Advertisement
dimensionless meaning in physics: Dimensionless Physical Quantities in Science and Engineering Josef Kunes, 2012-02-13 Dimensionless quantities, such as p, e, and f are used in mathematics, engineering, physics, and chemistry. In recent years the dimensionless groups, as demonstrated in detail here, have grown in significance and importance in contemporary mathematical and computer modeling as well as the traditional fields of physical modeling. This book offers the most comprehensive and up to date resource for dimensionless quantities, providing not only a summary of the quantities, but also a clarification of their physical principles, areas of use, and other specific properties across multiple relevant fields. Presenting the most complete and clearly explained single resource for dimensionless groups, this book will be essential for students and researchers working across the sciences. - Includes approximately 1,200 dimensionless quantities - Features both classic and newly developing fields - Easy to use with clear organization and citations to relevant works |
dimensionless meaning in physics: An Introduction to Thermal Physics C. J. Adkins, 1987-02-05 This textbook is intended for introductory courses in physics, engineering and chemistry at universities, polytechnics and technical colleges. It provides either an elementary treatment of thermal physics, complete in itself, for those who need to carry the subject no further, or a sound foundation for further study in more specialised courses. The author gives a clear and concise account of those basic concepts that provide the foundations for an understanding of the thermal properties of matter. The area covered corresponds very roughly to the traditional topics of heat, kinetic theory, and those properties of matter for which there are elementary explanations in terms of interatomic forces. The book is not concerned with experimental detail but with ideas and concepts, and their quantitative application through simple models. The author provides many problems for which the answers are included. The book should also be useful in teacher training and as a reference book in the libraries of schools where pupils are being prepared for tertiary courses. |
dimensionless meaning in physics: Physics of Sedimentology Kenneth J. Hsü, 2013-03-14 This textbook explains sedimentological processes via the fundamental physics that underlies the actual mechanisms involved. Demonstrates the applicability of fundamental principles, such as Newton's Three Laws of Motion, the Law of Conservation of Energy, the First and Second Laws of Thermodynamics, and of other physical relations in hydraulics and groundwater hydrology by discussions of natural processes which form sediments and sedimentary rocks. In this second edition several chapters have been updated and amended to reflect progress in the field |
dimensionless meaning in physics: Quantities, Units and Symbols in Physical Chemistry International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division, 2007 Prepared by the IUPAC Physical Chemistry Division this definitive manual, now in its third edition, is designed to improve the exchange of scientific information among the readers in different disciplines and across different nations. This book has been systematically brought up to date and new sections added to reflect the increasing volume of scientific literature and terminology and expressions being used. The Third Edition reflects the experience of the contributors with the previous editions and the comments and feedback have been integrated into this essential resource. This edition has been compiled in machine-readable form and will be available online. |
dimensionless meaning in physics: Introduction to Mathematical Physics Chun Wa Wong, 2013-01-24 Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages the reader to use computer-aided algebra to solve problems in mathematical physics. A free Instructor's Solutions Manual is available to instructors who order the book for course adoption. |
dimensionless meaning in physics: The Constants of Nature John Barrow, 2009-05-06 Reality as we know it is bound by a set of constants—numbers and values that dictate the strengths of forces like gravity, the speed of light, and the masses of elementary particles. In The Constants of Nature, Cambridge Professor and bestselling author John D.Barrow takes us on an exploration of these governing principles. Drawing on physicists such as Einstein and Planck, Barrow illustrates with stunning clarity our dependence on the steadfastness of these principles. But he also suggests that the basic forces may have been radically different during the universe’s infancy, and suggests that they may continue a deeply hidden evolution. Perhaps most tantalizingly, Barrow theorizes about the realities that might one day be found in a universe with different parameters than our own. |
dimensionless meaning in physics: Scaling of Differential Equations Hans Petter Langtangen, Geir K. Pedersen, 2016-06-15 The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations. |
