Advertisement
discover data science analyst: Python Data Analysis Avinash Navlani, Armando Fandango, Ivan Idris, 2021-02-05 Understand data analysis pipelines using machine learning algorithms and techniques with this practical guide Key FeaturesPrepare and clean your data to use it for exploratory analysis, data manipulation, and data wranglingDiscover supervised, unsupervised, probabilistic, and Bayesian machine learning methodsGet to grips with graph processing and sentiment analysisBook Description Data analysis enables you to generate value from small and big data by discovering new patterns and trends, and Python is one of the most popular tools for analyzing a wide variety of data. With this book, you'll get up and running using Python for data analysis by exploring the different phases and methodologies used in data analysis and learning how to use modern libraries from the Python ecosystem to create efficient data pipelines. Starting with the essential statistical and data analysis fundamentals using Python, you'll perform complex data analysis and modeling, data manipulation, data cleaning, and data visualization using easy-to-follow examples. You'll then understand how to conduct time series analysis and signal processing using ARMA models. As you advance, you'll get to grips with smart processing and data analytics using machine learning algorithms such as regression, classification, Principal Component Analysis (PCA), and clustering. In the concluding chapters, you'll work on real-world examples to analyze textual and image data using natural language processing (NLP) and image analytics techniques, respectively. Finally, the book will demonstrate parallel computing using Dask. By the end of this data analysis book, you'll be equipped with the skills you need to prepare data for analysis and create meaningful data visualizations for forecasting values from data. What you will learnExplore data science and its various process modelsPerform data manipulation using NumPy and pandas for aggregating, cleaning, and handling missing valuesCreate interactive visualizations using Matplotlib, Seaborn, and BokehRetrieve, process, and store data in a wide range of formatsUnderstand data preprocessing and feature engineering using pandas and scikit-learnPerform time series analysis and signal processing using sunspot cycle dataAnalyze textual data and image data to perform advanced analysisGet up to speed with parallel computing using DaskWho this book is for This book is for data analysts, business analysts, statisticians, and data scientists looking to learn how to use Python for data analysis. Students and academic faculties will also find this book useful for learning and teaching Python data analysis using a hands-on approach. A basic understanding of math and working knowledge of the Python programming language will help you get started with this book. |
discover data science analyst: Smarter Data Science Neal Fishman, Cole Stryker, 2020-04-09 Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how. Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive. Smarter Data Science helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments. When an organization manages its data effectively, its data science program becomes a fully scalable function that’s both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise. By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements: Improving time-to-value with infused AI models for common use cases Optimizing knowledge work and business processes Utilizing AI-based business intelligence and data visualization Establishing a data topology to support general or highly specialized needs Successfully completing AI projects in a predictable manner Coordinating the use of AI from any compute node. From inner edges to outer edges: cloud, fog, and mist computing When they climb the ladder presented in this book, businesspeople and data scientists alike will be able to improve and foster repeatable capabilities. They will have the knowledge to maximize their AI and data assets for the benefit of their organizations. |
discover data science analyst: Data Science Secrets Jay Samson, 2019-09-01 Data Science Secrets is the #1 strategy guide to break into the field of data and get hired as a Data Scientist, Data Analyst, or Data Engineer. This was created by a group of top Data Scientists and Data Hiring Managers in Silicon Valley to share the secrets of landing your dream job. Here's what's included: Top Interview Questions from companies like Google, Facebook, Amazon, Airbnb, and many more, plus detailed sections on how to answer the questions effectively and get hired. The 8 Week Strategy to find your dream job: learn how to get interviews with your top companies, and more importantly- succeed and get an incredible job offer. Online Learning Breakdown: we go deep into the pros and cons of the online learning options to help you find the right platform for youIn-depth explanations of data roles. There are literally hundreds of different roles and job titles in the world of data- how do you know which is right for you? This section will help you understand how to pursue the role that is the best fit for you |
discover data science analyst: Practical Data Science with SAP Greg Foss, Paul Modderman, 2019-09-18 Learn how to fuse today's data science tools and techniques with your SAP enterprise resource planning (ERP) system. With this practical guide, SAP veterans Greg Foss and Paul Modderman demonstrate how to use several data analysis tools to solve interesting problems with your SAP data. Data engineers and scientists will explore ways to add SAP data to their analysis processes, while SAP business analysts will learn practical methods for answering questions about the business. By focusing on grounded explanations of both SAP processes and data science tools, this book gives data scientists and business analysts powerful methods for discovering deep data truths. You'll explore: Examples of how data analysis can help you solve several SAP challenges Natural language processing for unlocking the secrets in text Data science techniques for data clustering and segmentation Methods for detecting anomalies in your SAP data Data visualization techniques for making your data come to life |
