Financial Time Series Forecasting

Advertisement



  financial time series forecasting: Analysis of Financial Time Series Ruey S. Tsay, 2010-10-26 This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
  financial time series forecasting: Modelling Financial Time Series Stephen J. Taylor, 2008 This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.
  financial time series forecasting: Modeling Financial Time Series with S-PLUS Eric Zivot, Jiahui Wang, 2013-11-11 The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the 2000 Outstanding Scholars of the 21st Century by International Biographical Centre.
  financial time series forecasting: Handbook of Financial Time Series Torben Gustav Andersen, Richard A. Davis, Jens-Peter Kreiß, Thomas V. Mikosch, 2009-04-21 The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
  financial time series forecasting: Essentials of Time Series for Financial Applications Massimo Guidolin, Manuela Pedio, 2018-05-29 Essentials of Time Series for Financial Applications serves as an agile reference for upper level students and practitioners who desire a formal, easy-to-follow introduction to the most important time series methods applied in financial applications (pricing, asset management, quant strategies, and risk management). Real-life data and examples developed with EViews illustrate the links between the formal apparatus and the applications. The examples either directly exploit the tools that EViews makes available or use programs that by employing EViews implement specific topics or techniques. The book balances a formal framework with as few proofs as possible against many examples that support its central ideas. Boxes are used throughout to remind readers of technical aspects and definitions and to present examples in a compact fashion, with full details (workout files) available in an on-line appendix. The more advanced chapters provide discussion sections that refer to more advanced textbooks or detailed proofs. - Provides practical, hands-on examples in time-series econometrics - Presents a more application-oriented, less technical book on financial econometrics - Offers rigorous coverage, including technical aspects and references for the proofs, despite being an introduction - Features examples worked out in EViews (9 or higher)
  financial time series forecasting: Analysis of Financial Time Series Ruey S. Tsay, 2001-11-01 Fundamental topics and new methods in time series analysis Analysis of Financial Time Series provides a comprehensive and systematic introduction to financial econometric models and their application to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: analysis and application of univariate financial time series; the return series of multiple assets; and Bayesian inference in finance methods. Timely topics and recent results include: Value at Risk (VaR) High-frequency financial data analysis Markov Chain Monte Carlo (MCMC) methods Derivative pricing using jump diffusion with closed-form formulas VaR calculation using extreme value theory based on a non-homogeneous two-dimensional Poisson process Multivariate volatility models with time-varying correlations Ideal as a fundamental introduction to time series for MBA students or as a reference for researchers and practitioners in business and finance, Analysis of Financial Time Series offers an in-depth and up-to-date account of these vital methods.
  financial time series forecasting: Time Series Ngai Hang Chan, 2004-04-05 Elements of Financial Time Series fills a gap in the market in the area of financial time series analysis by giving both conceptual and practical illustrations. Examples and discussions in the later chapters of the book make recent developments in time series more accessible. Examples from finance are maximized as much as possible throughout the book. * Full set of exercises is displayed at the end of each chapter. * First seven chapters cover standard topics in time series at a high-intensity level. * Recent and timely developments in nonstandard time series techniques are illustrated with real finance examples in detail. * Examples are systemically illustrated with S-plus with codes and data available on an associated Web site.
  financial time series forecasting: Analysis of Financial Time Series Ruey S. Tsay, 2005-09-15 Provides statistical tools and techniques needed to understandtoday's financial markets The Second Edition of this critically acclaimed text provides acomprehensive and systematic introduction to financial econometricmodels and their applications in modeling and predicting financialtime series data. This latest edition continues to emphasizeempirical financial data and focuses on real-world examples.Following this approach, readers will master key aspects offinancial time series, including volatility modeling, neuralnetwork applications, market microstructure and high-frequencyfinancial data, continuous-time models and Ito's Lemma, Value atRisk, multiple returns analysis, financial factor models, andeconometric modeling via computation-intensive methods. The author begins with the basic characteristics of financialtime series data, setting the foundation for the three maintopics: Analysis and application of univariate financial timeseries Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text,including the addition of S-Plus® commands and illustrations.Exercises have been thoroughly updated and expanded and include themost current data, providing readers with more opportunities to putthe models and methods into practice. Among the new material addedto the text, readers will find: Consistent covariance estimation under heteroscedasticity andserial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing adeeper understanding of financial markets through firsthandexperience in working with financial data. This is an idealtextbook for MBA students as well as a reference for researchersand professionals in business and finance.
