Advertisement
do i need calculus for computer science: Concrete Mathematics Ronald L. Graham, Donald E. Knuth, Oren Patashnik, 1994-02-28 This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. More concretely, the authors explain, it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems. The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them. |
do i need calculus for computer science: Mathematics for Computer Programmers Christine Benedyk Kay, 1984 Number systems I. Sets. Integer and real number sets. Format arithmetic. Algorithms. Solving problems using input. process, and output. Algorithms. Flowcharts. Algebraic applications for programming. Language of algebra. Algebraic expressions of not equal. Exponents. Equations. Advanced algebra concepts. Quadratic equations. Linear equations. Linear programming. Functions. Sequence and subscripted variables. Matrices. Binary systems. Number base concepts. Binary, octal, and hexadecimal numbers. Computer codes. Boolean algebra concepts. Mathematical logic. Boolean algebra and computer logic. |
do i need calculus for computer science: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-03-08 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. |
do i need calculus for computer science: The Calculus Lifesaver Adrian Banner, 2007-03-25 For many students, calculus can be the most mystifying and frustrating course they will ever take. Based upon Adrian Banner's popular calculus review course at Princeton University, this book provides students with the essential tools they need not only to learn calculus, but also to excel at it. |
do i need calculus for computer science: Schaum's Outline of Precalculus, 3rd Edition Fred Safier, 2012-11-16 Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. This all-in-one-package includes 738 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 30 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything you need to build confidence, skills, and knowledge for the highest score possible. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you 738 fully solved problems The latest course scope and sequences, with complete coverage of limits, continuity, and derivatives Succinct explanation of all precalculus concepts Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum’s to shorten your study time--and get your best test scores! |
do i need calculus for computer science: Randomized Algorithms Rajeev Motwani, Prabhakar Raghavan, 1995-08-25 For many applications a randomized algorithm is either the simplest algorithm available, or the fastest, or both. This tutorial presents the basic concepts in the design and analysis of randomized algorithms. The first part of the book presents tools from probability theory and probabilistic analysis that are recurrent in algorithmic applications. Algorithmic examples are given to illustrate the use of each tool in a concrete setting. In the second part of the book, each of the seven chapters focuses on one important area of application of randomized algorithms: data structures; geometric algorithms; graph algorithms; number theory; enumeration; parallel algorithms; and on-line algorithms. A comprehensive and representative selection of the algorithms in these areas is also given. This book should prove invaluable as a reference for researchers and professional programmers, as well as for students. |
do i need calculus for computer science: How to Prove It Daniel J. Velleman, 2006-01-16 Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians. |
do i need calculus for computer science: Essential Logic for Computer Science Rex Page, Ruben Gamboa, 2019-01-08 An introduction to applying predicate logic to testing and verification of software and digital circuits that focuses on applications rather than theory. Computer scientists use logic for testing and verification of software and digital circuits, but many computer science students study logic only in the context of traditional mathematics, encountering the subject in a few lectures and a handful of problem sets in a discrete math course. This book offers a more substantive and rigorous approach to logic that focuses on applications in computer science. Topics covered include predicate logic, equation-based software, automated testing and theorem proving, and large-scale computation. Formalism is emphasized, and the book employs three formal notations: traditional algebraic formulas of propositional and predicate logic; digital circuit diagrams; and the widely used partially automated theorem prover, ACL2, which provides an accessible introduction to mechanized formalism. For readers who want to see formalization in action, the text presents examples using Proof Pad, a lightweight ACL2 environment. Readers will not become ALC2 experts, but will learn how mechanized logic can benefit software and hardware engineers. In addition, 180 exercises, some of them extremely challenging, offer opportunities for problem solving. There are no prerequisites beyond high school algebra. Programming experience is not required to understand the book's equation-based approach. The book can be used in undergraduate courses in logic for computer science and introduction to computer science and in math courses for computer science students. |