discover data science analyst: Algorithms: Discover The Computer Science and Artificial Intelligence Used to Solve Everyday Human Problems, Optimize Habits, Learn Anything and Organize Your Life Trustgenics, Now, you might look at this title and shy away, thinking that a book with algorithms in its title must be just for techies and computer scientists. However, this book is very accessible to those with no background in computer science. In fact it is a must-listen for anyone interested in what our digital future looks like. Today, many decisions that could be made by human beings, from predicting earthquakes to interpreting languages, can now be made by computer algorithms with advanced analytic capabilities. Every day we make millions of decisions, from selecting a life partner, to organizing your closet, to scheduling your life, to having a conversation. However, these decisions may be imperfect due to limited experience, implicit biases, or faulty probabilistic reasoning. Algorithms can better predict human behavior than trained psychologists and with much simpler criteria. Studies continue to show that the algorithms can do a better job than experts in a range of fields. Everywhere you look, artificial intelligence is beginning to permeate all types of industries, and expectations are that it will continue to grow in the future. Imagine the possibilities: More accurate medical diagnoses. Better military strategies that could save lives. Detect abnormal genes in an unborn child. Predict changes in weather and earthquake. Safer self-driving cars that have learned your personal preferences. Analyze DNA samples and identify potential medical risks. Smart homes that will anticipate your every needs. Predicting where cyber hackers and online threats may occur. Artificial intelligence is reshaping health care, science, engineering, and life. The results will make our lives more productive, better organized, and essentially much happier. Get started Now! |
discover data science analyst: The Data Science Framework Juan J. Cuadrado-Gallego, Yuri Demchenko, 2020-10-01 This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines. |
discover data science analyst: The Essentials of Data Science: Knowledge Discovery Using R Graham J. Williams, 2017-07-28 The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data. Building on over thirty years’ experience in teaching and practising data science, the author encourages a programming-by-example approach to ensure students and practitioners attune to the practise of data science while building their data skills. Proven frameworks are provided as reusable templates. Real world case studies then provide insight for the data scientist to swiftly adapt the templates to new tasks and datasets. The book begins by introducing data science. It then reviews R’s capabilities for analysing data by writing computer programs. These programs are developed and explained step by step. From analysing and visualising data, the framework moves on to tried and tested machine learning techniques for predictive modelling and knowledge discovery. Literate programming and a consistent style are a focus throughout the book. |
discover data science analyst: Data Science and Analytics (with Python, R and SPSS Programming) V.K. Jain, The Book has been written completely as per AICTE recommended syllabus on Data Sciences. SALIENT FEATURES OF THE BOOK: Explains how data is collected, managed and stored for data science. With complete courseware for understand the key concepts in data science including their real-world applications and the toolkit used by data scientists. Implement data collection and management. Provided with state of the arts subjectwise. With all required tutorials on R, Python and Bokeh, Anaconda, IBM SPSS-21 and Matplotlib. |
discover data science analyst: Learn Python Anthony Adams, 2021-12-13 Do you want to become a coding & programming expert in no time? This guide will teach you how! Are you interested in coding, programming, and artificial intelligence? Would you like to learn Python, but you have no idea how to start? This guide is the answer to all your problems! Python is one of the top 10 popular programming languages, and it can be used to developing desktop GUI applications, websites, and web applications. There are many reasons why learning Python is essential. The syntax rules of Python allow you to express concepts without writing additional code. At the same time, Python, unlike other programming languages, emphasizes code readability and will enable you to use English keywords instead of punctuations. Then, Python has an extensive and robust standard library, which makes it score over other programming languages. Besides, it is an open-source programming language, meaning that it will help you curtail software development cost significantly. Last but not least, Python is designed with features to facilitate data analysis and visualization. You can use it to create custom big data solutions without putting in extra time and effort. Are you excited about learning more about Python and coding? Here is what you can learn from this book: • The importance of data analysis and machine learning • How is Python different from other languages • Learn from more than 25 Python programming examples • All the benefits of learning Python • How can Python help you out with learning other languages Learning Python is easy, even if you’ve never learned about coding before. It offers excellent readability and simple-to-learn syntax, which helps beginners learn this programming language in no time! The software is user-friendly and designed to increase speed and productivity during programming. With Python, you can create any app you want to! Ready to start coding? This book will teach you how to do it and guide you through the coding process! Scroll up, click on Buy, and Get Your Copy Now! |
discover data science analyst: Confident Data Science Adam Ross Nelson, 2023-09-03 The global data market is estimated to be worth $64 billion dollars, making it a more valuable resource than oil. But data is useless without the analysis, interpretation and innovations of data scientists. With Confident Data Science, learn the essential skills and build your confidence in this sector through key insights and practical tools for success. In this book, you will discover all of the skills you need to understand this discipline, from primers on the key analytic and visualization tools to tips for pitching to and working with clients. Adam Ross Nelson draws upon his expertise as a data science consultant and, as someone who made moved into the industry late in his career, to provide an overview of data science, including its key concepts, its history and the knowledge required to become a successful data scientist. Whether you are considering a career in this industry or simply looking to expand your knowledge, Confident Data Science is the essential guide to the world of data science. About the Confident series... From coding and data science to cloud and cyber security, the Confident books are perfect for building your technical knowledge and enhancing your professional career. |