dimensionless meaning in physics: Just Six Numbers Martin Rees, 2014-03-20 Astronomer Royal Martin Rees shows how the behaviour and origins of the universe can be explained by just six numbers. How did a single genesis event create billions of galaxies, black holes, stars and planets? How did atoms assemble - here on Earth, and perhaps on other worlds - into living beings intricate enough to ponder their origins? This book describes the recent avalanche of discoveries about the universe's fundamental laws, and the deep connections that exist between stars and atoms - the cosmos and the microscopic world. Just six numbers, imprinted in the big bang, determine the essence of our world, and this book devotes one chapter to explaining each. |
dimensionless meaning in physics: The Art of Insight in Science and Engineering Sanjoy Mahajan, 2014-11-07 Tools to make hard problems easier to solve. In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. To master complexity, we can organize it or discard it. The Art of Insight in Science and Engineering first teaches the tools for organizing complexity, then distinguishes the two paths for discarding complexity: with and without loss of information. Questions and problems throughout the text help readers master and apply these groups of tools. Armed with this three-part toolchest, and without complicated mathematics, readers can estimate the flight range of birds and planes and the strength of chemical bonds, understand the physics of pianos and xylophones, and explain why skies are blue and sunsets are red. The Art of Insight in Science and Engineering will appear in print and online under a Creative Commons Noncommercial Share Alike license. |
dimensionless meaning in physics: A Course of Modern Analysis E. T. Whittaker, George Neville Watson, G. N. Watson, 1927 This classic text is known to and used by thousands of mathematicians and students of mathematics thorughout the world. It gives an introduction to the general theory of infinite processes and of analytic functions together with an account of the principle transcendental functions. |
dimensionless meaning in physics: Development of Mathematical Cognition Daniel B. Berch, David C. Geary, Kathleen Mann Koepke, 2015-10-03 Development of Mathematical Cognition: Neural Substrates and Genetic Influences reviews advances in extant imaging modalities and the application of brain stimulation techniques for improving mathematical learning. It goes on to explore the role genetics and environmental influences have in the development of math abilities and disabilities. Focusing on the neural substrates and genetic factors associated with both the typical and atypical development of mathematical thinking and learning, this second volume in the Mathematical Cognition and Learning series integrates the latest in innovative measures and methodological advances from the top researchers in the field. - Provides details about new progress made in the study of neural correlates of numerical and arithmetic cognition - Addresses recent work in quantitative and molecular genetics - Works to improve instruction in numerical, arithmetical, and algebraic thinking and learning - Informs policy to help increase the level of mathematical proficiency among the general public |
dimensionless meaning in physics: Sears and Zemansky's University Physics Hugh D. Young, Roger A. Freedman, Lewis Ford, 2007-03 Refining the most widely adopted and enduring physics text available,University Physics with Modern Physics, Twelfth Editioncontinues an unmatched history of innovation and careful execution that was established by the best selling Eleventh Edition. Assimilating the best ideas from education research, this new edition provides enhanced problem-solving instruction, pioneering visual and conceptual pedagogy, the first systematically enhanced problems, and the most pedagogically proven and widely used homework and tutorial system available.Mechanics, Waves/Acoustics, Thermodynamics, Electromagnetism, Optics, Modern Physics.For all readers interested in university physics. |
dimensionless meaning in physics: Physics of Stochastic Processes Reinhard Mahnke, Jevgenijs Kaupuzs, Ihor Lubashevsky, 2009-08-04 Based on lectures given by one of the authors with many years of experience in teaching stochastic processes, this textbook is unique in combining basic mathematical and physical theory with numerous simple and sophisticated examples as well as detailed calculations. In addition, applications from different fields are included so as to strengthen the background learned in the first part of the book. With its exercises at the end of each chapter (and solutions only available to lecturers) this book will benefit students and researchers at different educational levels. Solutions manual available for lecturers on www.wiley-vch.de |
