Financial News Api Python

Advertisement



  financial news api python: Python for Algorithmic Trading Yves Hilpisch, 2020-11-12 Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
  financial news api python: Mastering Python for Finance James Ma Weiming, 2015-04-29 If you are an undergraduate or graduate student, a beginner to algorithmic development and research, or a software developer in the financial industry who is interested in using Python for quantitative methods in finance, this is the book for you. It would be helpful to have a bit of familiarity with basic Python usage, but no prior experience is required.
  financial news api python: The Future of Finance with ChatGPT and Power BI James Bryant, Aloke Mukherjee, 2023-12-29 Enhance decision-making, transform your market approach, and find investment opportunities by exploring AI, finance, and data visualization with ChatGPT's analytics and Power BI's visuals Key Features Automate Power BI with ChatGPT for quick and competitive financial insights, giving you a strategic edge Make better data-driven decisions with practical examples of financial analysis and reporting Learn the step-by-step integration of ChatGPT, financial analysis, and Power BI for real-world success Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn today's rapidly evolving economic landscape, the combination of finance, analytics, and artificial intelligence (AI) heralds a new era of decision-making. Finance and data analytics along with AI can no longer be seen as separate disciplines and professionals have to be comfortable in both in order to be successful. This book combines finance concepts, visualizations through Power BI and the application of AI and ChatGPT to provide a more holistic perspective. After a brief introduction to finance and Power BI, you will begin with Tesla's data-driven financial tactics before moving to John Deere's AgTech strides, all through the lens of AI. Salesforce's adaptation to the AI revolution offers profound insights, while Moderna's navigation through the biotech frontier during the pandemic showcases the agility of AI-focused companies. Learn from Silicon Valley Bank's demise, and prepare for CrowdStrike's defensive maneuvers against cyber threats. With each chapter, you'll gain mastery over new investing ideas, Power BI tools, and integrate ChatGPT into your workflows. This book is an indispensable ally for anyone looking to thrive in the financial sector. By the end of this book, you'll be able to transform your approach to investing and trading by blending AI-driven analysis, data visualization, and real-world applications.What you will learn Dominate investing, trading, and reporting with ChatGPT's game-changing insights Master Power BI for dynamic financial visuals, custom dashboards, and impactful charts Apply AI and ChatGPT for advanced finance analysis and natural language processing (NLP) in news analysis Tap into ChatGPT for powerful market sentiment analysis to seize investment opportunities Unleash your financial analysis potential with data modeling, source connections, and Power BI integration Understand the importance of data security and adopt best practices for using ChatGPT and Power BI Who this book is for This book is for students, academics, data analysts, and AI enthusiasts eager to leverage ChatGPT for financial analysis and forecasting. It's also suitable for investors, traders, financial pros, business owners, and entrepreneurs interested in analyzing financial data using Power BI. To get started with this book, understanding the fundamentals of finance, investment, trading, and data analysis, along with proficiency in tools like Power BI and Microsoft Excel, is necessary. While prior knowledge of AI and ChatGPT is beneficial, it is not a prerequisite.
  financial news api python: Blueprints for Text Analytics Using Python Jens Albrecht, Sidharth Ramachandran, Christian Winkler, 2020-12-04 Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order. This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly. Extract data from APIs and web pages Prepare textual data for statistical analysis and machine learning Use machine learning for classification, topic modeling, and summarization Explain AI models and classification results Explore and visualize semantic similarities with word embeddings Identify customer sentiment in product reviews Create a knowledge graph based on named entities and their relations
  financial news api python: Python for Finance Yves J. Hilpisch, 2018-12-05 The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
  financial news api python: Python for Finance Yves Hilpisch, 2014-12-11 The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies
  financial news api python: Data Science for Economics and Finance Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana, 2021 This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
  financial news api python: Python for Finance Dmytro Zherlitsyn, 2024-07-30 DESCRIPTION Python's intuitive syntax and beginner-friendly nature makes it an ideal programming language for financial professionals. It acts as a bridge between the world of finance and data analysis. This book will introduce essential concepts in financial analysis methods and models, covering time-series analysis, graphical analysis, technical and fundamental analysis, asset pricing and portfolio theory, investment and trade strategies, risk assessment and prediction, and financial ML practices. The Python programming language and its ecosystem libraries, such as Pandas, NumPy, SciPy, Statsmodels, Matplotlib, Seaborn, Scikit-learn, Prophet, and other data science tools will demonstrate these rooted financial concepts in practice examples. This book will help you understand the concepts of financial market dynamics, estimate the metrics of financial asset profitability, predict trends, evaluate strategies, optimize portfolios, and manage financial risks. You will also learn data analysis techniques using Python programming language to understand the basics of data preparation, visualization, and manipulation in the world of financial data. KEY FEATURES ● Comprehensive guide to Python for financial data analysis and modeling. ● Practical examples and real-world applications for immediate implementation. ● Covers advanced topics like regression, Machine Learning and time series forecasting. WHAT YOU WILL LEARN ● Learn financial data analysis using Python data science libraries and techniques. ● Learn Python visualization tools to justify investment and trading strategies. ● Learn asset pricing and portfolio management methods with Python. ● Learn advanced regression and time series models for financial forecasting. ● Learn risk assessment and volatility modeling methods with Python. WHO THIS BOOK IS FOR This book is designed for financial analysts and other professionals interested in the financial industry with a basic understanding of Python programming and statistical analysis. It is also suitable for students in finance and data science who wish to apply Python tools to financial data analysis and decision-making. TABLE OF CONTENTS 1. Getting Started with Python for Finance 2. Python Tools for Data Analysis: Primer to Pandas and NumPy 3. Financial Data Manipulation with Python 4. Exploratory Data Analysis for Finance 5. Investment and Trading Strategies 6. Asset Pricing and Portfolio Management 7. Time Series Analysis and Financial Data Forecasting 8. Risk Assessment and Volatility Modelling 9. Machine Learning and Deep Learning in Finance 10. Time Series Analysis and Forecasting with FB Prophet Library Appendix A: Python Code Examples for Finance Appendix B: Glossary Appendix C: Valuable Resources
  financial news api python: Python for Algorithmic Trading Yves Hilpisch, 2020-11-12 Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
  financial news api python: High-Performance Algorithmic Trading Using AI Melick R. Baranasooriya, 2024-08-08 DESCRIPTION High-Performance Algorithmic Trading using AI is a comprehensive guide designed to empower both beginners and experienced professionals in the finance industry. This book equips you with the knowledge and tools to build sophisticated, high-performance trading systems. It starts with basics like data preprocessing, feature engineering, and ML. Then, it moves to advanced topics, such as strategy development, backtesting, platform integration using Python for financial modeling, and the implementation of AI models on trading platforms. Each chapter is crafted to equip readers with actionable skills, ranging from extracting insights from vast datasets to developing and optimizing trading algorithms using Python's extensive libraries. It includes real-world case studies and advanced techniques like deep learning and reinforcement learning. The book wraps up with future trends, challenges, and opportunities in algorithmic trading. Become a proficient algorithmic trader capable of designing, developing, and deploying profitable trading systems. It not only provides theoretical knowledge but also emphasizes hands-on practice and real-world applications, ensuring you can confidently navigate and leverage AI in your trading strategies. KEY FEATURES ● Master AI and ML techniques to enhance algorithmic trading strategies. ● Hands-on Python tutorials for developing and optimizing trading algorithms. ● Real-world case studies showcasing AI applications in diverse trading scenarios. WHAT YOU WILL LEARN ● Develop AI-powered trading algorithms for enhanced decision-making and profitability. ● Utilize Python tools and libraries for financial modeling and analysis. ● Extract actionable insights from large datasets for informed trading decisions. ● Implement and optimize AI models within popular trading platforms. ● Apply risk management strategies to safeguard and optimize investments. ● Understand emerging technologies like quantum computing and blockchain in finance. WHO THIS BOOK IS FOR This book is for financial professionals, analysts, traders, and tech enthusiasts with a basic understanding of finance and programming. TABLE OF CONTENTS 1. Introduction to Algorithmic Trading and AI 2. AI and Machine Learning Basics for Trading 3. Essential Elements in AI Trading Algorithms 4. Data Processing and Analysis 5. Simulating and Testing Trading Strategies 6. Implementing AI Models with Trading Platforms 7. Getting Prepared for Python Development 8. Leveraging Python for Trading Algorithm Development 9. Real-world Examples and Case Studies 10. Using LLMs for Algorithmic Trading 11. Future Trends, Challenges, and Opportunities
  financial news api python: Machine Learning for Algorithmic Trading Stefan Jansen, 2020-07-31 Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
  financial news api python: Head First Python Paul Barry, 2016-11-21 Want to learn the Python language without slogging your way through how-to manuals? With Head First Python, you’ll quickly grasp Python’s fundamentals, working with the built-in data structures and functions. Then you’ll move on to building your very own webapp, exploring database management, exception handling, and data wrangling. If you’re intrigued by what you can do with context managers, decorators, comprehensions, and generators, it’s all here. This second edition is a complete learning experience that will help you become a bonafide Python programmer in no time. Why does this book look so different? Based on the latest research in cognitive science and learning theory, Head First Pythonuses a visually rich format to engage your mind, rather than a text-heavy approach that puts you to sleep. Why waste your time struggling with new concepts? This multi-sensory learning experience is designed for the way your brain really works.
  financial news api python: Computational Intelligence in Data Science Sarath Chandran K R, Sujaudeen N, Beulah A, Shahul Hamead H, 2023-07-21 This book constitutes the proceedings of the 6th IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2023, which took place in Kalavakkam, India, in February 2023. The 24 full papers presented in this volume were carefully reviewed and selected from 134 submissions. The major theme of the conference was intended to be computation intelligence and knowledge management. Various emerging areas like IoT, cyber security and data science need computation intelligence to align with the cutting-edge research. Machine learning delivers insights hidden in data for rapid, automated responses and improved decision making. Machine learning for IoT can be used to project future trends, detect anomalies, and augment intelligence by ingesting image, video, and audio.