discover data science analyst: Cost Accounting Karen Congo Farmer, Amy Fredin, 2022-02-08 Cost Accounting with Integrated Data Analytics takes the approach that you need to reach students in order to engage and effectively teach them to make meaning of costing concepts. Through storytelling, students develop a deeper understanding of cost accounting fundamentals, allowing them to apply their knowledge to modern business scenarios and develop the competencies and decision-making skills needed to become the future accounting professional. Throughout Cost Accounting, students also work through a variety of data analysis applications that allow them to develop their decision-making skills within real-world contexts. Through assignments and integrated cases that leverage market-leading technology, students learn how to make informed business decisions and think critically about data. |
discover data science analyst: Data Science For Dummies Lillian Pierson, 2015-02-20 Discover how data science can help you gain in-depth insight into your business – the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer covering all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad aspects of the topic, including the sometimes intimidating field of big data and data science, it is not an instructional manual for hands-on implementation. Here’s what to expect in Data Science for Dummies: Provides a background in big data and data engineering before moving on to data science and how it’s applied to generate value. Includes coverage of big data frameworks and applications like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL. Explains machine learning and many of its algorithms, as well as artificial intelligence and the evolution of the Internet of Things. Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate. It’s a big, big data world out there – let Data Science For Dummies help you get started harnessing its power so you can gain a competitive edge for your organization. |
discover data science analyst: Python Programming, Deep Learning Anthony Adams, 2021-12-17 Easily Boost Your Skills In Python Programming & Become A Master In Deep Learning & Data Analysis! 💻 Python is an interpreted, high-level, general-purpose programming language that emphasizes code readability with its notable use of significant whitespace. What makes Python so popular in the IT industry is that it uses an object-oriented approach, which enables programmers to write clear, logical code for all types of projects, whether big or small. Hone your Python Programming skills and gain a sharp edge over other programmers the EASIEST way possible... with this practical beginner’s guide! In his 3-in-1 Python crash course for beginners, Anthony Adams gives novices like you simple, yet efficient tips and tricks to become a MASTER in Python coding for artificial intelligence, neural networks, machine learning, and data science/analysis! Here’s what you’ll get: ✅ Highly innovative ways to boost your understanding of Python programming, data analysis, and machine learning ✅ Quickly and effectively stop fraud with machine learning ✅ Practical and efficient exercises that make understanding Python quick & easy And so much more! As a beginner, you might feel a bit intimidated by the complexities of coding. Add the fact that most Python Programming crash course guides make learning harder than it has to be! ✓ With the help of this 3-in-1 guide, you will be given carefully sequenced Python Programming lessons that’ll maximize your understanding, and equip you with all the skills for real-life application! ★ Thrive in the IT industry with this comprehensive Python Programming crash course! ★ Scroll up, Click on “Buy Now”, and Start Learning Today! |
discover data science analyst: Intelligent Techniques for Data Science Rajendra Akerkar, Priti Srinivas Sajja, 2016-10-11 This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions./p> The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for real‐world applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism. |
discover data science analyst: DATA SCIENCE NARAYAN CHANGDER, 2023-10-18 THE DATA SCIENCE MCQ (MULTIPLE CHOICE QUESTIONS) SERVES AS A VALUABLE RESOURCE FOR INDIVIDUALS AIMING TO DEEPEN THEIR UNDERSTANDING OF VARIOUS COMPETITIVE EXAMS, CLASS TESTS, QUIZ COMPETITIONS, AND SIMILAR ASSESSMENTS. WITH ITS EXTENSIVE COLLECTION OF MCQS, THIS BOOK EMPOWERS YOU TO ASSESS YOUR GRASP OF THE SUBJECT MATTER AND YOUR PROFICIENCY LEVEL. BY ENGAGING WITH THESE MULTIPLE-CHOICE QUESTIONS, YOU CAN IMPROVE YOUR KNOWLEDGE OF THE SUBJECT, IDENTIFY AREAS FOR IMPROVEMENT, AND LAY A SOLID FOUNDATION. DIVE INTO THE DATA SCIENCE MCQ TO EXPAND YOUR DATA SCIENCE KNOWLEDGE AND EXCEL IN QUIZ COMPETITIONS, ACADEMIC STUDIES, OR PROFESSIONAL ENDEAVORS. THE ANSWERS TO THE QUESTIONS ARE PROVIDED AT THE END OF EACH PAGE, MAKING IT EASY FOR PARTICIPANTS TO VERIFY THEIR ANSWERS AND PREPARE EFFECTIVELY. |
discover data science analyst: Ride Technology Wave for Career Success Sarbjit Singh, 2022-09-15 The book is a jargon-free, compact, easy-to-grasp and handy guide for graduating students, young technology professionals, business process analysts, infrastructure engineers, designers and software programmers. It will propel you to equip yourself with newer skills and stay in demand during the fast-moving industrial revolution (IR 4.0). The impact of growing technologies, job losses due to automation and global uncertainty have been highlighted in the book. A pathway has been shown for riding the technology wave to succeed and contribute to the growth of your organisation. New jobs require working smartly using new technical skills, multi-tasking and out-of-the-box thinking. Sustenance of a job in such a scenario needs fast learning and adoption of newer skills, innovation, integration, networking and enduring alliances. The book adequately covers new technology areas related to IT trends, AI, ML Internet of Things (IoT), robotics, drones, 3-D printing, VR-AR, 5G, big data, cloud computing, cyber security and blockchain. The book recommends the readers quickly acquire new skills and adopt emerging technologies to reap early benefits. |
