Discrete Math Vs Continuous Math

Advertisement



  discrete math vs continuous math: Building Proofs: A Practical Guide David Stewart, Suely Oliveira, 2015-06-10 This book introduces students to the art and craft of writing proofs, beginning with the basics of writing proofs and logic, and continuing on with more in-depth issues and examples of creating proofs in different parts of mathematics, as well as introducing proofs-of-correctness for algorithms. The creation of proofs is covered for theorems in both discrete and continuous mathematics, and in difficulty ranging from elementary to beginning graduate level.Just beyond the standard introductory courses on calculus, theorems and proofs become central to mathematics. Students often find this emphasis difficult and new. This book is a guide to understanding and creating proofs. It explains the standard “moves” in mathematical proofs: direct computation, expanding definitions, proof by contradiction, proof by induction, as well as choosing notation and strategies.
  discrete math vs continuous math: Street-Fighting Mathematics Sanjoy Mahajan, 2010-03-05 An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
  discrete math vs continuous math: Concrete Mathematics Ronald L. Graham, Donald E. Knuth, Oren Patashnik, 1994-02-28 This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. More concretely, the authors explain, it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems. The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
  discrete math vs continuous math: A Comprehensive Treatment of q-Calculus Thomas Ernst, 2012-09-08 To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms.For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Apart from a thorough review of the historical development of q-calculus, this book also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few.​
  discrete math vs continuous math: Discrete Mathematics Using a Computer John O'Donnell, Cordelia Hall, Rex Page, 2007-01-04 Computer science abounds with applications of discrete mathematics, yet s- dents of computer science often study discrete mathematics in the context of purely mathematical applications. They have to ?gure out for themselves how to apply the ideas of discrete mathematics to computing problems. It is not easy. Most students fail to experience broad success in this enterprise, which is not surprising, since many of the most important advances in science and engineeringhavebeen, precisely, applicationsofmathematicstospeci?cscience and engineering problems. Tobesure,mostdiscretemathtextbooksincorporatesomeaspectsapplying discrete math to computing, but it usually takes the form of asking students to write programs to compute the number of three-ball combinations there are in a set of ten balls or, at best, to implement a graph algorithm. Few texts ask students to use mathematical logic to analyze properties of digital circuits or computer programs or to apply the set theoretic model of functions to understand higher-order operations. A major aim of this text is to integrate, tightly, the study of discrete mathematics with the study of central problems of computer science.
  discrete math vs continuous math: Discrete Mathematics Oscar Levin, 2016-08-16 This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the introduction to proof course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
  discrete math vs continuous math: Modern Discrete Mathematics and Analysis Nicholas J. Daras, Themistocles M. Rassias, 2018-07-05 A variety of modern research in analysis and discrete mathematics is provided in this book along with applications in cryptographic methods and information security, in order to explore new techniques, methods, and problems for further investigation. Distinguished researchers and scientists in analysis and discrete mathematics present their research. Graduate students, scientists and engineers, interested in a broad spectrum of current theories, methods, and applications in interdisciplinary fields will find this book invaluable.
  discrete math vs continuous math: Problem-Solving Strategies Arthur Engel, 2008-01-19 A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a problem of the week, thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
  discrete math vs continuous math: Continuous and Discrete Modules Saad H. Mohamed, Bruno J. Müller, 1990-02-22 Continuous and discrete modules are, essentially, generalizations of infective and projective modules respectively. Continuous modules provide an appropriate setting for decomposition theory of von Neumann algebras and have important applications to C*-algebras. Discrete modules constitute a dual concept and are related to number theory and algebraic geometry: they possess perfect decomposition properties. The advantage of both types of module is that the Krull-Schmidt theorem can be applied, in part, to them. The authors present here a complete account of the subject and at the same time give a unified picture of the theory. The treatment is essentially self-contained, with background facts being summarized in the first chapter. This book will be useful therefore either to individuals beginning research, or the more experienced worker in algebra and representation theory.
  discrete math vs continuous math: Continuous-Time Markov Decision Processes Xianping Guo, Onésimo Hernández-Lerma, 2009-09-18 Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.
  discrete math vs continuous math: Practical Discrete Mathematics Ryan T. White, Archana Tikayat Ray, 2021-02-22 A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book.