dimensionless meaning in physics: Frontiers of Fundamental Physics M. Barone, F. Selleri, 2012-12-06 The Olympia conference Frontiers of Fundamental Physics was a gathering of about hundred scientists who carryon their research in conceptually important areas of physical science (they do fundamental physics). Most of them were physicists, but also historians and philosophers of science were well represented. An important fraction of the participants could be considered heretical because they disagreed with the validity of one or several fundamental assumptions of modern physics. Common to all participants was an excellent scientific level coupled with a remarkable intellectual honesty: we are proud to present to the readers this certainly unique book. Alternative ways of considering fundamental matters should of course be vitally important for the progress of science, unless one wanted to admit that physics at the end of the XXth century has already obtained the final truth, a very unlikely possibility even if one accepted the doubtful idea of the existence of a final truth. The merits of the Olympia conference should therefore not be judged a priori in a positive or in a negative way depending on one's refusal or acceptance, respectively, but considered after reading the actual of basic principles of contemporary science, new proposals and evidences there presented. They seem very important to us. |
dimensionless meaning in physics: Nonconservative Stability Problems of Modern Physics Oleg N. Kirillov, 2021-03-08 This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler’s destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics. |
dimensionless meaning in physics: The Journal of Physics and Chemistry of Solids , 1967 |
dimensionless meaning in physics: Introduction to the Physics of Electron Emission Kevin L. Jensen, 2017-11-29 A practical, in-depth description of the physics behind electron emission physics and its usage in science and technology Electron emission is both a fundamental phenomenon and an enabling component that lies at the very heart of modern science and technology. Written by a recognized authority in the field, with expertise in both electron emission physics and electron beam physics, An Introduction to Electron Emission provides an in-depth look at the physics behind thermal, field, photo, and secondary electron emission mechanisms, how that physics affects the beams that result through space charge and emittance growth, and explores the physics behind their utilization in an array of applications. The book addresses mathematical and numerical methods underlying electron emission, describing where the equations originated, how they are related, and how they may be correctly used to model actual sources for devices using electron beams. Writing for the beam physics and solid state communities, the author explores applications of electron emission methodology to solid state, statistical, and quantum mechanical ideas and concepts related to simulations of electron beams to condensed matter, solid state and fabrication communities. Provides an extensive description of the physics behind four electron emission mechanisms—field, photo, and secondary, and how that physics relates to factors such as space charge and emittance that affect electron beams. Introduces readers to mathematical and numerical methods, their origins, and how they may be correctly used to model actual sources for devices using electron beams Demonstrates applications of electron methodology as well as quantum mechanical concepts related to simulations of electron beams to solid state design and manufacture Designed to function as both a graduate-level text and a reference for research professionals Introduction to the Physics of Electron Emission is a valuable learning tool for postgraduates studying quantum mechanics, statistical mechanics, solid state physics, electron transport, and beam physics. It is also an indispensable resource for academic researchers and professionals who use electron sources, model electron emission, develop cathode technologies, or utilize electron beams. |
dimensionless meaning in physics: Physics for Nonphysicists Frank R. Spellman, 2009-06-16 Environmental professionals who look beyond their specialties and acquire knowledge in a variety of sciences not only make solving on-the-job problems easier for themselves, but they also increase their employment opportunities. This fifth book in the 'non-specialist' series provides both professionals and students with a clear, concise overview of the most important aspects of physics in a way that anyone, even those who have never taken a formal physics course, can relate to. Starting with the basic principles of measurement, conversion factors, and math operations, the author explores the topics of motion and force, work and energy, gravity, atoms, heat, sound, light and color, and basic electricity. Each chapter examines the jargon, concepts, key concerns, and applications of physics in action and ends with a chapter review test. |
dimensionless meaning in physics: Street-Fighting Mathematics Sanjoy Mahajan, 2010-03-05 An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license. |
dimensionless meaning in physics: Semantics for Counting and Measuring Susan Rothstein, 2017-04-06 The book is an investigation of the semantics of numericals, counting and measuring, and its connection to the mass/count distinction from a theoretical and crosslinguistic perspective. It reviews some recent major linguistic results in these topics, and presents the author's new research including in-depth case studies of a number of typologically unrelated languages. |