do i need calculus for computer science: Calculus for Engineering Students Jesus Martin Vaquero, Michael Carr, Araceli Quieruga-Dios, Daniela Richtarikova, 2020-08-10 Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications. - Organized around project-based rather than traditional homework-based learning - Reviews basic mathematics and theory while also introducing applications - Employs uniform chapter sections that encourage the comparison and contrast of different areas of engineering |
do i need calculus for computer science: Short Calculus Serge Lang, 2012-12-06 From the reviews This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able. --Mathematical Gazette |
do i need calculus for computer science: Analytic Combinatorics Philippe Flajolet, Robert Sedgewick, 2009-01-15 Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study. |
do i need calculus for computer science: Java Programming Ralph Bravaco, Shai Simonson, 2009-02-01 Java Programming, From The Ground Up, with its flexible organization, teaches Java in a way that is refreshing, fun, interesting and still has all the appropriate programming pieces for students to learn. The motivation behind this writing is to bring a logical, readable, entertaining approach to keep your students involved. Each chapter has a Bigger Picture section at the end of the chapter to provide a variety of interesting related topics in computer science. The writing style is conversational and not overly technical so it addresses programming concepts appropriately. Because of the flexibile organization of the text, it can be used for a one or two semester introductory Java programming class, as well as using Java as a second language. The text contains a large variety of carefully designed exercises that are more effective than the competition. |
do i need calculus for computer science: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
do i need calculus for computer science: Operator Calculus On Graphs: Theory And Applications In Computer Science George Stacey Staples, Rene Schott, 2012-02-23 This pioneering book presents a study of the interrelationships among operator calculus, graph theory, and quantum probability in a unified manner, with significant emphasis on symbolic computations and an eye toward applications in computer science.Presented in this book are new methods, built on the algebraic framework of Clifford algebras, for tackling important real world problems related, but not limited to, wireless communications, neural networks, electrical circuits, transportation, and the world wide web. Examples are put forward in Mathematica throughout the book, together with packages for performing symbolic computations. |
do i need calculus for computer science: Calculus for Computer Graphics John Vince, 2019-03-12 Students studying different branches of computer graphics have to be familiar with geometry, matrices, vectors, rotation transforms, quaternions, curves and surfaces and as computer graphics software becomes increasingly sophisticated, calculus is also being used to resolve its associated problems. In this 2nd edition, the author extends the scope of the original book to include applications of calculus in the areas of arc-length parameterisation of curves, geometric continuity, tangent and normal vectors, and curvature. The author draws upon his experience in teaching mathematics to undergraduates to make calculus appear no more challenging than any other branch of mathematics. He introduces the subject by examining how functions depend upon their independent variables, and then derives the appropriate mathematical underpinning and definitions. This gives rise to a function’s derivative and its antiderivative, or integral. Using the idea of limits, the reader is introduced to derivatives and integrals of many common functions. Other chapters address higher-order derivatives, partial derivatives, Jacobians, vector-based functions, single, double and triple integrals, with numerous worked examples, and over a hundred and seventy colour illustrations. This book complements the author’s other books on mathematics for computer graphics, and assumes that the reader is familiar with everyday algebra, trigonometry, vectors and determinants. After studying this book, the reader should understand calculus and its application within the world of computer graphics, games and animation. |
do i need calculus for computer science: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning. |
do i need calculus for computer science: Foundation Mathematics for Computer Science John Vince, 2015-07-27 John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts. |