  discrete math vs continuous math: Excursions in Calculus Robert M. Young, 1992-10-01 This book explores the rich and elegant interplay between the two main currents of mathematics, the continuous and the discrete. Such fundamental notions in discrete mathematics as induction, recursion, combinatorics, number theory, discrete probability, and the algorithmic point of view as a unifying principle are continually explored as they interact with traditional calculus.
  discrete math vs continuous math: Discrete Mathematics László Lovász, József Pelikán, Katalin Vesztergombi, 2006-05-10 Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.
  discrete math vs continuous math: Computing the Continuous Discretely Matthias Beck, Sinai Robins, 2015-11-14 This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE
  discrete math vs continuous math: Solving Mathematical Problems Terence Tao, 2006-07-28 Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of 14 years and above in pure mathematics.
  discrete math vs continuous math: Algebraic and Discrete Mathematical Methods for Modern Biology Raina Robeva, 2015-05-09 Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the modern biology skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources
  discrete math vs continuous math: The Tools of Mathematical Reasoning Tamara J. Lakins, 2016-09-08 This accessible textbook gives beginning undergraduate mathematics students a first exposure to introductory logic, proofs, sets, functions, number theory, relations, finite and infinite sets, and the foundations of analysis. The book provides students with a quick path to writing proofs and a practical collection of tools that they can use in later mathematics courses such as abstract algebra and analysis. The importance of the logical structure of a mathematical statement as a framework for finding a proof of that statement, and the proper use of variables, is an early and consistent theme used throughout the book.
  discrete math vs continuous math: Discrete Mathematics Norman Biggs, 2002-12-19 Discrete mathematics is a compulsory subject for undergraduate computer scientists. This new edition includes new chapters on statements and proof, logical framework, natural numbers and the integers and updated exercises from the previous edition.
  discrete math vs continuous math: Discrete Mathematics for Computer Science Gary Haggard, John Schlipf, Sue Whitesides, 2006 Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career.
  discrete math vs continuous math: Stochastic Analysis in Discrete and Continuous Settings Nicolas Privault, 2009-07-14 This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.
  discrete math vs continuous math: Building Bridges II Imre Bárány, Gyula O. H. Katona, Attila Sali, 2020-02-04 This volume collects together research and survey papers written by invited speakers of the conference celebrating the 70th birthday of László Lovász. The topics covered include classical subjects such as extremal graph theory, coding theory, design theory, applications of linear algebra and combinatorial optimization, as well as recent trends such as extensions of graph limits, online or statistical versions of classical combinatorial problems, and new methods of derandomization. László Lovász is one of the pioneers in the interplay between discrete and continuous mathematics, and is a master at establishing unexpected connections, “building bridges” between seemingly distant fields. His invariably elegant and powerful ideas have produced new subfields in many areas, and his outstanding scientific work has defined and shaped many research directions in the last 50 years. The 14 contributions presented in this volume, all of which are connected to László Lovász's areas of research, offer an excellent overview of the state of the art of combinatorics and related topics and will be of interest to experienced specialists as well as young researchers.
  discrete math vs continuous math: Foundations of Discrete Mathematics K. D. Joshi, 1989 This Book Is Meant To Be More Than Just A Text In Discrete Mathematics. It Is A Forerunner Of Another Book Applied Discrete Structures By The Same Author. The Ultimate Goal Of The Two Books Are To Make A Strong Case For The Inclusion Of Discrete Mathematics In The Undergraduate Curricula Of Mathematics By Creating A Sequence Of Courses In Discrete Mathematics Parallel To The Traditional Sequence Of Calculus-Based Courses.The Present Book Covers The Foundations Of Discrete Mathematics In Seven Chapters. It Lays A Heavy Emphasis On Motivation And Attempts Clarity Without Sacrificing Rigour. A List Of Typical Problems Is Given In The First Chapter. These Problems Are Used Throughout The Book To Motivate Various Concepts. A Review Of Logic Is Included To Gear The Reader Into A Proper Frame Of Mind. The Basic Counting Techniques Are Covered In Chapters 2 And 7. Those In Chapter 2 Are Elementary. But They Are Intentionally Covered In A Formal Manner So As To Acquaint The Reader With The Traditional Definition-Theorem-Proof Pattern Of Mathematics. Chapters 3 Introduces Abstraction And Shows How The Focal Point Of Todays Mathematics Is Not Numbers But Sets Carrying Suitable Structures. Chapter 4 Deals With Boolean Algebras And Their Applications. Chapters 5 And 6 Deal With More Traditional Topics In Algebra, Viz., Groups, Rings, Fields, Vector Spaces And Matrices.The Presentation Is Elementary And Presupposes No Mathematical Maturity On The Part Of The Reader. Instead, Comments Are Inserted Liberally To Increase His Maturity. Each Chapter Has Four Sections. Each Section Is Followed By Exercises (Of Various Degrees Of Difficulty) And By Notes And Guide To Literature. Answers To The Exercises Are Provided At The End Of The Book.
  discrete math vs continuous math: Logic and Discrete Mathematics Willem Conradie, Valentin Goranko, Claudette Robinson, 2015-05-08 Solutions manual to accompany Logic and Discrete Mathematics: A Concise Introduction This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in this accompanying solutions manual.