dimensionless meaning in physics: Dimensional Analysis Qing-Ming Tan, 2011-06-06 Dimensional analysis is an essential scientific method and a powerful tool for solving problems in physics and engineering. This book starts by introducing the Pi Theorem, which is the theoretical foundation of dimensional analysis. It also provides ample and detailed examples of how dimensional analysis is applied to solving problems in various branches of mechanics. The book covers the extensive findings on explosion mechanics and impact dynamics contributed by the author’s research group over the past forty years at the Chinese Academy of Sciences. The book is intended for research scientists and engineers working in the fields of physics and engineering, as well as graduate students and advanced undergraduates of the related fields. Qing-Ming Tan is a former Professor at the Institute of Mechanics, the Chinese Academy of Sciences, China. |
dimensionless meaning in physics: Entropy Demystified: The Second Law Reduced To Plain Common Sense Arieh Ben-naim, 2007-05-04 In this unique book, Arieh Ben-Naim invites the reader to experience the joy of appreciating something which has eluded understanding for many years — entropy and the Second Law of Thermodynamics.The book has a two-pronged message: first, that the Second Law is not “infinitely incomprehensible” as commonly stated in textbooks of thermodynamics but can, in fact, be comprehended through sheer common sense; and second, that entropy is not a mysterious quantity that has “resisted understanding” but a simple, familiar and easily comprehensible concept.Written in an accessible style, the book guides the reader through an abundance of dice games and examples from everyday life. The author paves the way for readers to discover for themselves what entropy is, how it changes, and most importantly, why it always changes in one direction in a spontaneous process. |
dimensionless meaning in physics: Atmospheric Chemistry and Physics John H. Seinfeld, Spyros N. Pandis, 2016-04-04 Expanded and updated with new findings and new features New chapter on Global Climate providing a self-contained treatment of climate forcing, feedbacks, and climate sensitivity New chapter on Atmospheric Organic Aerosols and new treatment of the statistical method of Positive Matrix Factorization Updated treatments of physical meteorology, atmospheric nucleation, aerosol-cloud relationships, chemistry of biogenic hydrocarbons Each topic developed from the fundamental science to the point of application to real-world problems New problems at an introductory level to aid in classroom teaching |
dimensionless meaning in physics: The Cambridge Handbook of Physics Formulas Graham Woan, 2000-07-10 The Cambridge Handbook of Physics Formulas is a quick-reference aid for students and professionals in the physical sciences and engineering. It contains more than 2000 of the most useful formulas and equations found in undergraduate physics courses, covering mathematics, dynamics and mechanics, quantum physics, thermodynamics, solid state physics, electromagnetism, optics and astrophysics. An exhaustive index allows the required formulas to be located swiftly and simply, and the unique tabular format crisply identifies all the variables involved. The Cambridge Handbook of Physics Formulas comprehensively covers the major topics explored in undergraduate physics courses. It is designed to be a compact, portable, reference book suitable for everyday work, problem solving or exam revision. All students and professionals in physics, applied mathematics, engineering and other physical sciences will want to have this essential reference book within easy reach. |
dimensionless meaning in physics: Fundamentals of Dimensional Analysis Alberto N. Conejo, 2021-05-31 This is the first book which systematically describes an integral approach on dimensional analysis. The amount of textbooks on dimensional analysis is huge, however most of the books start with the definition of the relevant variables. When the variables are given to the reader without prior knowledge on each problem it has serious consequences: the usefulness of dimensional analysis is not appreciated, is not possible to understand the real challenges of this subject and the result, which is a general relationship with dimensionless groups is useless. This book closes the hole in previous books because in addition to describe step by step how to reach the general relationship with dimensionless groups, which creates solid basis of different metallurgical problems to understand the role of the relevant variables. It provides a full description on how to obtain the experimental data and applies the experimental data to transform the general relationship in a particular solution. Once the reader learns how to design the experimental work and uses that information to define the particular solution, it is possible to asses if the selection of variables was adequate or not. The book is useful for both undergraduate and graduate students. |