  financial time series forecasting: Time Series in Economics and Finance Tomas Cipra, 2020-08-31 This book presents the principles and methods for the practical analysis and prediction of economic and financial time series. It covers decomposition methods, autocorrelation methods for univariate time series, volatility and duration modeling for financial time series, and multivariate time series methods, such as cointegration and recursive state space modeling. It also includes numerous practical examples to demonstrate the theory using real-world data, as well as exercises at the end of each chapter to aid understanding. This book serves as a reference text for researchers, students and practitioners interested in time series, and can also be used for university courses on econometrics or computational finance.
  financial time series forecasting: Introduction to Financial Forecasting in Investment Analysis John B. Guerard, Jr., 2013-01-04 Forecasting—the art and science of predicting future outcomes—has become a crucial skill in business and economic analysis. This volume introduces the reader to the tools, methods, and techniques of forecasting, specifically as they apply to financial and investing decisions. With an emphasis on earnings per share (eps), the author presents a data-oriented text on financial forecasting, understanding financial data, assessing firm financial strategies (such as share buybacks and R&D spending), creating efficient portfolios, and hedging stock portfolios with financial futures. The opening chapters explain how to understand economic fluctuations and how the stock market leads the general economic trend; introduce the concept of portfolio construction and how movements in the economy influence stock price movements; and introduce the reader to the forecasting process, including exponential smoothing and time series model estimations. Subsequent chapters examine the composite index of leading economic indicators (LEI); review financial statement analysis and mean-variance efficient portfolios; and assess the effectiveness of analysts’ earnings forecasts. Using data from such firms as Intel, General Electric, and Hitachi, Guerard demonstrates how forecasting tools can be applied to understand the business cycle, evaluate market risk, and demonstrate the impact of global stock selection modeling and portfolio construction.
  financial time series forecasting: Forecasting Financial Time Series Using Model Averaging Francesco Ravazzolo, 2007 Believing in a single model may be dangerous, and addressing model uncertainty by averaging different models in making forecasts may be very beneficial. In this thesis we focus on forecasting financial time series using model averaging schemes as a way to produce optimal forecasts. We derive and discuss in simulation exercises and empirical applications model averaging techniques that can reproduce stylized facts of financial time series, such as low predictability and time-varying patterns. We emphasize that model averaging is not a magic methodology which solves a priori problems of poorly forecasting. Averaging techniques have an essential requirement: individual models have to fit data. In the first section we provide a general outline of the thesis and its contributions to previ ous research. In Chapter 2 we focus on the use of time varying model weight combinations. In Chapter 3, we extend the analysis in the previous chapter to a new Bayesian averaging scheme that models structural instability carefully. In Chapter 4 we focus on forecasting the term structure of U.S. interest rates. In Chapter 5 we attempt to shed more light on forecasting performance of stochastic day-ahead price models. We examine six stochastic price models to forecast day-ahead prices of the two most active power exchanges in the world: the Nordic Power Exchange and the Amsterdam Power Exchange. Three of these forecasting models include weather forecasts. To sum up, the research finds an increase of forecasting power of financial time series when parameter uncertainty, model uncertainty and optimal decision making are included.
  financial time series forecasting: Neural Network Time Series E. Michael Azoff, 1994-09-27 Comprehensively specified benchmarks are provided (including weight values), drawn from time series examples in chaos theory and financial futures. The book covers data preprocessing, random walk theory, trading systems and risk analysis. It also provides a literature review, a tutorial on backpropagation, and a chapter on further reading and software.
  financial time series forecasting: Financial Risk Forecasting Jon Danielsson, 2011-04-20 Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.