do i need calculus for computer science: Mathematics-I Calculus and Linear Algebra (BSC-105) (For Computer Science & Engineering Students only) Bhui, Bikas Chandra & Chatterjee Dipak, Mathematics-I for the paper BSC-105 of the latest AICTE syllabus has been written for the first semester engineering students of Indian universities. Paper BSC-105 is exclusively for CS&E students. Keeping in mind that the students are at the threshold of a completely new domain, the book has been planned with utmost care in the exposition of concepts, choice of illustrative examples, and also in sequencing of topics. The language is simple, yet accurate. A large number of worked-out problems have been included to familiarize the students with the techniques to solving them, and to instill confidence.Authors’ long experience of teaching various grades of students has helped in laying proper emphasis on various techniques of solving difficult problems. |
do i need calculus for computer science: Think Stats Allen B. Downey, 2011-07-01 If you know how to program, you have the skills to turn data into knowledge using the tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts. Develop your understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Learn topics not usually covered in an introductory course, such as Bayesian estimation Import data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data |
do i need calculus for computer science: Ultralearning Scott H. Young, 2019-08-06 Now a Wall Street Journal bestseller. Learn a new talent, stay relevant, reinvent yourself, and adapt to whatever the workplace throws your way. Ultralearning offers nine principles to master hard skills quickly. This is the essential guide to future-proof your career and maximize your competitive advantage through self-education. In these tumultuous times of economic and technological change, staying ahead depends on continual self-education—a lifelong mastery of fresh ideas, subjects, and skills. If you want to accomplish more and stand apart from everyone else, you need to become an ultralearner. The challenge of learning new skills is that you think you already know how best to learn, as you did as a student, so you rerun old routines and old ways of solving problems. To counter that, Ultralearning offers powerful strategies to break you out of those mental ruts and introduces new training methods to help you push through to higher levels of retention. Scott H. Young incorporates the latest research about the most effective learning methods and the stories of other ultralearners like himself—among them Benjamin Franklin, chess grandmaster Judit Polgár, and Nobel laureate physicist Richard Feynman, as well as a host of others, such as little-known modern polymath Nigel Richards, who won the French World Scrabble Championship—without knowing French. Young documents the methods he and others have used to acquire knowledge and shows that, far from being an obscure skill limited to aggressive autodidacts, ultralearning is a powerful tool anyone can use to improve their career, studies, and life. Ultralearning explores this fascinating subculture, shares a proven framework for a successful ultralearning project, and offers insights into how you can organize and exe - cute a plan to learn anything deeply and quickly, without teachers or budget-busting tuition costs. Whether the goal is to be fluent in a language (or ten languages), earn the equivalent of a college degree in a fraction of the time, or master multiple tools to build a product or business from the ground up, the principles in Ultralearning will guide you to success. |
do i need calculus for computer science: How to Design Programs, second edition Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, 2018-05-25 A completely revised edition, offering new design recipes for interactive programs and support for images as plain values, testing, event-driven programming, and even distributed programming. This introduction to programming places computer science at the core of a liberal arts education. Unlike other introductory books, it focuses on the program design process, presenting program design guidelines that show the reader how to analyze a problem statement, how to formulate concise goals, how to make up examples, how to develop an outline of the solution, how to finish the program, and how to test it. Because learning to design programs is about the study of principles and the acquisition of transferable skills, the text does not use an off-the-shelf industrial language but presents a tailor-made teaching language. For the same reason, it offers DrRacket, a programming environment for novices that supports playful, feedback-oriented learning. The environment grows with readers as they master the material in the book until it supports a full-fledged language for the whole spectrum of programming tasks. This second edition has been completely revised. While the book continues to teach a systematic approach to program design, the second edition introduces different design recipes for interactive programs with graphical interfaces and batch programs. It also enriches its design recipes for functions with numerous new hints. Finally, the teaching languages and their IDE now come with support for images as plain values, testing, event-driven programming, and even distributed programming. |