dimensionless meaning in physics: Fake Physics: Spoofs, Hoaxes and Fictitious Science Andrew May, 2019-04-12 People are used to seeing “fake physics” in science fiction – concepts like faster-than-light travel, antigravity and time travel to name a few. The fiction label ought to be a giveaway, but some SF writers – especially those with a background in professional science – are so adept at “technobabble” that it can be difficult to work out what is fake and what is real. To confuse matters further, Isaac Asimov’s 1948 piece about the fictitious time-travelling substance thiotimoline was written, not as a short story, but in the form of a spoof research paper. The boundaries between fact and fiction can also be blurred by physicists themselves - sometimes unintentionally, sometimes with tongue-in-cheek, sometimes to satirize perceived weaknesses in research practices. Examples range from hoaxes aimed at exposing poor editorial standards in academic publications, through “thought experiments” that sound like the plot of a sci-fi movie to April Fools’ jokes. Even the latter may carry a serious message, whether about the sociology of science or poking fun at legitimate but far-out scientific hypotheses. This entertaining book is a joyous romp exploring the whole spectrum of fake physics – from science to fiction and back again. |
dimensionless meaning in physics: The Physics of Quantum Mechanics James Binney, David Skinner, 2013-12 This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world. |
dimensionless meaning in physics: Basic Physics Kenneth W Ford, 2016-12-15 This reissued version of the classic text Basic Physics will help teachers at both the high-school and college levels gain new insights into, and deeper understanding of, many topics in both classical and modern physics that are commonly taught in introductory physics courses. All of the original book is included with new content added. Short sections of the previous book (174 in number) are labeled 'Features.' These Features are highlighted in the book, set forth in a separate Table of Contents, and separately indexed.Many teachers will value this book as a personal reference during a teaching year as various topics are addressed. Ford's discussions of the history and meaning of topics from Newton's mechanics to Feynman's diagrams, although written first in 1968, have beautifully withstood the test of time and are fully relevant to 21st-century physics teaching. |
dimensionless meaning in physics: Advances in Electronics and Electron Physics , 1989-02-01 Advances in Electronics and Electron Physics |
dimensionless meaning in physics: Calculations for A-level Physics T. L. Lowe, J. F. Rounce, 2002 This guide has been revised to match the new specifications. It gives thorough expert explanations, worked examples and plenty of exam practice in physics calculations. It can be used as a course support book as well as exam practice. |
dimensionless meaning in physics: Principles of Environmental Physics John Monteith, M. H. Unsworth, 1990-02-15 Thoroughly revised and up-dated edition of a highly successful textbook. |
dimensionless meaning in physics: The Uncertainty in Physical Measurements Paolo Fornasini, 2008-09-18 The scienti c method is based on the measurement of di erent physical qu- tities and the search for relations between their values. All measured values of physical quantities are, however, a ected by uncertainty. Understanding the origin of uncertainty, evaluating its extent, and suitably taking it into account in data analysis, are fundamental steps for assessing the global accuracy of physical laws and the degree of reliability of their technological applications. The introduction to uncertainty evaluation and data analysis procedures is generally made in laboratory courses for freshmen. During my long-lasting teaching experience, I had the feeling of some sort of gap between the ava- able tutorial textbooks, and the specialized monographs. The present work aims at lling this gap, and has been tested and modi ed through a feedback interaction with my students for several years. I have tried to maintain as much as possible a tutorial approach, that, starting from a phenomenolo- cal introduction, progressively leads to an accurate de nition of uncertainty and to some of the most common procedures of data analysis, facilitating the access to advanced monographs. This book is mainly addressed to - dergraduate students, but can be a useful reference for researchers and for secondary school teachers. The book is divided into three parts and a series of appendices. Part I is devoted to a phenomenological introduction to measurement and uncertainty. In Chap. |