  financial time series forecasting: The Econometric Modelling of Financial Time Series Terence C. Mills, Raphael N. Markellos, 2008-03-20 Terence Mills' best-selling graduate textbook provides detailed coverage of research techniques and findings relating to the empirical analysis of financial markets. In its previous editions it has become required reading for many graduate courses on the econometrics of financial modelling. This third edition, co-authored with Raphael Markellos, contains a wealth of material reflecting the developments of the last decade. Particular attention is paid to the wide range of nonlinear models that are used to analyse financial data observed at high frequencies and to the long memory characteristics found in financial time series. The central material on unit root processes and the modelling of trends and structural breaks has been substantially expanded into a chapter of its own. There is also an extended discussion of the treatment of volatility, accompanied by a new chapter on nonlinearity and its testing.
  financial time series forecasting: Innovative Systems for Intelligent Health Informatics Faisal Saeed, Fathey Mohammed, Abdulaziz Al-Nahari, 2021-05-05 This book presents the papers included in the proceedings of the 5th International Conference of Reliable Information and Communication Technology 2020 (IRICT 2020) that was held virtually on December 21–22, 2020. The main theme of the book is “Innovative Systems for Intelligent Health Informatics”. A total of 140 papers were submitted to the conference, but only 111 papers were published in this book. The book presents several hot research topics which include health informatics, bioinformatics, information retrieval, artificial intelligence, soft computing, data science, big data analytics, Internet of things (IoT), intelligent communication systems, information security, information systems, and software engineering.
  financial time series forecasting: Financial Forecasting, Analysis, and Modelling Michael Samonas, 2015-01-20 Risk analysis has become critical to modern financial planning Financial Forecasting, Analysis and Modelling provides a complete framework of long-term financial forecasts in a practical and accessible way, helping finance professionals include uncertainty in their planning and budgeting process. With thorough coverage of financial statement simulation models and clear, concise implementation instruction, this book guides readers step-by-step through the entire projection plan development process. Readers learn the tools, techniques, and special considerations that increase accuracy and smooth the workflow, and develop a more robust analysis process that improves financial strategy. The companion website provides a complete operational model that can be customised to develop financial projections or a range of other key financial measures, giving readers an immediately-applicable tool to facilitate effective decision-making. In the aftermath of the recent financial crisis, the need for experienced financial modelling professionals has steadily increased as organisations rush to adjust to economic volatility and uncertainty. This book provides the deeper level of understanding needed to develop stronger financial planning, with techniques tailored to real-life situations. Develop long-term projection plans using Excel Use appropriate models to develop a more proactive strategy Apply risk and uncertainty projections more accurately Master the Excel Scenario Manager, Sensitivity Analysis, Monte Carlo Simulation, and more Risk plays a larger role in financial planning than ever before, and possible outcomes must be measured before decisions are made. Uncertainty has become a critical component in financial planning, and accuracy demands it be used appropriately. With special focus on uncertainty in modelling and planning, Financial Forecasting, Analysis and Modelling is a comprehensive guide to the mechanics of modern finance.
  financial time series forecasting: Multivariate Time Series Analysis Ruey S. Tsay, 2013-11-11 An accessible guide to the multivariate time series tools used in numerous real-world applications Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential and prominent experts on the topic of time series. Through a fundamental balance of theory and methodology, the book supplies readers with a comprehensible approach to financial econometric models and their applications to real-world empirical research. Differing from the traditional approach to multivariate time series, the book focuses on reader comprehension by emphasizing structural specification, which results in simplified parsimonious VAR MA modeling. Multivariate Time Series Analysis: With R and Financial Applications utilizes the freely available R software package to explore complex data and illustrate related computation and analyses. Featuring the techniques and methodology of multivariate linear time series, stationary VAR models, VAR MA time series and models, unitroot process, factor models, and factor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce the presented content • User-friendly R subroutines and research presented throughout to demonstrate modern applications • Numerous datasets and subroutines to provide readers with a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbook for graduate-level courses on time series and quantitative finance and upper-undergraduate level statistics courses in time series. The book is also an indispensable reference for researchers and practitioners in business, finance, and econometrics.
  financial time series forecasting: Introduction to Time Series and Forecasting Peter J. Brockwell, Richard A. Davis, 2013-03-14 Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