  financial news api python: Artificial Intelligence in Finance Yves Hilpisch, 2020-10-14 The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about
  financial news api python: Hands-On Financial Trading with Python Jiri Pik, Sourav Ghosh, 2021-04-29 Build and backtest your algorithmic trading strategies to gain a true advantage in the market Key FeaturesGet quality insights from market data, stock analysis, and create your own data visualisationsLearn how to navigate the different features in Python's data analysis librariesStart systematically approaching quantitative research and strategy generation/backtesting in algorithmic tradingBook Description Creating an effective system to automate your trading can help you achieve two of every trader's key goals; saving time and making money. But to devise a system that will work for you, you need guidance to show you the ropes around building a system and monitoring its performance. This is where Hands-on Financial Trading with Python can give you the advantage. This practical Python book will introduce you to Python and tell you exactly why it's the best platform for developing trading strategies. You'll then cover quantitative analysis using Python, and learn how to build algorithmic trading strategies with Zipline using various market data sources. Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics. As you progress, you'll pick up lots of skills like time series forecasting, covering pmdarima and Facebook Prophet. By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algorithmic trading strategies, and perform portfolio optimization to help you get —and stay—ahead of the markets. What you will learnDiscover how quantitative analysis works by covering financial statistics and ARIMAUse core Python libraries to perform quantitative research and strategy development using real datasetsUnderstand how to access financial and economic data in PythonImplement effective data visualization with MatplotlibApply scientific computing and data visualization with popular Python librariesBuild and deploy backtesting algorithmic trading strategiesWho this book is for If you're a financial trader or a data analyst who wants a hands-on introduction to designing algorithmic trading strategies, then this book is for you. You don't have to be a fully-fledged programmer to dive into this book, but knowing how to use Python's core libraries and a solid grasp on statistics will help you get the most out of this book.
  financial news api python: Electronic Governance with Emerging Technologies Fernando Ortiz-Rodríguez, Sanju Tiwari, Patience Usoro Usip, Raul Palma, 2023-10-17 This book constitutes the refereed proceedings of the Second International Conference on Electronic Governance with Emerging Technologies, EGETC 2023, held in Poznan, Poland, during September 11–12, 2023. The 15 full papers and one short paper presented were thoroughly reviewed and selected from the 76 submissions. This volume focuses on the recent developments in the domain of eGovernment and governance of digital organizations also aims to shed light on the emerging research trends and their applications.
  financial news api python: MarketPsych Richard L. Peterson, Frank F. Murtha, 2010-07-30 An investor's guide to understanding the most elusive (yet most important) aspect of successful investing - yourself. Why is it that the investing performance of so many smart people reliably and predictably falls short? The answer is not that they know too little about the markets. In fact, they know too little about themselves. Combining the latest findings from the academic fields of behavioral finance and experimental psychology with the down-and-dirty real-world wisdom of successful investors, Drs. Richard Peterson and Frank Murtha guide both new and experienced investors through the psychological learning process necessary to achieve their financial goals. In an easy and entertaining style that masks the book’s scientific rigor, the authors make complex scientific insights readily understandable and actionable, shattering a number of investing myths along the way. You will gain understanding of your true investing motivations, learn to avoid the unseen forces that subvert your performance, and build your investor identity - the foundation for long-lasting investing success. Replete with humorous games, insightful self-assessments, entertaining exercises, and concrete planning tools, this book goes beyond mere education. MarketPsych: How to Manage Fear and Build Your Investor Identity functions as a psychological outfitter for your unique investing journey, providing the tools, training and equipment to help you navigate the right paths, stay on them, and see your journey through to success.
  financial news api python: Python for Excel Felix Zumstein, 2021-03-04 While Excel remains ubiquitous in the business world, recent Microsoft feedback forums are full of requests to include Python as an Excel scripting language. In fact, it's the top feature requested. What makes this combination so compelling? In this hands-on guide, Felix Zumstein--creator of xlwings, a popular open source package for automating Excel with Python--shows experienced Excel users how to integrate these two worlds efficiently. Excel has added quite a few new capabilities over the past couple of years, but its automation language, VBA, stopped evolving a long time ago. Many Excel power users have already adopted Python for daily automation tasks. This guide gets you started. Use Python without extensive programming knowledge Get started with modern tools, including Jupyter notebooks and Visual Studio code Use pandas to acquire, clean, and analyze data and replace typical Excel calculations Automate tedious tasks like consolidation of Excel workbooks and production of Excel reports Use xlwings to build interactive Excel tools that use Python as a calculation engine Connect Excel to databases and CSV files and fetch data from the internet using Python code Use Python as a single tool to replace VBA, Power Query, and Power Pivot