discover data science analyst: Data Analytics in Cognitive Linguistics Dennis Tay, Molly Xie Pan, 2022-05-09 Contemporary data analytics involves extracting insights from data and translating them into action. With its turn towards empirical methods and convergent data sources, cognitive linguistics is a fertile context for data analytics. There are key differences between data analytics and statistical analysis as typically conceived. Though the former requires the latter, it emphasizes the role of domain-specific knowledge. Statistical analysis also tends to be associated with preconceived hypotheses and controlled data. Data analytics, on the other hand, can help explore unstructured datasets and inspire emergent questions. This volume addresses two key aspects in data analytics for cognitive linguistic work. Firstly, it elaborates the bottom-up guiding role of data analytics in the research trajectory, and how it helps to formulate and refine questions. Secondly, it shows how data analytics can suggest concrete courses of research-based action, which is crucial for cognitive linguistics to be truly applied. The papers in this volume impart various data analytic methods and report empirical studies across different areas of research and application. They aim to benefit new and experienced researchers alike. |
discover data science analyst: Mastering Data Analysis with Python Rajender Kumar, 2023-03-27 Are you tired of feeling like you're stuck in a dead-end job with no room for growth or advancement? Are you ready to take your career to the next level and start making real money? Look no further than Mastering Data Analysis with Python. This comprehensive guide is designed to teach you the skills you need to become a top-paying data analyst. With a focus on the powerful Python programming language, you'll learn how to collect, clean, and analyze data like a pro. But that's not all - you'll also discover how to use this data to make informed business decisions and drive real results. Key Features: Here's just a taste of what you'll learn in this book: How to use Python's built-in libraries to manipulate and analyze data like a pro Techniques for cleaning and prepping data for analysis Advanced data visualization techniques to help you communicate your findings How to use statistical methods to draw meaningful insights from your data And much more! WHO THIS BOOK IS FOR? Data analysts and scientists who want to learn how to use Python for data analysis Programmers who want to add data analysis skills to their repertoire Anyone interested in exploring and visualizing data using Python Students and professionals looking to improve their data analysis and visualization skills Individuals interested in machine learning and artificial intelligence who need to learn data analysis fundamentals. What other people says: But don't just take our word for it. Here's what some of our readers have had to say: I've been working as a data analyst for a few years now, but this book taught me so many new techniques that I was able to immediately apply to my job and start making more money. I've always been interested in data analysis, but I didn't know where to start. This book is the perfect introduction to the field and has helped me land my dream job. I was able to use the skills I learned in this book to negotiate a raise and make an additional $100,000 per year! Outcome: Gain proficiency in NumPy, Pandas, and Matplotlib Learn to handle data effectively using Python Develop the skills to perform exploratory data analysis and data visualization Acquire the knowledge to build predictive models and perform statistical analysis Learn to handle large datasets and work with real-world data Master the skills to communicate data insights effectively Gain confidence in using Python for data analysis and visualization Table of Contents 1: Introduction to Data Analysis with Python 2: Getting Started with Python 3: Built-in Data Structures, Functions, and Files 4: Data Wrangling 5: NumPy for Data Analysis 6: Pandas for Data Analysis 7: Descriptive Statistics for Data Analysis 8: Data Exploration 9: Matplotlib for Data visualization 10: Data Visualization 11: Data Analysis in Business A. Additional Resources for Further Learning B. Insider Secrets for Success as A Data Analyst C. Glossary So, what are you waiting for? Don't let your dreams of a high-paying career in data analysis slip away. Get your hands on Mastering Data Analysis with Python today and start making real money. |
discover data science analyst: Data Scientist Diploma (master's level) - City of London College of Economics - 6 months - 100% online / self-paced City of London College of Economics, Overview This diploma course covers all aspects you need to know to become a successful Data Scientist. Content - Getting Started with Data Science - Data Analytic Thinking - Business Problems and Data Science Solutions - Introduction to Predictive Modeling: From Correlation to Supervised Segmentation - Fitting a Model to Data - Overfitting and Its Avoidance - Similarity, Neighbors, and Clusters Decision Analytic Thinking I: What Is a Good Model? - Visualizing Model Performance - Evidence and Probabilities - Representing and Mining Text - Decision Analytic Thinking II: Toward Analytical Engineering - Other Data Science Tasks and Techniques - Data Science and Business Strategy - Machine Learning: Learning from Data with Your Machine. - And much more Duration 6 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link. |
discover data science analyst: Challenges and Applications of Data Analytics in Social Perspectives Sathiyamoorthi, V., Elci, Atilla, 2020-12-04 With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students. |
discover data science analyst: A Hands-On Introduction to Data Science Chirag Shah, 2020-04-02 An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines. |
discover data science analyst: Machine Learning for Data Science Handbook Lior Rokach, Oded Maimon, Erez Shmueli, 2023-08-17 This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries. |
discover data science analyst: Discover What You're Best At Linda Gale, 2010-11-23 The bestselling career guide that has helped more than half a million people discover their true talents and make successful career choices, now completely revised for the digital age. Learn how to identify your talents and harness your potential skills and start making money doing what you love. Now revised for the digital age, Lina Gale’s bestselling Discover What You’re Best At will teach you how to set realistic and rewarding goals, save money, and learn about new areas of the job market where you could begin a fulfilling career. Complete with job listings and comprehensive tests to help you evaluate your talents and aptitude, Discover What You’re Best At is the only career guide you’ll ever need. |