do i need calculus for computer science: Elementary Matrix Algebra Franz E. Hohn, 2013-02-19 This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations — homogeneous or nonhomogeneous — and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology. Other subjects include the complete treatment of the structure of the solution space of a system of linear equations, the most commonly used properties of determinants, and linear operators and linear transformations of coordinates. Considerably more material than can be offered in a one-semester course appears here; this comprehensive volume by Franz E. Hohn, Professor of Mathematics at the University of Illinois for many years, provides instructors with a wide range of choices in order to meet differing interests and to accommodate students with varying backgrounds. |
do i need calculus for computer science: Greek Letter Lambda (romanized Form) I.e. Lambda -calculus and Computer Science Theory Corrado Böhm, Istituto per le applicazioni del calcolo, 1975 |
do i need calculus for computer science: Combinatorics and Graph Theory John Harris, Jeffry L. Hirst, Michael Mossinghoff, 2009-04-03 These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline. |
do i need calculus for computer science: Stuck in the Shallow End, updated edition Jane Margolis, 2017-03-03 Why so few African American and Latino/a students study computer science: updated edition of a book that reveals the dynamics of inequality in American schools. The number of African Americans and Latino/as receiving undergraduate and advanced degrees in computer science is disproportionately low. And relatively few African American and Latino/a high school students receive the kind of institutional encouragement, educational opportunities, and preparation needed for them to choose computer science as a field of study and profession. In Stuck in the Shallow End, Jane Margolis and coauthors look at the daily experiences of students and teachers in three Los Angeles public high schools: an overcrowded urban high school, a math and science magnet school, and a well-funded school in an affluent neighborhood. They find an insidious “virtual segregation” that maintains inequality. The race gap in computer science, Margolis discovers, is one example of the way students of color are denied a wide range of occupational and educational futures. Stuck in the Shallow End is a story of how inequality is reproduced in America—and how students and teachers, given the necessary tools, can change the system. Since the 2008 publication of Stuck in the Shallow End, the book has found an eager audience among teachers, school administrators, and academics. This updated edition offers a new preface detailing the progress in making computer science accessible to all, a new postscript, and discussion questions (coauthored by Jane Margolis and Joanna Goode). |
do i need calculus for computer science: The Math Myth Andrew Hacker, 2010-05-25 A New York Times–bestselling author looks at mathematics education in America—when it’s worthwhile, and when it’s not. Why do we inflict a full menu of mathematics—algebra, geometry, trigonometry, even calculus—on all young Americans, regardless of their interests or aptitudes? While Andrew Hacker has been a professor of mathematics himself, and extols the glories of the subject, he also questions some widely held assumptions in this thought-provoking and practical-minded book. Does advanced math really broaden our minds? Is mastery of azimuths and asymptotes needed for success in most jobs? Should the entire Common Core syllabus be required of every student? Hacker worries that our nation’s current frenzied emphasis on STEM is diverting attention from other pursuits and even subverting the spirit of the country. Here, he shows how mandating math for everyone prevents other talents from being developed and acts as an irrational barrier to graduation and careers. He proposes alternatives, including teaching facility with figures, quantitative reasoning, and understanding statistics. Expanding upon the author’s viral New York Times op-ed, The Math Myth is sure to spark a heated and needed national conversation—not just about mathematics but about the kind of people and society we want to be. “Hacker’s accessible arguments offer plenty to think about and should serve as a clarion call to students, parents, and educators who decry the one-size-fits-all approach to schooling.” —Publishers Weekly, starred review |