  discrete math vs continuous math: Discrete Mathematics with Applications, Metric Edition Susanna Epp, 2019 DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, Metric Edition explains complex, abstract concepts with clarity and precision and provides a strong foundation for computer science and upper-level mathematics courses of the computer age. Author Susanna Epp presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to today's science and technology.
  discrete math vs continuous math: Basic Discrete Mathematics: Logic, Set Theory, And Probability Richard Kohar, 2016-06-15 This lively introductory text exposes the student in the humanities to the world of discrete mathematics. A problem-solving based approach grounded in the ideas of George Pólya are at the heart of this book. Students learn to handle and solve new problems on their own. A straightforward, clear writing style and well-crafted examples with diagrams invite the students to develop into precise and critical thinkers. Particular attention has been given to the material that some students find challenging, such as proofs. This book illustrates how to spot invalid arguments, to enumerate possibilities, and to construct probabilities. It also presents case studies to students about the possible detrimental effects of ignoring these basic principles. The book is invaluable for a discrete and finite mathematics course at the freshman undergraduate level or for self-study since there are full solutions to the exercises in an appendix.'Written with clarity, humor and relevant real-world examples, Basic Discrete Mathematics is a wonderful introduction to discrete mathematical reasoning.'- Arthur Benjamin, Professor of Mathematics at Harvey Mudd College, and author of The Magic of Math
  discrete math vs continuous math: Precalculus and Discrete Mathematics , 2010 Provides a broad-based, reality-oriented, easy-to-comprehend approach to the topic. Materials are designed to take into account the wide range of backgrounds and knowledge of students. Includes a wide scope and a real-world orientation; increases material is some areas compared to earlier edition. Emphasizes skill in carrying out various algorithms; developing and using mathematical properties, relationships and proofs; applying mathematics to real situations, and representing concepts with graphs or other diagrams. New features are big ideas that highlight the key concepts; mental math questions; activities to develop concepts and skills; guided examples with partially-completed solutions and self quizzes.
  discrete math vs continuous math: A First Course in Discrete Mathematics Ian Anderson, 2012-12-06 Drawing on many years'experience of teaching discrete mathem atics to students of all levels, Anderson introduces such as pects as enumeration, graph theory and configurations or arr angements. Starting with an introduction to counting and rel ated problems, he moves on to the basic ideas of graph theor y with particular emphasis on trees and planar graphs. He de scribes the inclusion-exclusion principle followed by partit ions of sets which in turn leads to a study of Stirling and Bell numbers. Then follows a treatment of Hamiltonian cycles, Eulerian circuits in graphs, and Latin squares as well as proof of Hall's theorem. He concludes with the constructions of schedules and a brief introduction to block designs. Each chapter is backed by a number of examples, with straightforw ard applications of ideas and more challenging problems.
  discrete math vs continuous math: Discrete Mathematics (Classic Version) John Dossey, Albert Otto, Lawrence Spence, Charles Vanden Eynden, 2017-03-07 This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. An ever-increasing percentage of mathematic applications involve discrete rather than continuous models. Driving this trend is the integration of the computer into virtually every aspect of modern society. Intended for a one-semester introductory course, the strong algorithmic emphasis of Discrete Mathematics is independent of a specific programming language, allowing students to concentrate on foundational problem-solving and analytical skills. Instructors get the topical breadth and organizational flexibility to tailor the course to the level and interests of their students.
  discrete math vs continuous math: Discrete Mathematics Martin Aigner, 2023-01-24 The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints and solutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition… This book is a well-written introduction to discrete mathematics and is highly recommended to every student of mathematics and computer science as well as to teachers of these topics. —Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of the MAA for expository writing, and his book Proofs from the BOOK with Günter M. Ziegler has been an international success with translations into 12 languages.
  discrete math vs continuous math: Navigating Through Discrete Mathematics in Prekindergarten Through Grade 5 Valerie A. DeBellis, 2009 Provides hands-on activities that focus on systemantic counting, vertex-edge graphs and iterative and recursive processes.
  discrete math vs continuous math: Max Plus at Work Bernd Heidergott, Geert Jan Olsder, Jacob van der Woude, 2014-09-08 Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, computer communication systems, production lines, and flows in networks are all based on discrete even systems, and thus can be conveniently described and analyzed by means of max-plus algebra. The book consists of an introduction and thirteen chapters in three parts. Part One explores the introduction of max-plus algebra and of system descriptions based upon it. Part Two deals with a real application, namely the design of timetables for railway networks. Part Three examines various extensions, such as stochastic systems and min-max-plus systems. The text is suitable for last-year undergraduates in mathematics, and each chapter provides exercises, notes, and a reference section.