discover data science analyst: Data Science and Big Data Analytics EMC Education Services, 2015-01-05 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today! |
discover data science analyst: Discover Sociology William J. Chambliss, Daina S. Eglitis, 2016-12-02 Discover Sociology explores sociology as a discipline of curious minds, with the theoretical, conceptual, and empirical tools needed to understand, analyze, and even change the world. Organized around the four main themes of The Sociological Imagination, Power and Inequality, Technological Transformations of Society, and Globalization, every chapter in the book illuminates the social roots of diverse phenomena and institutions |
discover data science analyst: Data Science Handbook Kolla Bhanu Prakash, 2022-09-14 DATA SCIENCE HANDBOOK This desk reference handbook gives a hands-on experience on various algorithms and popular techniques used in real-time in data science to all researchers working in various domains. Data Science is one of the leading research-driven areas in the modern era. It is having a critical role in healthcare, engineering, education, mechatronics, and medical robotics. Building models and working with data is not value-neutral. We choose the problems with which we work, make assumptions in these models, and decide on metrics and algorithms for the problems. The data scientist identifies the problem which can be solved with data and expert tools of modeling and coding. The book starts with introductory concepts in data science like data munging, data preparation, and transforming data. Chapter 2 discusses data visualization, drawing various plots and histograms. Chapter 3 covers mathematics and statistics for data science. Chapter 4 mainly focuses on machine learning algorithms in data science. Chapter 5 comprises of outlier analysis and DBSCAN algorithm. Chapter 6 focuses on clustering. Chapter 7 discusses network analysis. Chapter 8 mainly focuses on regression and naive-bayes classifier. Chapter 9 covers web-based data visualizations with Plotly. Chapter 10 discusses web scraping. The book concludes with a section discussing 19 projects on various subjects in data science. Audience The handbook will be used by graduate students up to research scholars in computer science and electrical engineering as well as industry professionals in a range of industries such as healthcare. |
discover data science analyst: The Data Science Handbook Field Cady, 2017-02-28 A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon. |
discover data science analyst: Introducing Microsoft Azure HDInsight Avkash Chauhan, Valentine Fontama, Michele Hart, Wee-Hyong Tok, Buck Woody, 2014-06-12 Microsoft Azure HDInsight is Microsoft’s 100 percent compliant distribution of Apache Hadoop on Microsoft Azure. This means that standard Hadoop concepts and technologies apply, so learning the Hadoop stack helps you learn the HDInsight service. At the time of this writing, HDInsight (version 3.0) uses Hadoop version 2.2 and Hortonworks Data Platform 2.0. In Introducing Microsoft Azure HDInsight, we cover what big data really means, how you can use it to your advantage in your company or organization, and one of the services you can use to do that quickly–specifically, Microsoft’s HDInsight service. We start with an overview of big data and Hadoop, but we don’t emphasize only concepts in this book–we want you to jump in and get your hands dirty working with HDInsight in a practical way. To help you learn and even implement HDInsight right away, we focus on a specific use case that applies to almost any organization and demonstrate a process that you can follow along with. We also help you learn more. In the last chapter, we look ahead at the future of HDInsight and give you recommendations for self-learning so that you can dive deeper into important concepts and round out your education on working with big data. |
discover data science analyst: Proceedings of the 2023 2nd International Conference on Educational Innovation and Multimedia Technology (EIMT 2023) Chew Fong Peng, Adelina Asmawi, Chuanjun Zhao, 2023-07-04 This is an open access book. As a leading role in the global megatrend of scientific innovation, China has been creating a more and more open environment for scientific innovation, increasing the depth and breadth of academic cooperation, and building a community of innovation that benefits all. Such endeavors are making new contributions to the globalization and creating a community of shared future. To adapt to this changing world and China's fast development in the new era, 2023 2nd International Conference on Educational Innovation and Multimedia Technology to be held in March 2023. This conference takes bringing together global wisdom in scientific innovation to promote high-quality development as the theme and focuses on cutting-edge research fields including Educational Innovation and Multimedia Technology. EIMT 2023 encourages the exchange of information at the forefront of research in different fields, connects the most advanced academic resources in China and the world, transforms research results into industrial solutions, and brings together talent, technology and capital to drive development. The conference sincerely invites experts, scholars, business people and other relevant personnel from universities, scientific research institutions at home and abroad to attend and exchange! |
discover data science analyst: Nature of Computation and Communication Cong Vinh Phan, Thanh Dung Nguyen, 2023-03-23 This book constitutes the refereed post-conference proceedings of the 8th EAI International Conference on Nature of Computation and Communication, ICTCC 2022, held in Vinh Long, Vietnam, in October 27-28 2022. The 11 revised full papers presented were carefully selected from 32 submissions. The papers of ICTCC 2022 cover formal methods for self-adaptive systems and discuss natural approaches and techniques for natural computing systems and their applications. |