dimensionless meaning in physics: Continuum Modeling in the Physical Sciences E. van Groesen, Jaap Molenaar, 2007-01-01 Mathematical modeling - the ability to apply mathematical concepts and techniques to real-life systems has expanded considerably over the last decades, making it impossible to cover all of its aspects in one course or textbook. Continuum Modeling in the Physical Sciences provides an extensive exposition of the general principles and methods of this growing field with a focus on applications in the natural sciences. The authors present a thorough treatment of mathematical modeling from the elementary level to more advanced concepts. Most of the chapters are devoted to a discussion of central issues such as dimensional analysis, conservation principles, balance laws, constitutive relations, stability, robustness, and variational methods, and are accompanied by numerous real-life examples. Readers will benefit from the exercises placed throughout the text and the challenging problems sections found at the ends of several chapters. |
dimensionless meaning in physics: Frontiers in Horizons in World Physics Victor H. Marselle, 2008 This book presents original research results on the leading edge of physics research. Each article has been carefully selected in an attempt to present substantial research results across a broad spectrum. |
dimensionless meaning in physics: Physical Foundations of Cosmology Viatcheslav Mukhanov, 2005-11-10 Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed. |
dimensionless meaning in physics: Applied Dimensional Analysis and Modeling Thomas Szirtes, 2007-04-27 Applied Dimensional Analysis and Modeling provides the full mathematical background and step-by-step procedures for employing dimensional analyses, along with a wide range of applications to problems in engineering and applied science, such as fluid dynamics, heat flow, electromagnetics, astronomy and economics. This new edition offers additional worked-out examples in mechanics, physics, geometry, hydrodynamics, and biometry. Covers 4 essential aspects and applications: principal characteristics of dimensional systems, applications of dimensional techniques in engineering, mathematics and geometry, applications in biosciences, biometry and economics, applications in astronomy and physics Offers more than 250 worked-out examples and problems with solutions Provides detailed descriptions of techniques of both dimensional analysis and dimensional modeling |
dimensionless meaning in physics: Introductory Elements of Analysis and Design in Chemical Engineering Bruce C. Gates, Robert L. Powell, 2023-10-27 Introductory Elements of Analysis and Design in Chemical Engineering introduces readers to how chemical engineers think. It explains the application of analytical methods to phenomena important in chemical engineering and teaches analytical skills in the context of engineering design. A principle goal is to help readers reinforce their understanding of mathematics (especially calculus) and science as they are introduced to engineering thinking. Key Features: • Emphasizes basic principles, methods, and problem solving at an elementary level. • Presents concepts in calculus, chemistry, and physics and methods of analysis on the basis of experiment and observation. • Connects experimental results to mathematical representations. • Provides numerous illustrative examples and builds on them to introduce processing and process flow diagrams and to place chemical engineering in an historical context. • Includes problems at the end of each chapter. Aimed at readers beginning their studies in chemical engineering, this textbook offers an approachable introduction to the principles of analysis and design in chemical engineering to help readers learn to think quantitatively and with a foundation of chemical engineering concepts. |
dimensionless meaning in physics: Geometric Algebra for Physicists Chris Doran, Anthony Lasenby, 2007-11-22 Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory. |
dimensionless meaning in physics: Master Resource Book in Physics for JEE Main 2021 , |
dimensionless meaning in physics: The Physics of Reality Richard L. Amoroso, 2013 A truly Galilean-class volume, this book introduces a new method in theory formation, completing the tools of epistemology. It covers a broad spectrum of theoretical and mathematical physics by researchers from over 20 nations from four continents. Like Vigier himself, the Vigier symposia are noted for addressing avant-garde, cutting-edge topics in contemporary physics. Among the six proceedings honoring J.-P. Vigier, this is perhaps the most exciting one as several important breakthroughs are introduced for the first time. The most interesting breakthrough in view of the recent NIST experimental violations of QED is a continuation of the pioneering work by Vigier on tight bound states in hydrogen. The new experimental protocol described not only promises empirical proof of large-scale extra dimensions in conjunction with avenues for testing string theory, but also implies the birth of the field of unified field mechanics, ushering in a new age of discovery. Work on quantum computing redefines the qubit in a manner that the uncertainty principle may be routinely violated. Other breakthroughs occur in the utility of quaternion algebra in extending our understanding of the nature of the fermionic singularity or point particle. There are several other discoveries of equal magnitude, making this volume a must-have acquisition for the library of any serious forward-looking researchers. |
What is the difference between "Unitless" and "Dimensionless"?