do i need calculus for computer science: Mathematics From the Birth of Numbers Jan Gullberg, 1997-01-07 A gently guided, profusely illustrated Grand Tour of the world of mathematics. This extraordinary work takes the reader on a long and fascinating journey--from the dual invention of numbers and language, through the major realms of arithmetic, algebra, geometry, trigonometry, and calculus, to the final destination of differential equations, with excursions into mathematical logic, set theory, topology, fractals, probability, and assorted other mathematical byways. The book is unique among popular books on mathematics in combining an engaging, easy-to-read history of the subject with a comprehensive mathematical survey text. Intended, in the author's words, for the benefit of those who never studied the subject, those who think they have forgotten what they once learned, or those with a sincere desire for more knowledge, it links mathematics to the humanities, linguistics, the natural sciences, and technology. Contains more than 1000 original technical illustrations, a multitude of reproductions from mathematical classics and other relevant works, and a generous sprinkling of humorous asides, ranging from limericks and tall stories to cartoons and decorative drawings. |
do i need calculus for computer science: Introduction To Algorithms Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, 2001 An extensively revised edition of a mathematically rigorous yet accessible introduction to algorithms. |
do i need calculus for computer science: Comprehensive Mathematics for Computer Scientists 1 Guerino Mazzola, Gérard Milmeister, Jody Weissmann, 2006-09-20 Contains all the mathematics that computer scientists need to know in one place. |
do i need calculus for computer science: Analytic Geometry and Calculus Herbert Federer, Bjarni Jónsson, 1961 |
do i need calculus for computer science: Problem-Solving Strategies Arthur Engel, 2008-01-19 A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a problem of the week, thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market. |
do i need calculus for computer science: Discrete Mathematics for Computer Science Gary Haggard, John Schlipf, Sue Whitesides, 2006 Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career. |
do i need calculus for computer science: A First Course in Calculus Serge Lang, 2012-09-17 This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions. |
do i need calculus for computer science: Street-Fighting Mathematics Sanjoy Mahajan, 2010-03-05 An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license. |
do i need calculus for computer science: Mindset Carol S. Dweck, 2006-02-28 From the renowned psychologist who introduced the world to “growth mindset” comes this updated edition of the million-copy bestseller—featuring transformative insights into redefining success, building lifelong resilience, and supercharging self-improvement. “Through clever research studies and engaging writing, Dweck illuminates how our beliefs about our capabilities exert tremendous influence on how we learn and which paths we take in life.”—Bill Gates, GatesNotes “It’s not always the people who start out the smartest who end up the smartest.” After decades of research, world-renowned Stanford University psychologist Carol S. Dweck, Ph.D., discovered a simple but groundbreaking idea: the power of mindset. In this brilliant book, she shows how success in school, work, sports, the arts, and almost every area of human endeavor can be dramatically influenced by how we think about our talents and abilities. People with a fixed mindset—those who believe that abilities are fixed—are less likely to flourish than those with a growth mindset—those who believe that abilities can be developed. Mindset reveals how great parents, teachers, managers, and athletes can put this idea to use to foster outstanding accomplishment. In this edition, Dweck offers new insights into her now famous and broadly embraced concept. She introduces a phenomenon she calls false growth mindset and guides people toward adopting a deeper, truer growth mindset. She also expands the mindset concept beyond the individual, applying it to the cultures of groups and organizations. With the right mindset, you can motivate those you lead, teach, and love—to transform their lives and your own. |
do i need calculus for computer science: Discrete Mathematics for Computer Scientists Clifford Stein, Robert L. Drysdale, Kenneth P. Bogart, 2011 Stein/Drysdale/Bogart's Discrete Mathematics for Computer Scientists is ideal for computer science students taking the discrete math course. Written specifically for computer science students, this unique textbook directly addresses their needs by providing a foundation in discrete math while using motivating, relevant CS applications. This text takes an active-learning approach where activities are presented as exercises and the material is then fleshed out through explanations and extensions of the exercises. |
do i need calculus for computer science: Teaching and Learning of Calculus David Bressoud, Imène Ghedamsi, Victor Martinez-Luaces, Günter Törner, 2016-06-14 This survey focuses on the main trends in the field of calculus education. Despite their variety, the findings reveal a cornerstone issue that is strongly linked to the formalism of calculus concepts and to the difficulties it generates in the learning and teaching process. As a complement to the main text, an extended bibliography with some of the most important references on this topic is included. Since the diversity of the research in the field makes it difficult to produce an exhaustive state-of-the-art summary, the authors discuss recent developments that go beyond this survey and put forward new research questions. |