discover data science analyst: Data Science Workflow for Beginners Alejandro Garcia, This book brings to you a simple yet effective 40 to 60 mins introduction that will clear all your doubts about Data Sience and will answer some important questions like: What is data Science ? The book explores all the initial concepts a person might want to know about the data science workflow. There’s not coding, math or statistics required to successfully understand the goals and end results of this process. This book takes you on an exclusive tour of datasets and sites to download your first datasets. Then jumps into a comprehensive and easy-to-follow data science process letting you go through 3 data visualization projects. (Python Code Understanding is Recommended for the Data Visualization projects) - 40 to 60 mins reading time. - 3 Data Visualization projects. - 10 Datasets sources. - 26 Quality datasets for your first visualizations. - Get the code and reuse in your own projects. The ebook covers: - Intro to Data Science. - The Workflow of Data Science. - Data Science and Machine Learning. - Datasets to start right away. - Data Visualization Projects. (Python Code Understanding Recommended) |
discover data science analyst: Proceedings of International Conference on Data Science and Applications Mukesh Saraswat, Chandreyee Chowdhury, Chintan Kumar Mandal, Amir H. Gandomi, 2023-02-06 This book gathers outstanding papers presented at the International Conference on Data Science and Applications (ICDSA 2022), organized by Soft Computing Research Society (SCRS) and Jadavpur University, Kolkata, India, from 26 to 27 March 2022. It covers theoretical and empirical developments in various areas of big data analytics, big data technologies, decision tree learning, wireless communication, wireless sensor networking, bioinformatics and systems, artificial neural networks, deep learning, genetic algorithms, data mining, fuzzy logic, optimization algorithms, image processing, computational intelligence in civil engineering, and creative computing. |
discover data science analyst: Architecting Experience Scot R. Wheeler, 2015-12-16 In a world with a seemingly infinite amount of content and scores of methods for consuming that content, marketing communication today is about appealing to individuals, person by person. Effectively appealing to customers requires delivery of brand experiences built on relevance and recognition of context. Just as in any conversation, delivering relevance in context requires understanding the person one is speaking with and shared environment. Wheeler answers the biggest question facing digital marketers today: with an ever expanding array of digital touch points at one's disposal, how does one deliver content and experiences around one's brand that build relationships and drives results? The quick answer to this is through the application of data and analytics to drive highly relevant, contextual targeted content and adaptive experience, but since this answer is not as easy to achieve as it is to say, Architecting Experience has been designed to help readers develop the understanding of marketing data, technology and analytics required to make this happen.-- |
discover data science analyst: Project Management Waterfall-Agile-It-Data Science Dr. Festus Elleh PhD PMP PMI-ACP, 2023-03-22 This book is intended to introduce learners to waterfall, agile, information technology, and data science project management methodologies. Readers will learn about the concepts, processes, tools, and techniques that are useful for executing projects in waterfall, agile information technology, and data science environments. The objective is for learners to become contributors to the field of project management and deploy a structured approach to managing projects. Learners who read this book will be able to think critically about the concepts and practices of project management and perform exceptionally well in the PMP and PMI-ACP examinations. |
discover data science analyst: Data Science Bookcamp Leonard Apeltsin, 2021-11-30 Learn data science with Python by building five real-world projects! In Data Science Bookcamp you''ll test and build your knowledge of Python and learn to handle the kind of open-ended problems that professional data scientists work on daily. Downloadable data sets and thoroughly-explained solutions help you lock in what you''ve learned, building your confidence and making you ready for an exciting new data science career. about the technology In real-world practice, data scientists create innovative solutions to novel open ended problems. Easy to learn and use, the Python language has become the de facto language for data science amongst researchers, developers, and business users. But knowing a few basic algorithms is not enough to tackle a vague and thorny problem. It takes relentless practice at cracking difficult data tasks to achieve mastery in the field. That''s just what this book delivers. about the book Data Science Bookcamp is a comprehensive set of challenging projects carefully designed to grow your data science skills from novice to master. Veteran data scientist Leonard Apeltsin sets five increasingly difficult exercises that test your abilities against the kind of problems you''d encounter in the real world. As you solve each challenge, you''ll acquire and expand the data science and Python skills you''ll use as a professional data scientist. Ranging from text processing to machine learning, each project comes complete with a unique downloadable data set and a fully-explained step-by-step solution. Because these projects come from Dr. Apeltsin''s vast experience, each solution highlights the most likely failure points along with practical advice for getting past unexpected pitfalls. When you wrap up these five awesome exercises, you''ll have a diverse relevant skill set that''s transferable to working in industry. what''s inside Five in-depth Python exercises with full downloadable data sets Web scraping for text and images Organise datasets with clustering algorithms Visualize complex multi-variable datasets Train a decision tree machine learning algorithm about the reader For readers who know the basics of Python. No prior data science or machine learning skills required. about the author Leonard Apeltsin is a senior data scientist and engineering lead at Primer AI, a startup that specializes in using advanced Natural Language Processing techniques to extract insight from terabytes of unstructured text data. His PhD research focused on bioinformatics that required analyzing millions of sequenced DNA patterns to uncover genetic links in deadly diseases. |