  financial time series forecasting: Time Series Models for Business and Economic Forecasting Philip Hans Franses, Dick van Dijk, Anne Opschoor, 2014-04-24 With a new author team contributing decades of practical experience, this fully updated and thoroughly classroom-tested second edition textbook prepares students and practitioners to create effective forecasting models and master the techniques of time series analysis. Taking a practical and example-driven approach, this textbook summarises the most critical decisions, techniques and steps involved in creating forecasting models for business and economics. Students are led through the process with an entirely new set of carefully developed theoretical and practical exercises. Chapters examine the key features of economic time series, univariate time series analysis, trends, seasonality, aberrant observations, conditional heteroskedasticity and ARCH models, non-linearity and multivariate time series, making this a complete practical guide. Downloadable datasets are available online.
  financial time series forecasting: Forecasting: principles and practice Rob J Hyndman, George Athanasopoulos, 2018-05-08 Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
  financial time series forecasting: Time Series Analysis and Adjustment Haim Y Bleikh, Professor Warren L Young, 2014-07-28 In Time Series Analysis and Adjustment the authors explain how the last four decades have brought dramatic changes in the way researchers analyze economic and financial data on behalf of economic and financial institutions and provide statistics to whomsoever requires them. Such analysis has long involved what is known as econometrics, but time series analysis is a different approach driven more by data than economic theory and focused on modelling. An understanding of time series and the application and understanding of related time series adjustment procedures is essential in areas such as risk management, business cycle analysis, and forecasting. Dealing with economic data involves grappling with things like varying numbers of working and trading days in different months and movable national holidays. Special attention has to be given to such things. However, the main problem in time series analysis is randomness. In real-life, data patterns are usually unclear, and the challenge is to uncover hidden patterns in the data and then to generate accurate forecasts. The case studies in this book demonstrate that time series adjustment methods can be efficaciously applied and utilized, for both analysis and forecasting, but they must be used in the context of reasoned statistical and economic judgment. The authors believe this is the first published study to really deal with this issue of context.
  financial time series forecasting: Applications of Computing and Communication Technologies Ganesh Chandra Deka, Omprakash Kaiwartya, Pooja Vashisth, Priyanka Rathee, 2018-08-29 This book (CCIS 899) constitutes the refereed proceedings of the First International Conference on Applications of Computing and Communication Technologies, ICACCT 2018, held in Delhi, India, in March 2018. The 30 full papers were carefully reviewed and selected from 109 submissions. The papers are organized in topical sections on communication and system technologies, computing and network technologies, application and services.
  financial time series forecasting: Time-Series Forecasting Chris Chatfield, 2000-10-25 From the author of the bestselling Analysis of Time Series, Time-Series Forecasting offers a comprehensive, up-to-date review of forecasting methods. It provides a summary of time-series modelling procedures, followed by a brief catalogue of many different time-series forecasting methods, ranging from ad-hoc methods through ARIMA and state-space
  financial time series forecasting: Recent Advances in Time Series Forecasting Dinesh C.S. Bisht, Mangey Ram, 2021-09-08 Future predictions are always a topic of interest. Precise estimates are crucial in many activities as forecasting errors can lead to big financial loss. The sequential analysis of data and information gathered from past to present is call time series analysis. This book covers the recent advancements in time series forecasting. The book includes theoretical as well as recent applications of time series analysis. It focuses on the recent techniques used, discusses a combination of methodology and applications, presents traditional and advanced tools, new applications, and identifies the gaps in knowledge in engineering applications. This book is aimed at scientists, researchers, postgraduate students and engineers in the areas of supply chain management, production, inventory planning, and statistical quality control.
  financial time series forecasting: Introduction to Modern Time Series Analysis Gebhard Kirchgässner, Jürgen Wolters, 2008-08-27 This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It contains the most important approaches to analyze time series which may be stationary or nonstationary.
