed data: Statistics for Psychology Using R Vivek M. Belhekar, 2016-10-31 A unique textbook introducing and demonstrating the use of R in psychology. Statistics for Psychology Using R comprehensively covers standard statistical methods along with advanced topics such as multivariate techniques, factor analysis, and multiple regression widely used in the field of psychology and other social sciences. Its innovative structure and pedagogical approach coupled with numerous worked-out examples and self-assessment tests make it a user-friendly and easy-to-understand companion for students and scholars with limited background in statistics. The standout feature of this textbook is that it demonstrates the application of R—a free, flexible, and dynamically changing software for statistical computing and data analysis, which is becoming increasingly popular across social and behavioral sciences.
  factor analysis of mixed data: Generalized Low Rank Models Madeleine Udell, 2015 Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. This dissertation extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.
  factor analysis of mixed data: The Oxford Handbook of Multimethod and Mixed Methods Research Inquiry Sharlene Nagy Hesse-Biber, Burke Johnson, 2015 Offering a variety of innovative methods and tools, this book provides a comprehensive and up-to-date presentation on multi and mixed methods research.
  factor analysis of mixed data: Data Analysis with SPSS for Survey-based Research Saiyidi Mat Roni, Hadrian Geri Djajadikerta, 2021-06-21 This book is written for research students and early-career researchers to quickly and easily learn how to analyse data using SPSS. It follows commonly used logical steps in data analysis design for research. The book features SPSS screenshots to assist rapid acquisition of the techniques required to process their research data. Rather than using a conventional writing style to discuss fundamentals of statistics, this book focuses directly on the technical aspects of using SPSS to analyse data. This approach allows researchers and research students to spend more time on interpretations and discussions of SPSS outputs, rather than on the mundane task of actually processing their data.
  factor analysis of mixed data: Modern Psychometrics with R Patrick Mair, 2018-09-20 This textbook describes the broadening methodology spectrum of psychological measurement in order to meet the statistical needs of a modern psychologist. The way statistics is used, and maybe even perceived, in psychology has drastically changed over the last few years; computationally as well as methodologically. R has taken the field of psychology by storm, to the point that it can now safely be considered the lingua franca for statistical data analysis in psychology. The goal of this book is to give the reader a starting point when analyzing data using a particular method, including advanced versions, and to hopefully motivate him or her to delve deeper into additional literature on the method. Beginning with one of the oldest psychometric model formulations, the true score model, Mair devotes the early chapters to exploring confirmatory factor analysis, modern test theory, and a sequence of multivariate exploratory method. Subsequent chapters present special techniques useful for modern psychological applications including correlation networks, sophisticated parametric clustering techniques, longitudinal measurements on a single participant, and functional magnetic resonance imaging (fMRI) data. In addition to using real-life data sets to demonstrate each method, the book also reports each method in three parts-- first describing when and why to apply it, then how to compute the method in R, and finally how to present, visualize, and interpret the results. Requiring a basic knowledge of statistical methods and R software, but written in a casual tone, this text is ideal for graduate students in psychology. Relevant courses include methods of scaling, latent variable modeling, psychometrics for graduate students in Psychology, and multivariate methods in the social sciences.
  factor analysis of mixed data: Encyclopedia of Quality of Life and Well-Being Research Alex C. Michalos, 2014-02-12 The aim of this encyclopedia is to provide a comprehensive reference work on scientific and other scholarly research on the quality of life, including health-related quality of life research or also called patient-reported outcomes research. Since the 1960s two overlapping but fairly distinct research communities and traditions have developed concerning ideas about the quality of life, individually and collectively, one with a fairly narrow focus on health-related issues and one with a quite broad focus. In many ways, the central issues of these fields have roots extending to the observations and speculations of ancient philosophers, creating a continuous exploration by diverse explorers in diverse historic and cultural circumstances over several centuries of the qualities of human existence. What we have not had so far is a single, multidimensional reference work connecting the most salient and important contributions to the relevant fields. Entries are organized alphabetically and cover basic concepts, relatively well established facts, lawlike and causal relations, theories, methods, standardized tests, biographic entries on significant figures, organizational profiles, indicators and indexes of qualities of individuals and of communities of diverse sizes, including rural areas, towns, cities, counties, provinces, states, regions, countries and groups of countries.
  factor analysis of mixed data: Exploratory Multivariate Analysis by Example Using R Francois Husson, Sebastien Le, Jérôme Pagès, 2017-04-25 Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) a
  factor analysis of mixed data: Multivariate Analysis with LISREL Karl G. Jöreskog, Ulf H. Olsson, Fan Y. Wallentin, 2016-10-17 This book traces the theory and methodology of multivariate statistical analysis and shows how it can be conducted in practice using the LISREL computer program. It presents not only the typical uses of LISREL, such as confirmatory factor analysis and structural equation models, but also several other multivariate analysis topics, including regression (univariate, multivariate, censored, logistic, and probit), generalized linear models, multilevel analysis, and principal component analysis. It provides numerous examples from several disciplines and discusses and interprets the results, illustrated with sections of output from the LISREL program, in the context of the example. The book is intended for masters and PhD students and researchers in the social, behavioral, economic and many other sciences who require a basic understanding of multivariate statistical theory and methods for their analysis of multivariate data. It can also be used as a textbook on various topics of multivariate statistical analysis.
  factor analysis of mixed data: Applied Unsupervised Learning with R Alok Malik, Bradford Tuckfield, 2019-03-27 Design clever algorithms that discover hidden patterns and draw responses from unstructured, unlabeled data. Key FeaturesBuild state-of-the-art algorithms that can solve your business' problemsLearn how to find hidden patterns in your dataRevise key concepts with hands-on exercises using real-world datasetsBook Description Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and features of R that enable you to understand your data better and get answers to your most pressing business questions. This book begins with the most important and commonly used method for unsupervised learning - clustering - and explains the three main clustering algorithms - k-means, divisive, and agglomerative. Following this, you'll study market basket analysis, kernel density estimation, principal component analysis, and anomaly detection. You'll be introduced to these methods using code written in R, with further instructions on how to work with, edit, and improve R code. To help you gain a practical understanding, the book also features useful tips on applying these methods to real business problems, including market segmentation and fraud detection. By working through interesting activities, you'll explore data encoders and latent variable models. By the end of this book, you will have a better understanding of different anomaly detection methods, such as outlier detection, Mahalanobis distances, and contextual and collective anomaly detection. What you will learnImplement clustering methods such as k-means, agglomerative, and divisiveWrite code in R to analyze market segmentation and consumer behaviorEstimate distribution and probabilities of different outcomesImplement dimension reduction using principal component analysisApply anomaly detection methods to identify fraudDesign algorithms with R and learn how to edit or improve codeWho this book is for Applied Unsupervised Learning with R is designed for business professionals who want to learn about methods to understand their data better, and developers who have an interest in unsupervised learning. Although the book is for beginners, it will be beneficial to have some basic, beginner-level familiarity with R. This includes an understanding of how to open the R console, how to read data, and how to create a loop. To easily understand the concepts of this book, you should also know basic mathematical concepts, including exponents, square roots, means, and medians.
  factor analysis of mixed data: Handbook of Data Analysis Melissa A Hardy, Alan Bryman, 2009-06-17 ′This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond′ - Environment and Planning ′The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher′ - Clive Seale, Brunel University ′With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. ′ - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa ′This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments′ - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. The book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis.
  factor analysis of mixed data: Linear Mixed Models Brady T. West, Kathleen B. Welch, Andrzej T Galecki, 2006-11-22 Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav
FACTOR - LinkedIn
Since our inception in 1979, FACTOR® has been committed to providing companies in the petroleum marketing and convenience store industries with proven industry-leading software, …