  discrete math vs continuous math: Mathematics in Computing Gerard O’Regan, 2020-01-10 This illuminating textbook provides a concise review of the core concepts in mathematics essential to computer scientists. Emphasis is placed on the practical computing applications enabled by seemingly abstract mathematical ideas, presented within their historical context. The text spans a broad selection of key topics, ranging from the use of finite field theory to correct code and the role of number theory in cryptography, to the value of graph theory when modelling networks and the importance of formal methods for safety critical systems. This fully updated new edition has been expanded with a more comprehensive treatment of algorithms, logic, automata theory, model checking, software reliability and dependability, algebra, sequences and series, and mathematical induction. Topics and features: includes numerous pedagogical features, such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; describes the historical contributions of such prominent figures as Leibniz, Babbage, Boole, and von Neumann; introduces the fundamental mathematical concepts of sets, relations and functions, along with the basics of number theory, algebra, algorithms, and matrices; explores arithmetic and geometric sequences and series, mathematical induction and recursion, graph theory, computability and decidability, and automata theory; reviews the core issues of coding theory, language theory, software engineering, and software reliability, as well as formal methods and model checking; covers key topics on logic, from ancient Greek contributions to modern applications in AI, and discusses the nature of mathematical proof and theorem proving; presents a short introduction to probability and statistics, complex numbers and quaternions, and calculus. This engaging and easy-to-understand book will appeal to students of computer science wishing for an overview of the mathematics used in computing, and to mathematicians curious about how their subject is applied in the field of computer science. The book will also capture the interest of the motivated general reader.
  discrete math vs continuous math: A Spiral Workbook for Discrete Mathematics Harris Kwong, 2015-11-06 A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.
  discrete math vs continuous math: Discrete Convex Analysis Kazuo Murota, 2003-01-01 Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.
  discrete math vs continuous math: Mathematics Higher Level for the IB Diploma Option Topic 10 Discrete Mathematics Paul Fannon, Vesna Kadelburg, Ben Woolley, Stephen Ward, 2013-04-25 This title forms part of the completely new Mathematics for the IB Diploma series. This highly illustrated book covers topic 10 of the IB Diploma Higher Level Mathematics syllabus, the optional topic Discrete Mathematics. It is also for use with the further mathematics course. Based on the new group 5 aims, the progressive approach encourages cumulative learning. Features include: a dedicated chapter exclusively for mixed examination practice; plenty of worked examples; questions colour-coded according to grade; exam-style questions; feature boxes throughout of exam hints and tips.
  discrete math vs continuous math: Walk Through Combinatorics, A: An Introduction To Enumeration And Graph Theory (Third Edition) Miklos Bona, 2011-05-09 This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first two editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs (new to this edition), enumeration under group action (new to this edition), generating functions of labeled and unlabeled structures and algorithms and complexity.As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to sales@wspc.com.
  discrete math vs continuous math: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-03-08 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
  discrete math vs continuous math: Mathematics Edward R. Scheinerman, 2006 Master the fundamentals of discrete mathematics and proof-writing with MATHEMATICS: A DISCRETE INTRODUCTION! With a wealth of learning aids and a clear presentation, the mathematics text teaches you not only how to write proofs, but how to think clearly and present cases logically beyond this course. Though it is presented from a mathematician's perspective, you will learn the importance of discrete mathematics in the fields of computer science, engineering, probability, statistics, operations research, and other areas of applied mathematics. Tools such as Mathspeak, hints, and proof templates prepare you to succeed in this course.
  discrete math vs continuous math: Discrete Computational Structures Robert R. Korfhage, 1974 Basic forms and operations; Undirected graphs; Gorn trees; Directed graphs; Formal and natural languages; Finite groups and computing; Partial orders and lattices; Boolean algebras; The propositional calculus; Combinatorics; Systems of distinct representatives; Discrete probability.
  discrete math vs continuous math: Navigating Through Discrete Mathematics in Grades 6-12 Eric W. Hart, 2008 Offers ways of presenting and developing three topics emphasised in Principles and Standards for School Mathematics: counting, vertex-edge graphs and iterative and recursive processes.
Why is My Discrete GPU Idle? Expert Answers and Solutions
NVIDIA Control Panel/AMD Radeon Settings: Depending on your GPU, you can manually set the discrete GPU for specific applications. For NVIDIA: Right-click on the desktop and select NVIDIA …