discover data science analyst: Data Science for Marketing Analytics Mirza Rahim Baig, Gururajan Govindan, Vishwesh Ravi Shrimali, 2021-09-07 Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language Key FeaturesUse data analytics and machine learning in a sales and marketing contextGain insights from data to make better business decisionsBuild your experience and confidence with realistic hands-on practiceBook Description Unleash the power of data to reach your marketing goals with this practical guide to data science for business. This book will help you get started on your journey to becoming a master of marketing analytics with Python. You'll work with relevant datasets and build your practical skills by tackling engaging exercises and activities that simulate real-world market analysis projects. You'll learn to think like a data scientist, build your problem-solving skills, and discover how to look at data in new ways to deliver business insights and make intelligent data-driven decisions. As well as learning how to clean, explore, and visualize data, you'll implement machine learning algorithms and build models to make predictions. As you work through the book, you'll use Python tools to analyze sales, visualize advertising data, predict revenue, address customer churn, and implement customer segmentation to understand behavior. By the end of this book, you'll have the knowledge, skills, and confidence to implement data science and machine learning techniques to better understand your marketing data and improve your decision-making. What you will learnLoad, clean, and explore sales and marketing data using pandasForm and test hypotheses using real data sets and analytics toolsVisualize patterns in customer behavior using MatplotlibUse advanced machine learning models like random forest and SVMUse various unsupervised learning algorithms for customer segmentationUse supervised learning techniques for sales predictionEvaluate and compare different models to get the best outcomesOptimize models with hyperparameter tuning and SMOTEWho this book is for This marketing book is for anyone who wants to learn how to use Python for cutting-edge marketing analytics. Whether you're a developer who wants to move into marketing, or a marketing analyst who wants to learn more sophisticated tools and techniques, this book will get you on the right path. Basic prior knowledge of Python and experience working with data will help you access this book more easily. |
discover data science analyst: Focus on Scientific Visualization Hans Hagen, Heinrich Müller, Gregory M. Nielson, 2012-12-06 One of the important issues of Scientific Visualization is the utilization of the broad bandwidth of the human sensory system in steering and interpreting complex processes and simulations involving voluminous data sets across diverse scientific disciplines. This book presents the state-of-the-art in visualization techniques both as an overview for the inquiring scientist, and as a solid platform from which developers may extend existing techniques or devise new ones to meet the specific needs of their problems. A secondary goal in crafting this volume has been to provide a vehicle for teaching of state-of-the-art techniques in scientific visualization. The first part of the book covers the application areas fluid flow visualization in medicine, and environmental protection. The second set of chapters explain fundamentals of scientific visualization. It comprises contributions on data structuring and data administration, data modeling, and rendering. A final section is devoted to auditory representation of scientific data. |
discover data science analyst: Human Interaction and Emerging Technologies Tareq Ahram, Redha Taiar, Serge Colson, Arnaud Choplin, 2019-07-24 This book reports on research and developments in human-technology interaction. A special emphasis is given to human-computer interaction, and its implementation for a wide range of purposes such as healthcare, aerospace, telecommunication, and education, among others. The human aspects are analyzed in detail. Timely studies on human-centered design, wearable technologies, social and affective computing, augmented, virtual and mixed reality simulation, human rehabilitation and biomechanics represent the core of the book. Emerging technology applications in business, security, and infrastructure are also critically examined, thus offering a timely, scientifically-grounded, but also professionally-oriented snapshot of the current state of the field. The book is based on contributions presented at the 1st International Conference on Human Interaction and Emerging Technologies, IHIET 2019, held on August 22-24, in Nice, France. It offers a timely survey and a practice-oriented reference guide to systems engineers, psychologists, sport scientists, physical therapists, as well as decision-makers, designing or dealing with the new generation of service systems. User Experience of a Social Media Based Knowledge Sharing System in Industry Work, Chapter of this book is available open access under a CC BY 4.0 license at link.springer.com |
discover data science analyst: Data Analysis with Python David Taieb, 2018-12-31 Learn a modern approach to data analysis using Python to harness the power of programming and AI across your data. Detailed case studies bring this modern approach to life across visual data, social media, graph algorithms, and time series analysis. Key FeaturesBridge your data analysis with the power of programming, complex algorithms, and AIUse Python and its extensive libraries to power your way to new levels of data insightWork with AI algorithms, TensorFlow, graph algorithms, NLP, and financial time seriesExplore this modern approach across with key industry case studies and hands-on projectsBook Description Data Analysis with Python offers a modern approach to data analysis so that you can work with the latest and most powerful Python tools, AI techniques, and open source libraries. Industry expert David Taieb shows you how to bridge data science with the power of programming and algorithms in Python. You'll be working with complex algorithms, and cutting-edge AI in your data analysis. Learn how to analyze data with hands-on examples using Python-based tools and Jupyter Notebook. You'll find the right balance of theory and practice, with extensive code files that you can integrate right into your own data projects. Explore the power of this approach to data analysis by then working with it across key industry case studies. Four fascinating and full projects connect you to the most critical data analysis challenges you’re likely to