  financial news api python: Python for Finance Yuxing Yan, 2017-06-30 Learn and implement various Quantitative Finance concepts using the popular Python libraries About This Book Understand the fundamentals of Python data structures and work with time-series data Implement key concepts in quantitative finance using popular Python libraries such as NumPy, SciPy, and matplotlib A step-by-step tutorial packed with many Python programs that will help you learn how to apply Python to finance Who This Book Is For This book assumes that the readers have some basic knowledge related to Python. However, he/she has no knowledge of quantitative finance. In addition, he/she has no knowledge about financial data. What You Will Learn Become acquainted with Python in the first two chapters Run CAPM, Fama-French 3-factor, and Fama-French-Carhart 4-factor models Learn how to price a call, put, and several exotic options Understand Monte Carlo simulation, how to write a Python program to replicate the Black-Scholes-Merton options model, and how to price a few exotic options Understand the concept of volatility and how to test the hypothesis that volatility changes over the years Understand the ARCH and GARCH processes and how to write related Python programs In Detail This book uses Python as its computational tool. Since Python is free, any school or organization can download and use it. This book is organized according to various finance subjects. In other words, the first edition focuses more on Python, while the second edition is truly trying to apply Python to finance. The book starts by explaining topics exclusively related to Python. Then we deal with critical parts of Python, explaining concepts such as time value of money stock and bond evaluations, capital asset pricing model, multi-factor models, time series analysis, portfolio theory, options and futures. This book will help us to learn or review the basics of quantitative finance and apply Python to solve various problems, such as estimating IBM's market risk, running a Fama-French 3-factor, 5-factor, or Fama-French-Carhart 4 factor model, estimating the VaR of a 5-stock portfolio, estimating the optimal portfolio, and constructing the efficient frontier for a 20-stock portfolio with real-world stock, and with Monte Carlo Simulation. Later, we will also learn how to replicate the famous Black-Scholes-Merton option model and how to price exotic options such as the average price call option. Style and approach This book takes a step-by-step approach in explaining the libraries and modules in Python, and how they can be used to implement various aspects of quantitative finance. Each concept is explained in depth and supplemented with code examples for better understanding.
  financial news api python: Official List of Section 13(f) Securities ,
  financial news api python: Decomposing Climate Risks in Stock Markets Chengyu Huang, Yuchen Zhang, 2023-06-30 Climate change poses an unprecedented challenge to the world economy and the global financial system. This paper sets out to understand and quantify the impact of climate mitigation, with a focus on climate-related news, which represents an important information source that investors use to revise their subjective assessments of climate risks. Using full-text data from Financial Times from January 2005 to March 2022, we develop machine learning-based indicators to measure risks from climate mitigation, and the direction of the risk is identified through manual labels. The documented risk premium indicates that climate mitigation news has been partially priced in the Canadian stock market. More specifically, stock prices react positively to market-wide climate-favorable news but they do not react negatively to climate-unfavorable news. The results are robust to different model specifications and across equity markets.
  financial news api python: Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023 AboulElla Hassanien, Rawya Y. Rizk, Dragan Pamucar, Ashraf Darwish, Kuo-Chi Chang, 2023-09-17 This proceedings book constitutes the refereed proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics (AISI 2023), which took place in Port Said University, Port Said, Egypt, during September 20–22, 2023, Egypt, and is an international interdisciplinary conference that presents a spectrum of scientific research on all aspects of informatics and intelligent systems, technologies, and applications.
  financial news api python: Python for Finance Cookbook Eryk Lewinson, 2022-12-30 Use modern Python libraries such as pandas, NumPy, and scikit-learn and popular machine learning and deep learning methods to solve financial modeling problems Purchase of the print or Kindle book includes a free eBook in the PDF format Key FeaturesExplore unique recipes for financial data processing and analysis with PythonApply classical and machine learning approaches to financial time series analysisCalculate various technical analysis indicators and backtest trading strategiesBook Description Python is one of the most popular programming languages in the financial industry, with a huge collection of accompanying libraries. In this new edition of the Python for Finance Cookbook, you will explore classical quantitative finance approaches to data modeling, such as GARCH, CAPM, factor models, as well as modern machine learning and deep learning solutions. You will use popular Python libraries that, in a few lines of code, provide the means to quickly process, analyze, and draw conclusions from financial data. In this new edition, more emphasis was put on exploratory data analysis to help you visualize and better understand financial data. While doing so, you will also learn how to use Streamlit to create elegant, interactive web applications to present the results of technical analyses. Using the recipes in this book, you will become proficient in financial data