Sep 17, 2020 · Though it can be "dimensionless" like an angle, which is the ratio of two lengths if measured in radians. Of course you can also decide to introduce a new unit like the degree …
Units for dimensionless quantities - Physics Stack Exchange
May 7, 2017 · The tricky examples are angles and percentages. The SI-brochure says these quantities are dimensionless, also termed quantities of dimension 1. These dimensionless …
How to indicate that a unit is dimensionless [duplicate]
Feb 20, 2015 · My problem lies in the second symbol "z" which is a dimensionless quantity. I could of course just leave the unit column empty for such quantities, however that would look a …
Why must exponents be dimensionless? - Physics Forums
Feb 8, 2013 · why must 'b' be dimensionless? If we restrict our attention to exponents that are positive integers, then an exponent means repeated multiplication. For example, x 2 = x * x, …
Why are angles dimensionless and quantities such as length not?
Jul 12, 2015 · An article published in Control Systems Magazine by Bernstein, et. al., Dec 2007, and one which focuses on the algebraic structure of dimensional quantities argues that angle …
Dimensionful vs dimensionless constants - Physics Forums
Dec 13, 2009 · General relativity and pure quantum mechanics have no dimensionless constants, because the speed of light, the gravitational constant, and Planck's constant merely suffice to …
dimensional analysis - Are units of angle really dimensionless ...
Apr 27, 2016 · So, an angle is indeed dimensionless, but fundamentally so are lengths, time intervals, masses temperatures etc. etc. Now, as pointed out in the other answers, adding up …
How to convert units when calculating a dimensionless quantity?
Jun 10, 2024 · It seems your question is contradictory. You start saying that P is dimensionless, then you want to convert it to make it dimensionless. If it is already dimensionless, then no …
Why is the action dimensionless in natural units?
Dec 15, 2015 · Taking this point of view, action is not dimensionless in natural units – you just do not write down the units that indicate the dimension. Further reading and blatant self …
Why the quantities are dimensionless in curves plots?
Mar 19, 2019 · Dimensionless constants have a special significance in physics. This is well described in the answers to the question Dimensionless Constants in Physics. Having said …
What is the difference between "Unitless" and "Dimensionless"?
Sep 17, 2020 · Though it can be "dimensionless" like an angle, which is the ratio of two lengths if measured in radians. Of course you can also decide to introduce a new unit like the degree …
Units for dimensionless quantities - Physics Stack Exchange
May 7, 2017 · The tricky examples are angles and percentages. The SI-brochure says these quantities are dimensionless, also termed quantities of dimension 1. These dimensionless …
How to indicate that a unit is dimensionless [duplicate]
Feb 20, 2015 · My problem lies in the second symbol "z" which is a dimensionless quantity. I could of course just leave the unit column empty for such quantities, however that would look a …
Why must exponents be dimensionless? - Physics Forums
Feb 8, 2013 · why must 'b' be dimensionless? If we restrict our attention to exponents that are positive integers, then an exponent means repeated multiplication. For example, x 2 = x * x, …
Why are angles dimensionless and quantities such as length not?
Jul 12, 2015 · An article published in Control Systems Magazine by Bernstein, et. al., Dec 2007, and one which focuses on the algebraic structure of dimensional quantities argues that angle …
Dimensionful vs dimensionless constants - Physics Forums
Dec 13, 2009 · General relativity and pure quantum mechanics have no dimensionless constants, because the speed of light, the gravitational constant, and Planck's constant merely suffice to …
dimensional analysis - Are units of angle really dimensionless ...
Apr 27, 2016 · So, an angle is indeed dimensionless, but fundamentally so are lengths, time intervals, masses temperatures etc. etc. Now, as pointed out in the other answers, adding up …
How to convert units when calculating a dimensionless quantity?
Jun 10, 2024 · It seems your question is contradictory. You start saying that P is dimensionless, then you want to convert it to make it dimensionless. If it is already dimensionless, then no …
Why is the action dimensionless in natural units?
Dec 15, 2015 · Taking this point of view, action is not dimensionless in natural units – you just do not write down the units that indicate the dimension. Further reading and blatant self …
Why the quantities are dimensionless in curves plots?
Mar 19, 2019 · Dimensionless constants have a special significance in physics. This is well described in the answers to the question Dimensionless Constants in Physics. Having said …