  financial time series forecasting: Time Series Forecasting in Python Marco Peixeiro, 2022-11-15 Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In Time Series Forecasting in Python you will learn how to: Recognize a time series forecasting problem and build a performant predictive model Create univariate forecasting models that account for seasonal effects and external variables Build multivariate forecasting models to predict many time series at once Leverage large datasets by using deep learning for forecasting time series Automate the forecasting process Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You’ll explore interesting real-world datasets like Google’s daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. About the technology You can predict the future—with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before. About the book Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you’ll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you’ll soon be ready to build your own accurate, insightful forecasts. What's inside Create models for seasonal effects and external variables Multivariate forecasting models to predict multiple time series Deep learning for large datasets Automate the forecasting process About the reader For data scientists familiar with Python and TensorFlow. About the author Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada’s largest banks. Table of Contents PART 1 TIME WAITS FOR NO ONE 1 Understanding time series forecasting 2 A naive prediction of the future 3 Going on a random walk PART 2 FORECASTING WITH STATISTICAL MODELS 4 Modeling a moving average process 5 Modeling an autoregressive process 6 Modeling complex time series 7 Forecasting non-stationary time series 8 Accounting for seasonality 9 Adding external variables to our model 10 Forecasting multiple time series 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING 12 Introducing deep learning for time series forecasting 13 Data windowing and creating baselines for deep learning 14 Baby steps with deep learning 15 Remembering the past with LSTM 16 Filtering a time series with CNN 17 Using predictions to make more predictions 18 Capstone: Forecasting the electric power consumption of a household PART 4 AUTOMATING FORECASTING AT SCALE 19 Automating time series forecasting with Prophet 20 Capstone: Forecasting the monthly average retail price of steak in Canada 21 Going above and beyond
  financial time series forecasting: Technical Analysis And Financial Asset Forecasting: From Simple Tools To Advanced Techniques Raymond Hon-fu Chan, Alan Wing-keung Wong, Spike Tsz-ho Lee, 2014-08-19 Technical analysis is defined as the tracking and prediction of asset price movements using charts and graphs in combination with various mathematical and statistical methods. More precisely, it is the quantitative criteria used in predicting the relative strength of buying and selling forces within a market to determine what to buy, what to sell, and when to execute trades. This book introduces simple technical analysis tools like moving averages and Bollinger bands, and also advanced techniques such as wavelets and empirical mode decomposition. It first discusses some traditional tools in technical analysis, such as trend, trend Line, trend channel, Gann's Theory, moving averages, and Bollinger bands. It then introduces a recent indicator developed for stock market and two recent techniques used in the technical analysis field: wavelets and the empirical mode decomposition in financial time series. The book also discusses the theory to test the performance of the indicators and introduces the MATLAB Financial Toolbox, some of the functions/codes of which are used in our numerical experiments.
  financial time series forecasting: Intelligent Systems and Financial Forecasting Jason Kingdon, 2012-12-06 A fundamental objective of Artificial Intelligence (AI) is the creation of in telligent computer programs. In more modest terms AI is simply con cerned with expanding the repertoire of computer applications into new domains and to new levels of efficiency. The motivation for this effort comes from many sources. At a practical level there is always a demand for achieving things in more efficient ways. Equally, there is the technical challenge of building programs that allow a machine to do something a machine has never done before. Both of these desires are contained within AI and both provide the inspirational force behind its development. In terms of satisfying both of these desires there can be no better example than machine learning. Machines that can learn have an in-built effi ciency. The same software can be applied in many applications and in many circumstances. The machine can adapt its behaviour so as to meet the demands of new, or changing, environments without the need for costly re-programming. In addition, a machine that can learn can be ap plied in new domains with the genuine potential for innovation. In this sense a machine that can learn can be applied in areas where little is known about possible causal relationships, and even in circumstances where causal relationships are judged not to exist. This last aspect is of major significance when considering machine learning as applied to fi nancial forecasting.
  financial time series forecasting: Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) Cheng Few Lee, John C Lee, 2020-07-30 This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
  financial time series forecasting: Non-Linear Time Series Models in Empirical Finance Philip Hans Franses, Dick van Dijk, 2000-07-27 This 2000 volume reviews non-linear time series models, and their applications to financial markets.