analysis, be it for personal or professional projects. You will also understand which potential issues to expect with such analyses and, more importantly, how to overcome them. What you will learnPreprocess, analyze, and visualize financial dataExplore time series modeling with statistical (exponential smoothing, ARIMA) and machine learning modelsUncover advanced time series forecasting algorithms such as Meta's ProphetUse Monte Carlo simulations for derivatives valuation and risk assessmentExplore volatility modeling using univariate and multivariate GARCH modelsInvestigate various approaches to asset allocationLearn how to approach ML-projects using an example of default predictionExplore modern deep learning models such as Google's TabNet, Amazon's DeepAR and NeuralProphetWho this book is for This book is intended for financial analysts, data analysts and scientists, and Python developers with a familiarity with financial concepts. You'll learn how to correctly use advanced approaches for analysis, avoid potential pitfalls and common mistakes, and reach correct conclusions for a broad range of finance problems. Working knowledge of the Python programming language (particularly libraries such as pandas and NumPy) is necessary.
  financial news api python: Python for Accounting and Finance Sunil Kumar,
  financial news api python: Building AI Intensive Python Applications Rachelle Palmer, Ben Perlmutter, Ashwin Gangadhar, Nicholas Larew, Sigfrido Narváez, Thomas Rueckstiess, Henry Weller, Richmond Alake, Shubham Ranjan, 2024-09-06 Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps Key Features Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks Implement effective retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance and accuracy with model compression and deployment optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications. The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You’ll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn Understand the architecture and components of the generative AI stack Explore the role of vector databases in enhancing AI applications Master Python frameworks for AI development Implement Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common failures and challenges in AI development Who this book is for This book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.
  financial news api python: Artificial Intelligence in Finance Yves Hilpisch, 2020-10-14 The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about
  financial news api python: Building Trading Bots Using Java Shekhar Varshney, 2016-12-07 Build an automated currency trading bot from scratch with java. In this book, you will learn about the nitty-gritty of automated trading and have a closer look at Java, the Spring Framework, event-driven programming, and other open source APIs, notably Google's Guava API. And of course, development will all be test-driven with unit testing coverage. The central theme of Building Trading Bots Using Java is to create a framework that can facilitate automated trading on most of the brokerage platforms, with minimum changes. At the end of the journey, you will have a working trading bot, with a sample implementation using the OANDA REST API, which is free to use. What You'll Learn Find out about trading bots Discover the details of tradeable instruments and apply bots to them Track and use market data events Place orders and trades Work with trade/order and account events Who This Book Is For Experienced programmers new to bots and other algorithmic trading and finance techniques.
  financial news api python: Trade Like a Stock Market Wizard: How to Achieve Super Performance in Stocks in Any Market Mark Minervini, 2013-04-19 Minervini has run circles around most PhDs trying to design systems to beat the market. -- JACK SCHWAGER, bestselling author of Stock Market Wizards Mark's book has to be on every investor's bookshelf. It is about the most comprehensive work I have ever read on investing in growth stocks. -- DAVID RYAN, three-time U.S. Investing Champion [Minervini is] one of the most highly respected independent traders of our generation. His experience and past history of savvy market calls is legendary. -- CHARLES KIRK, The Kirk Report One of Wall Street's most remarkable success stories. -- BEN POWER, Your Trading Edge THE INVESTOR'S GUIDE TO SUPERPERFORMANCE! Dramatically increase your stock market returns with the legendary SEPA system! For the first time ever, U.S. Investing Champion Mark Minervini reveals the proven, time-tested trading system he used to achieve triple-digit returns for five consecutive years, averaging 220% per year for a 33,500% compounded total return. In Trade Like a Stock Market Wizard, Minervini unveils his trademarked stock market method SEPA, which provides outsized returns in virtually every market by combining careful risk management, self-analysis, and perseverance. He explains in detail how to select precise entry points and preserve capital—for consistent triple- digit returns. Whether you're just getting started in the stock market or you're a seasoned pro, Minervini will show how you how to achieve SUPERPERFORMANCE! You'll gain valuable knowledge as he shares lessons, trading truths, and specific tactics--all derived from his 30-year career as one of America's most successful stock traders. Trade Like a Stock Market Wizard teaches you: How to find the best stocks before they make big price gains How to avoid costly mistakes made by most investors How to manage losses and protect profits How to avoid high-risk situations Precisely when to buy and when to sell How to buy an IPO Why traditional valuation doesn't work for fast-growing Superperformers Examples of Minervini's personal trades with his comments With more than 160 chart examples and numerous case studies proving the remarkable effectiveness of Minervini's methodology, Trade Like a Stock Market Wizard puts in your hands one of the most effective and--until now--secretive stock investing systems in the world. MARK MINERVINI has a trademarked stock market method that produces outsized returns in virtually every market. It's called Specific Entry Point Analysis--SEPA--and it has been proven effective for selecting precise entry points, preserving capital and profi ts with even more precise exit points--and consistently producing triple-digit returns. Now, in Trade Like a Stock Market Wizard, Minervini shares--for the fi rst time ever--his coveted methodology with investors like you!