do i need calculus for computer science: Introduction to Algorithms Udi Manber, 1989 This book emphasizes the creative aspects of algorithm design by examining steps used in the process of algorithm development. The heart of the creative process lies in an analogy between proving mathematical theorems by induction and designing combinatorial algorithms. The book contains hundreds of problems and examples. It is designed to enhance the reader's problem-solving abilities and understanding of the principles behind algorithm design. 0201120372B04062001 |
do i need calculus for computer science: Calculus Michael Spivak, 1980 |
do i need calculus for computer science: Calculus Gilbert Strang, Edwin Prine Herman, 2016-03-07 Published by OpenStax College, Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 2 covers integration, differential equations, sequences and series, and parametric equations and polar coordinates.--BC Campus website. |
Osteopathic medicine: What kind of doctor is a D.O.? - Mayo Clinic
Nov 29, 2022 · A doctor of osteopathic medicine, also known as a D.O., is a fully trained and licensed doctor. A doctor of osteopathic medicine graduates from a U.S. osteopathic medical …
How well do face masks protect against COVID-19? - Mayo Clinic
Nov 4, 2023 · Experts do not recommend using face shields instead of masks. It's not clear how much protection shields provide. But wearing a face mask may not be possible in every …
Penis-enlargement products: Do they work? - Mayo Clinic
Apr 17, 2025 · Ads for penis-enlargement products and procedures are everywhere. Many pumps, pills, weights, exercises and surgeries claim to increase the length and width of your penis. …
Ileostomy - Mayo Clinic
May 2, 2025 · Walk inside or outside. It is one of the best physical activities you can do after surgery. In the first weeks after surgery, you only may be able to take short walks. As you feel …
Hydronephrosis - Diagnosis and treatment - Mayo Clinic
Nov 6, 2024 · What you can do. When you make the appointment, ask if there's anything you need to do in advance. For instance, you may need to stop eating for a certain number of …
Stem cells: What they are and what they do - Mayo Clinic
Mar 23, 2024 · Stem cells are a special type of cells that have two important properties. They are able to make more cells like themselves. That is, they self-renew. And they can become other …
Do infrared saunas have any health benefits? - Mayo Clinic
Sep 13, 2024 · We use the data you provide to deliver you the content you requested. To provide you with the most relevant and helpful information, we may combine your email and website …
Statin side effects: Weigh the benefits and risks - Mayo Clinic
Mar 11, 2025 · Statins lower cholesterol and protect against heart attack and stroke. But they may lead to side effects in some people. Healthcare professionals often prescribe statins for people …
Treating COVID-19 at home: Care tips for you and others
Apr 5, 2024 · Do not share towels, cups or other items if possible. Use a separate bathroom and bedroom if possible. Get more airflow in your home. Once you're feeling better and haven't …
Menopause hormone therapy: Is it right for you? - Mayo Clinic
Apr 18, 2025 · Menopause hormone therapy is medicine with female hormones. It's taken to replace the estrogen the body stops making after menopause, which is when periods stop for …
Osteopathic medicine: What kind of doctor is a D.O.? - Mayo Clinic
Nov 29, 2022 · A doctor of osteopathic medicine, also known as a D.O., is a fully trained and licensed doctor. A doctor of osteopathic medicine graduates from a U.S. osteopathic medical school.
How well do face masks protect against COVID-19? - Mayo Clinic
Nov 4, 2023 · Experts do not recommend using face shields instead of masks. It's not clear how much protection shields provide. But wearing a face mask may not be possible in every situation. If you must use a face …
Penis-enlargement products: Do they work? - Mayo Clinic
Apr 17, 2025 · Ads for penis-enlargement products and procedures are everywhere. Many pumps, pills, weights, exercises and surgeries claim to increase the length and width of your penis. But, there's little …
Ileostomy - Mayo Clinic
May 2, 2025 · Walk inside or outside. It is one of the best physical activities you can do after surgery. In the first weeks after surgery, you only may be able to take short walks. As you feel comfortable, slowly increase the …
Hydronephrosis - Diagnosis and treatment - Mayo Clinic
Nov 6, 2024 · What you can do. When you make the appointment, ask if there's anything you need to do in advance. For instance, you may need to stop eating for a certain number of hours before a test. Also, it helps to …