  financial time series forecasting: An Introduction to Analysis of Financial Data with R Ruey S. Tsay, 2014-08-21 A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-world empirical research. The author supplies a hands-on introduction to the analysis of financial data using the freely available R software package and case studies to illustrate actual implementations of the discussed methods. The book begins with the basics of financial data, discussing their summary statistics and related visualization methods. Subsequent chapters explore basic time series analysis and simple econometric models for business, finance, and economics as well as related topics including: Linear time series analysis, with coverage of exponential smoothing for forecasting and methods for model comparison Different approaches to calculating asset volatility and various volatility models High-frequency financial data and simple models for price changes, trading intensity, and realized volatility Quantitative methods for risk management, including value at risk and conditional value at risk Econometric and statistical methods for risk assessment based on extreme value theory and quantile regression Throughout the book, the visual nature of the topic is showcased through graphical representations in R, and two detailed case studies demonstrate the relevance of statistics in finance. A related website features additional data sets and R scripts so readers can create their own simulations and test their comprehension of the presented techniques. An Introduction to Analysis of Financial Data with R is an excellent book for introductory courses on time series and business statistics at the upper-undergraduate and graduate level. The book is also an excellent resource for researchers and practitioners in the fields of business, finance, and economics who would like to enhance their understanding of financial data and today's financial markets.
  financial time series forecasting: Time Series Analysis James D. Hamilton, 2020-09-01 An authoritative, self-contained overview of time series analysis for students and researchers The past decade has brought dramatic changes in the way that researchers analyze economic and financial time series. This textbook synthesizes these advances and makes them accessible to first-year graduate students. James Hamilton provides comprehensive treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems—including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter—in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results. This invaluable book starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.
  financial time series forecasting: Econometric Forecasting and High-frequency Data Analysis Roberto S. Mariano, Yiu Kuen Tse, 2008 This important book consists of surveys of high-frequency financial data analysis and econometric forecasting, written by pioneers in these areas including Nobel laureate Lawrence Klein. Some of the chapters were presented as tutorials to an audience in the Econometric Forecasting and High-Frequency Data Analysis Workshop at the Institute for Mathematical Science, National University of Singapore in May 2006. They will be of interest to researchers working in macroeconometrics as well as financial econometrics. Moreover, readers will find these chapters useful as a guide to the literature as well as suggestions for future research. Sample Chapter(s). Foreword (32 KB). Chapter 1: Forecast Uncertainty, Its Representation and Evaluation* (97 KB). Contents: Forecasting Uncertainty, Its Representation and Evaluation (K F Wallis); The University of Pennsylvania Models for High-Frequency Macroeconomic Modeling (L R Klein & S Ozmucur); Forecasting Seasonal Time Series (P H Franses); Car and Affine Processes (C Gourieroux); Multivariate Time Series Analysis and Forecasting (M Deistler). Readership: Professionals and researchers in econometric forecasting and financial data analysis.
  financial time series forecasting: Forecasting in Financial and Sports Gambling Markets William S. Mallios, 2011-03-29 A guide to modeling analyses for financial and sports gambling markets, with a focus on major current events Addressing the highly competitive and risky environments of current-day financial and sports gambling markets, Forecasting in Financial and Sports Gambling Markets details the dynamic process of constructing effective forecasting rules based on both graphical patterns and adaptive drift modeling (ADM) of cointegrated time series. The book uniquely identifies periods of inefficiency that these markets oscillate through and develops profitable forecasting models that capitalize on irrational behavior exhibited during these periods. Providing valuable insights based on the author's firsthand experience, this book utilizes simple, yet unique, candlestick charts to identify optimal time periods in financial markets and optimal games in sports gambling markets for which forecasting models are likely to provide profitable trading and wagering outcomes. Featuring detailed examples that utilize actual data, the book addresses various topics that promote financial and mathematical literacy, including: Higher order ARMA processes in financial markets The effects of gambling shocks in sports gambling markets Cointegrated time series with model drift Modeling volatility Throughout the book, interesting real-world applications are presented, and numerous graphical procedures illustrate favorable trading and betting opportunities, which are accompanied by mathematical developments in adaptive model forecasting and risk assessment. A related web site features updated reviews in sports and financial forecasting and various links on the topic. Forecasting in Financial and Sports Gambling Markets is an excellent book for courses on financial economics and time series analysis at the upper-undergraduate and graduate levels. The book is also a valuable reference for researchers and practitioners working in the areas of retail markets, quant funds, hedge funds, and time series. Also, anyone with a general interest in learning about how to profit from the financial and sports gambling markets will find this book to be a valuable resource.