Expert Solutions for Discrete GPU Idle Issues in NitroSense
Use the arrow keys to select the Advanced tab. Use the arrow keys to select the Display mode and change it from Optimus to Discrete GPU only. Select the Exit tab. Select Exit Saving Changes. …

What does mild coarsening of the liver echo texture mean?
Hi, Welcome to JA and thanks for this question. I'm sorry to hear about your ultrasound report. Actually mild coarsening of the liver echotexture means that the ultrasound has detected that the …

What are some reasons a neck lymph node would not have
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Blunting and Fraying of the Labrum: Expert Answers
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Pyriform Sinus CT Scans: Expert Q&A - JustAnswer
1. New mild asymmetric fullness of the left piriform sinus without discrete mass. This is likely due to underdistention, but correlation with direct visualization is recommended. You can have …

I just got an ultrasound done to my liver, can this be reversed ...
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding ANA Titer 1:1280 and Its Patterns - Expert Q&A
Hello, this is Dr. David. I have read your question and am ready to help. the ANA speckled patter titer of 1:1280 means you are positive for antineuclear antibodies which means your body is …

Understanding ANA Titer 1:320 Speckled Pattern: Expert Answers
Customer: I had an ANA test and was positive at a titer of 1:320 speckled. I’m not sure what that means or what it implys.. my dr has been out and the nurse had no clue.

What does the aortic valve is trileaflet mean? On my ... - JustAnswer
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Why is My Discrete GPU Idle? Expert Answers and Solutions
NVIDIA Control Panel/AMD Radeon Settings: Depending on your GPU, you can manually set the discrete GPU for specific …

Expert Solutions for Discrete GPU Idle Issues in NitroSense - JustAns…
Use the arrow keys to select the Advanced tab. Use the arrow keys to select the Display mode and change it from Optimus to …

What does mild coarsening of the liver echo texture mean? - JustAns…
Hi, Welcome to JA and thanks for this question. I'm sorry to hear about your ultrasound report. Actually mild …

What are some reasons a neck lymph node would not have ... - Ju…
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not …

Understanding Blunting and Fraying of the Labrum: Expert Answers
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not …