FACTOR, INC. - LinkedIn
Formerly named Visual Risk Technologies, FACTOR has been solving challenging risk management problems in the transportation, energy, chemical, insurance, and public sectors …

Factor Corp - LinkedIn
Developing Futures, Building Today | Factor Corp is at the forefront of property development and construction, crafting innovative spaces that elevate lifestyles and set new benchmarks in quality.

FACTOR GROUP LLC - LinkedIn
Factor Group is proud to have been named one of Florida’s Best Companies to Work For in 2009. We have a team of over 150 employees and offices in the United States and Latin America.

Factor - LinkedIn
Factor | 1,416 followers on LinkedIn. Unlocking the hidden insights that enable marketing leaders to make trusted decisions and drive success. | Factor is your go-to data librarian.

Factor Fellowship - LinkedIn
The Factor Fellowship connects New York’s diverse high-performing emerging leaders to careers in startups. | Built by NYC VCs and startups, Factor connects top talent to startup careers.

Factor San Francisco - LinkedIn
Factor makes the internet beautiful. And businesses more profitable. We're a results-driven creative agency, with fully-remote talent working across the US and Canada.

FACTOR - LinkedIn
Since our inception in 1979, FACTOR® has been committed to providing companies in the petroleum marketing and convenience store industries with proven industry-leading software, …

FACTOR, INC. - LinkedIn
Formerly named Visual Risk Technologies, FACTOR has been solving challenging risk management problems in the transportation, energy, chemical, insurance, and public sectors …

Factor Corp - LinkedIn
Developing Futures, Building Today | Factor Corp is at the forefront of property development and construction, crafting innovative spaces that elevate lifestyles and set new benchmarks in quality.

FACTOR GROUP LLC - LinkedIn
Factor Group is proud to have been named one of Florida’s Best Companies to Work For in 2009. We have a team of over 150 employees and offices in the United States and Latin America.

Factor - LinkedIn
Factor | 1,416 followers on LinkedIn. Unlocking the hidden insights that enable marketing leaders to make trusted decisions and drive success. | Factor is your go-to data librarian.

Factor Fellowship - LinkedIn
The Factor Fellowship connects New York’s diverse high-performing emerging leaders to careers in startups. | Built by NYC VCs and startups, Factor connects top talent to startup careers.

Factor San Francisco - LinkedIn
Factor makes the internet beautiful. And businesses more profitable. We're a results-driven creative agency, with fully-remote talent working across the US and Canada.