  financial time series forecasting: Practical Time Series Analysis Aileen Nielsen, 2019-09-20 Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
  financial time series forecasting: Machine Learning for Asset Management Emmanuel Jurczenko, 2020-10-06 This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management.
  financial time series forecasting: Singular Spectrum Analysis for Time Series Nina Golyandina, Anatoly Zhigljavsky, 2020-11-23 This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly increasing number of novel applications of SSA is a consequence of the new fundamental research on SSA and the recent progress in computing and software engineering which made it possible to use SSA for very complicated tasks that were unthinkable twenty years ago. In this book, the methodology of SSA is concisely but at the same time comprehensively explained by two prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on the place of SSA among other methods and new sections on multivariate and multidimensional extensions of SSA.
  financial time series forecasting: The Econometric Modelling of Financial Time Series Terence C. Mills, Raphael N. Markellos, 2008-03-20 Terence Mills' best-selling graduate textbook provides detailed coverage of research techniques and findings relating to the empirical analysis of financial markets. In its previous editions it has become required reading for many graduate courses on the econometrics of financial modelling. This third edition, co-authored with Raphael Markellos, contains a wealth of material reflecting the developments of the last decade. Particular attention is paid to the wide range of nonlinear models that are used to analyse financial data observed at high frequencies and to the long memory characteristics found in financial time series. The central material on unit root processes and the modelling of trends and structural breaks has been substantially expanded into a chapter of its own. There is also an extended discussion of the treatment of volatility, accompanied by a new chapter on nonlinearity and its testing.
  financial time series forecasting: Time Series Analysis and Forecasting by Example Søren Bisgaard, Murat Kulahci, 2011-08-24 An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in detail and explain the relevant theory while also focusing on the interpretation of results in data analysis. Following a discussion of why autocorrelation is often observed when data is collected in time, subsequent chapters explore related topics, including: Graphical tools in time series analysis Procedures for developing stationary, non-stationary, and seasonal models How to choose the best time series model Constant term and cancellation of terms in ARIMA models Forecasting using transfer function-noise models The final chapter is dedicated to key topics such as spurious relationships, autocorrelation in regression, and multiple time series. Throughout the book, real-world examples illustrate step-by-step procedures and instructions using statistical software packages such as SAS, JMP, Minitab, SCA, and R. A related Web site features PowerPoint slides to accompany each chapter as well as the book's data sets. With its extensive use of graphics and examples to explain key concepts, Time Series Analysis and Forecasting by Example is an excellent book for courses on time series analysis at the upper-undergraduate and graduate levels. it also serves as a valuable resource for practitioners and researchers who carry out data and time series analysis in the fields of engineering, business, and economics.
  financial time series forecasting: Fireworks Algorithm Ying Tan, 2015-10-11 This book is devoted to the state-of-the-art in all aspects of fireworks algorithm (FWA), with particular emphasis on the efficient improved versions of FWA. It describes the most substantial theoretical analysis including basic principle and implementation of FWA and modeling and theoretical analysis of FWA. It covers exhaustively the key recent significant research into the improvements of FWA so far. In addition, the book describes a few advanced topics in the research of FWA, including multi-objective optimization (MOO), discrete FWA (DFWA) for combinatorial optimization, and GPU-based FWA for parallel implementation. In sequels, several successful applications of FWA on non-negative matrix factorization (NMF), text clustering, pattern recognition, and seismic inversion problem, and swarm robotics, are illustrated in details, which might shed new light on more real-world applications in future. Addressing a multidisciplinary topic, it will appeal to researchers and professionals in the areas of metahuristics, swarm intelligence, evolutionary computation, complex optimization solving, etc.
Yahoo Finance - Stock Market Live, Quotes, Business & Finance …
Encouraging economic data has boosted market hopes for Fed rate cuts, but policymakers remain cautious. Trump's tariff timeout is almost up. Here's what could happen next.