meet in today. The first of these is an image recognition application with TensorFlow – embracing the importance today of AI in your data analysis. The second industry project analyses social media trends, exploring big data issues and AI approaches to natural language processing. The third case study is a financial portfolio analysis application that engages you with time series analysis - pivotal to many data science applications today. The fourth industry use case dives you into graph algorithms and the power of programming in modern data science. You'll wrap up with a thoughtful look at the future of data science and how it will harness the power of algorithms and artificial intelligence. What you will learnA new toolset that has been carefully crafted to meet for your data analysis challengesFull and detailed case studies of the toolset across several of today’s key industry contextsBecome super productive with a new toolset across Python and Jupyter NotebookLook into the future of data science and which directions to develop your skills nextWho this book is for This book is for developers wanting to bridge the gap between them and data scientists. Introducing PixieDust from its creator, the book is a great desk companion for the accomplished Data Scientist. Some fluency in data interpretation and visualization is assumed. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development. |
discover data science analyst: Financial Data Science with SAS Babatunde O Odusami, 2024-06-14 Explore financial data science using SAS. Financial Data Science with SAS provides readers with a comprehensive explanation of the theoretical and practical implementation of the various types of analytical techniques and quantitative tools that are used in the financial services industry. This book shows readers how to implement data visualization, simulation, statistical predictive models, machine learning models, and financial optimizations using real-world examples in the SAS Analytics environment. Each chapter ends with practice exercises that include use case scenarios to allow readers to test their knowledge. Designed for university students and financial professionals interested in boosting their data science skills, Financial Data Science with SAS is an essential reference guide for understanding how data science is used in the financial services industry and for learning how to use SAS to solve complex business problems. |
Discover Consumer Bank - Online Banking, Credit Cards & Loans
Discover bank offers online banking, reward credit cards, home equity loans, and personal loans to help meet your financial needs.
Online Banking | Open an Online Bank Account | Discover
Discover online bank accounts—no hidden fees, 24/7 U.S.-Based service, and 60,000 no-fee ATMs. Enjoy the freedom of free checking when you open an account today.
Apply for a Credit Card Online from Discover
You can apply for most Discover credit cards at Discover.com or by calling 1-800-DISCOVER (1-800-347-2683). Keep in mind that you must be at least 18 to apply. If you’re under age 21 or …
Credit Card Benefits - Discover
Log in to your Discover Card account securely. Check your balance, pay bills, review transactions and more using the Discover Account Center, 24 hours a day, seven days a week.
Account Home | Discover
Log in to your Discover Card account securely. Check your balance, pay bills, review transactions and more using the Discover Account Center, 24 hours a day, seven days a week.
Capital One-Discover Merger FAQ: What Customers Need to …
We’re pleased to announce that on May 18, 2025, Discover Bank merged into Capital One, N.A. (“Capital One”). If you have any questions about credit cards, online banking accounts, or …
Register Your Discover Account for Online Access | Discover
Register your Discover Credit Card, Banking, Home Loan, Student Loan or Personal Loan account for online access.
About Discover - Credit Cards, Banking, Loans and More
Get to know Discover Financial Services. Learn about our company, our products, and our corporate culture. Plus, check news, investor relations, and careers.
Log in to Redeem Rewards | Discover
You'll be unable to log in to Discover.com in the future if your browser has not been updated. Learn more in the Discover Help Center
Credit Card Login - Discover
Log in to your Discover Card account securely. Check your balance, pay bills, review transactions and more using the Discover Account Center, 24 hours a day, seven days a week.
Discover Consumer Bank - Online Banking, Credit Cards & Loans
Discover bank offers online banking, reward credit cards, home equity loans, and personal loans to help meet your financial needs.
Online Banking | Open an Online Bank Account | Discover
Discover online bank accounts—no hidden fees, 24/7 U.S.-Based service, and 60,000 no-fee ATMs. Enjoy the freedom of free checking when you open an account today.
Apply for a Credit Card Online from Discover
You can apply for most Discover credit cards at Discover.com or by calling 1-800-DISCOVER (1-800-347-2683). Keep in mind that you must be at least 18 to apply. If you’re under age 21 or …
Credit Card Benefits - Discover
Log in to your Discover Card account securely. Check your balance, pay bills, review transactions and more using the Discover Account Center, 24 hours a day, seven days a week.
Account Home | Discover
Log in to your Discover Card account securely. Check your balance, pay bills, review transactions and more using the Discover Account Center, 24 hours a day, seven days a week.
Capital One-Discover Merger FAQ: What Customers Need to Know …
We’re pleased to announce that on May 18, 2025, Discover Bank merged into Capital One, N.A. (“Capital One”). If you have any questions about credit cards, online banking accounts, or …
Register Your Discover Account for Online Access | Discover
Register your Discover Credit Card, Banking, Home Loan, Student Loan or Personal Loan account for online access.
About Discover - Credit Cards, Banking, Loans and More | Discover …
Get to know Discover Financial Services. Learn about our company, our products, and our corporate culture. Plus, check news, investor relations, and careers.
Log in to Redeem Rewards | Discover
You'll be unable to log in to Discover.com in the future if your browser has not been updated. Learn more in the Discover Help Center
Credit Card Login - Discover
Log in to your Discover Card account securely. Check your balance, pay bills, review transactions and more using the Discover Account Center, 24 hours a day, seven days a week.