  financial news api python: Hands-On Machine Learning for Algorithmic Trading Stefan Jansen, 2018-12-31 Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key FeaturesImplement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learnImplement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is for Hands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.
  financial news api python: Frontier Computing Jia-Wei Chang, Neil Yen, Jason C. Hung, 2022-01-01 This book gathers the proceedings of the 10th International Conference on Frontier Computing, held in Singapore, on July 10–13, 2020, and provides comprehensive coverage of the latest advances and trends in information technology, science, and engineering. It addresses a number of broad themes, including communication networks, business intelligence and knowledge management, web intelligence, and related fields that inspire the development of information technology. The respective contributions cover a wide range of topics: database and data mining, networking and communications, web and Internet of things, embedded systems, soft computing, social network analysis, security and privacy, optical communication, and ubiquitous/pervasive computing. Many of the papers outline promising future research directions, and the book benefits students, researchers, and professionals alike. Further, it offers a useful reference guide for newcomers to the field.
  financial news api python: Tidy Finance with Python Christoph Scheuch, Stefan Voigt, Patrick Weiss, Christoph Frey, 2024-07-12 This textbook shows how to bring theoretical concepts from finance and econometrics to the data. Focusing on coding and data analysis with Python, we show how to conduct research in empirical finance from scratch. We start by introducing the concepts of tidy data and coding principles using pandas, numpy, and plotnine. Code is provided to prepare common open-source and proprietary financial data sources (CRSP, Compustat, Mergent FISD, TRACE) and organize them in a database. We reuse these data in all the subsequent chapters, which we keep as self-contained as possible. The empirical applications range from key concepts of empirical asset pricing (beta estimation, portfolio sorts, performance analysis, Fama-French factors) to modeling and machine learning applications (fixed effects estimation, clustering standard errors, difference-in-difference estimators, ridge regression, Lasso, Elastic net, random forests, neural networks) and portfolio optimization techniques. Key Features: Self-contained chapters on the most important applications and methodologies in finance, which can easily be used for the reader’s research or as a reference for courses on empirical finance. Each chapter is reproducible in the sense that the reader can replicate every single figure, table, or number by simply copying and pasting the code we provide. A full-fledged introduction to machine learning with scikit-learn based on tidy principles to show how factor selection and option pricing can benefit from Machine Learning methods. We show how to retrieve and prepare the most important datasets financial economics: CRSP and Compustat, including detailed explanations of the most relevant data characteristics. Each chapter provides exercises based on established lectures and classes which are designed to help students to dig deeper. The exercises can be used for self-studying or as a source of inspiration for teaching exercises.
  financial news api python: Systematic Trading Robert Carver, 2015-09-14 This is not just another book with yet another trading system. This is a complete guide to developing your own systems to help you make and execute trading and investing decisions. It is intended for everyone who wishes to systematise their financial decision making, either completely or to some degree. Author Robert Carver draws on financial theory, his experience managing systematic hedge fund strategies and his own in-depth research to explain why systematic trading makes sense and demonstrates how it can be done safely and profitably. Every aspect, from creating trading rules to position sizing, is thoroughly explained. The framework described here can be used with all assets, including equities, bonds, forex and commodities. There is no magic formula that will guarantee success, but cutting out simple mistakes will improve your performance. You'll learn how to avoid common pitfalls such as over-complicating your strategy, being too optimistic about likely returns, taking excessive risks and trading too frequently. Important features include: - The theory behind systematic trading: why and when it works, and when it doesn't. - Simple and effective ways to design effective strategies. - A complete position management framework which can be adapted for your needs. - How fully systematic traders can create or adapt trading rules to forecast prices. - Making discretionary trading decisions within a systematic framework for position management. - Why traditional long only investors should use systems to ensure proper diversification, and avoid costly and unnecessary portfolio churn. - Adapting strategies depending on the cost of trading and how much capital is being used. - Practical examples from UK, US and international markets showing how the framework can be used. Systematic Trading is detailed, comprehensive and full of practical advice. It provides a unique new approach to system development and a must for anyone considering using systems to make some, or all, of their investment decisions.