Stock Market Prices, Real-time Quotes & Business News - Google
Google Finance provides real-time market quotes, international exchanges, up-to-date financial news, and analytics to help you make more informed trading and investment decisions.

Home Page - APG Federal Credit Union
APGFCU offers checking, savings, loans, and business banking services in Maryland to help you achieve your financial goals.

Stock Markets, Business News, Financials, Earnings - CNBC
Global Business and Financial News, Stock Quotes, and Market Data and Analysis. CNBC is the world leader in business news and real-time financial market coverage. Find fast, actionable...

MarketWatch: Stock Market News - Financial News
Americans spend $10 billion more on Mother’s Day than Father’s Day. What’s going on? So your company offered you a buyout. Should you take it? Here’s what to know. Hate paying so much …

Home - First Financial Federal Credit Union
Since 1953, First Financial Federal Credit Union has been strengthening the community through volunteering, donations, and financial education. Banking made easy. We’re your partner in …

Magnum Advisors - CPA Financial Services
Trust Magnum Advisors for expert financial services. Our CPAs offer personal and business tax solutions for connection, clarity, and confidence.

Financial Times
Planning your retirement? ChatGPT can help with that.

Branch Locations Near You - OneMain Financial
Find the closest OneMain Financial branch near you to talk to a real person. Get branch hours, directions, and phone numbers for our over 1,500 locations today.

Fidelity Investments - Retirement Plans, Investing, Brokerage, …
Manage your own investments (stocks, ETFs, mutual funds, CDs, and more), with help from our free resources. With a Fidelity Roth IRA, you get the flexibility to save for retirement, while …

Yahoo Finance - Stock Market Live, Quotes, Business & Finance …
Encouraging economic data has boosted market hopes for Fed rate cuts, but policymakers remain cautious. Trump's tariff timeout is almost up. Here's what could happen next.

Stock Market Prices, Real-time Quotes & Business News - Google
Google Finance provides real-time market quotes, international exchanges, up-to-date financial news, and analytics to help you make more informed trading and investment decisions.

Home Page - APG Federal Credit Union
APGFCU offers checking, savings, loans, and business banking services in Maryland to help you achieve your financial goals.

Stock Markets, Business News, Financials, Earnings - CNBC
Global Business and Financial News, Stock Quotes, and Market Data and Analysis. CNBC is the world leader in business news and real-time financial market coverage. Find fast, actionable...

MarketWatch: Stock Market News - Financial News
Americans spend $10 billion more on Mother’s Day than Father’s Day. What’s going on? So your company offered you a buyout. Should you take it? Here’s what to know. Hate paying so much …

Home - First Financial Federal Credit Union
Since 1953, First Financial Federal Credit Union has been strengthening the community through volunteering, donations, and financial education. Banking made easy. We’re your partner in …

Magnum Advisors - CPA Financial Services
Trust Magnum Advisors for expert financial services. Our CPAs offer personal and business tax solutions for connection, clarity, and confidence.

Financial Times
Planning your retirement? ChatGPT can help with that.

Branch Locations Near You - OneMain Financial
Find the closest OneMain Financial branch near you to talk to a real person. Get branch hours, directions, and phone numbers for our over 1,500 locations today.

Fidelity Investments - Retirement Plans, Investing, Brokerage, …
Manage your own investments (stocks, ETFs, mutual funds, CDs, and more), with help from our free resources. With a Fidelity Roth IRA, you get the flexibility to save for retirement, while …