  financial news api python: Computational Intelligence for Modern Business Systems Sandeep Kautish, Prasenjit Chatterjee, Dragan Pamucar, N. Pradeep, Deepmala Singh, 2023-12-05 This book covers the applications of computational intelligence techniques in business systems and advocates how these techniques are useful in modern business operations. The book redefines the computational intelligence foundations, the three pillars - neural networks, evolutionary computation, and fuzzy systems. It also discusses emerging areas such as swarm intelligence, artificial immune systems (AIS), support vector machines, rough sets, and chaotic systems. The other areas have also been demystified in the book to strengthen the range of computational intelligence techniques such as expert systems, knowledge-based systems, and genetic algorithms. Therefore, this book will redefine the role of computational intelligence techniques in modern business system operations such as marketing, finance & accounts, operations, personnel management, supply chain management, and logistics. Besides, this book guides the readers through using them to model, discover, and interpret new patterns that cannot be found through statistical methods alone in various business system operations. This book reveals how computational intelligence can inform the design and integration of services, architecture, brand identity, and product portfolio across the entire enterprise. The book will provide insights into research gaps, open challenges, and unsolved computational intelligence problems. The book will act as a premier reference and instant material for all the users who are contributing/practicing the adaptation of computational intelligence modern techniques in business systems.
  financial news api python: Python for Data Analysis Wes McKinney, 2017-09-25 Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
  financial news api python: ICT with Intelligent Applications Jyoti Choudrie, Parikshit Mahalle, Thinagaran Perumal, Amit Joshi, 2022-09-30 This book gathers papers addressing state-of-the-art research in all areas of information and communication technologies and their applications in intelligent computing, cloud storage, data mining and software analysis. It presents the outcomes of the Sixth International Conference on Information and Communication Technology for Intelligent Systems (ICTIS 2022), held in Ahmedabad, India. The book is divided into two volumes. It discusses the fundamentals of various data analysis techniques and algorithms, making it a valuable resource for researchers and practitioners alike.
  financial news api python: The Book of Alternative Data Alexander Denev, Saeed Amen, 2020-07-21 The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject. This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors—leading experts in financial modeling, machine learning, and quantitative research and analytics—employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book: Provides an integrated modeling approach to extract value from multiple types of datasets Treats the processes needed to make alternative data signals operational Helps investors and risk managers rethink how they engage with alternative datasets Features practical use case studies in many different financial markets and real-world techniques Describes how to avoid potential pitfalls and missteps in starting the alternative data journey Explains how to integrate information from different datasets to maximize informational value The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users.
  financial news api python: Innovative Computing and Communications Aboul Ella Hassanien,
  financial news api python: Text Analytics with Python Dipanjan Sarkar, 2016-11-30 Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data
  financial news api python: On the Move to Meaningful Internet Systems. OTM 2018 Conferences Hervé Panetto, Christophe Debruyne, Henderik A. Proper, Claudio Agostino Ardagna, Dumitru Roman, Robert Meersman, 2018-10-17 This double volumes LNCS 11229-11230 constitutes the refereed proceedings of the Confederated International Conferences: Cooperative Information Systems, CoopIS 2018, Ontologies, Databases, and Applications of Semantics, ODBASE 2018, and Cloud and Trusted Computing, C&TC, held as part of OTM 2018 in October 2018 in Valletta, Malta. The 64 full papers presented together with 22 short papers were carefully reviewed and selected from 173 submissions. The OTM program every year covers data and Web semantics, distributed objects, Web services, databases, informationsystems, enterprise workflow and collaboration, ubiquity, interoperability, mobility, grid and high-performance computing.
  financial news api python: Business Research Reporting Dorinda Clippinger, 2017-12-05 Business Research Reporting addresses the essential activities of locating, collecting, evaluating, analyzing, interpreting, and reporting business data. It highlights the value of primary and secondary research to making business decisions and solving business problems. It aims to help business managers, MBA candidates, and upper-level college students boost their research skills and report research with confidence. This book discusses primary data collection, sampling concepts, and the use of measurement and scales in preparing instruments. Also, this book explores statistical and non-statistical analysis of qualitative and quantitative data and data interpretation (findings, conclusions, and recommendations). The author shows how to locate, evaluate, and extract secondary data found on the web and in brick-and-mortar libraries, including optimized searching, evaluating, and recording. Plus, the book demonstrates how to avoid copyright infringement and plagiarism, use online citation software, and cite sources when writing and presenting. Two glossaries—one each for primary and secondary research—round out the content. Business Research Reporting can be your go-to guidebook for years to come. Reading through it in a couple of hours, you can pick up ample information to apply instantly. Then keep it handy and refer to it in your ongoing research activities.
Yahoo Finance - Stock Market Live, Quotes, Business & Finance …
Encouraging economic data has boosted market hopes for Fed rate cuts, but policymakers remain cautious. Trump's tariff timeout is almost up. Here's what could happen next.

Stock Market Prices, Real-time Quotes & Business News - Google
Google Finance provides real-time market quotes, international exchanges, up-to-date financial news, and analytics to help you make more informed trading and investment decisions.

Home Page - APG Federal Credit Union
APGFCU offers checking, savings, loans, and business banking services in Maryland to help you achieve your financial goals.

Stock Markets, Business News, Financials, Earnings - CNBC
Global Business and Financial News, Stock Quotes, and Market Data and Analysis. CNBC is the world leader in business news and real-time financial market coverage. Find fast, actionable...

MarketWatch: Stock Market News - Financial News
Americans spend $10 billion more on Mother’s Day than Father’s Day. What’s going on? So your company offered you a buyout. Should you take it? Here’s what to know. Hate paying so much …

Home - First Financial Federal Credit Union
Since 1953, First Financial Federal Credit Union has been strengthening the community through volunteering, donations, and financial education. Banking made easy. We’re your partner in …

Magnum Advisors - CPA Financial Services
Trust Magnum Advisors for expert financial services. Our CPAs offer personal and business tax solutions for connection, clarity, and confidence.

Financial Times
Planning your retirement? ChatGPT can help with that.

Branch Locations Near You - OneMain Financial
Find the closest OneMain Financial branch near you to talk to a real person. Get branch hours, directions, and phone numbers for our over 1,500 locations today.

Fidelity Investments - Retirement Plans, Investing, Brokerage, …
Manage your own investments (stocks, ETFs, mutual funds, CDs, and more), with help from our free resources. With a Fidelity Roth IRA, you get the flexibility to save for retirement, while …

Yahoo Finance - Stock Market Live, Quotes, Business & Finance …
Encouraging economic data has boosted market hopes for Fed rate cuts, but policymakers remain cautious. Trump's tariff timeout is almost up. Here's what could happen next.

Stock Market Prices, Real-time Quotes & Business News - Google
Google Finance provides real-time market quotes, international exchanges, up-to-date financial news, and analytics to help you make more informed trading and investment decisions.

Home Page - APG Federal Credit Union
APGFCU offers checking, savings, loans, and business banking services in Maryland to help you achieve your financial goals.

Stock Markets, Business News, Financials, Earnings - CNBC
Global Business and Financial News, Stock Quotes, and Market Data and Analysis. CNBC is the world leader in business news and real-time financial market coverage. Find fast, actionable...

MarketWatch: Stock Market News - Financial News
Americans spend $10 billion more on Mother’s Day than Father’s Day. What’s going on? So your company offered you a buyout. Should you take it? Here’s what to know. Hate paying so much …

Home - First Financial Federal Credit Union
Since 1953, First Financial Federal Credit Union has been strengthening the community through volunteering, donations, and financial education. Banking made easy. We’re your partner in …

Magnum Advisors - CPA Financial Services
Trust Magnum Advisors for expert financial services. Our CPAs offer personal and business tax solutions for connection, clarity, and confidence.

Financial Times
Planning your retirement? ChatGPT can help with that.

Branch Locations Near You - OneMain Financial
Find the closest OneMain Financial branch near you to talk to a real person. Get branch hours, directions, and phone numbers for our over 1,500 locations today.

Fidelity Investments - Retirement Plans, Investing, Brokerage, …
Manage your own investments (stocks, ETFs, mutual funds, CDs, and more), with help from our free resources. With a Fidelity Roth IRA, you get the flexibility to save for retirement, while …