Advertisement
docker for data engineering: Docker for Data Science Joshua Cook, 2017-08-23 Learn Docker infrastructure as code technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller. It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable. As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies—Python, Jupyter, Postgres—as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms. What You'll Learn Master interactive development using the Jupyter platform Run and build Docker containers from scratch and from publicly available open-source images Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type Deploy a multi-service data science application across a cloud-based system Who This Book Is For Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers |
docker for data engineering: Data Engineering with Databricks Cookbook Pulkit Chadha, 2024-05-31 Work through 70 recipes for implementing reliable data pipelines with Apache Spark, optimally store and process structured and unstructured data in Delta Lake, and use Databricks to orchestrate and govern your data Key Features Learn data ingestion, data transformation, and data management techniques using Apache Spark and Delta Lake Gain practical guidance on using Delta Lake tables and orchestrating data pipelines Implement reliable DataOps and DevOps practices, and enforce data governance policies on Databricks Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWritten by a Senior Solutions Architect at Databricks, Data Engineering with Databricks Cookbook will show you how to effectively use Apache Spark, Delta Lake, and Databricks for data engineering, starting with comprehensive introduction to data ingestion and loading with Apache Spark. What makes this book unique is its recipe-based approach, which will help you put your knowledge to use straight away and tackle common problems. You’ll be introduced to various data manipulation and data transformation solutions that can be applied to data, find out how to manage and optimize Delta tables, and get to grips with ingesting and processing streaming data. The book will also show you how to improve the performance problems of Apache Spark apps and Delta Lake. Advanced recipes later in the book will teach you how to use Databricks to implement DataOps and DevOps practices, as well as how to orchestrate and schedule data pipelines using Databricks Workflows. You’ll also go through the full process of setup and configuration of the Unity Catalog for data governance. By the end of this book, you’ll be well-versed in building reliable and scalable data pipelines using modern data engineering technologies.What you will learn Perform data loading, ingestion, and processing with Apache Spark Discover data transformation techniques and custom user-defined functions (UDFs) in Apache Spark Manage and optimize Delta tables with Apache Spark and Delta Lake APIs Use Spark Structured Streaming for real-time data processing Optimize Apache Spark application and Delta table query performance Implement DataOps and DevOps practices on Databricks Orchestrate data pipelines with Delta Live Tables and Databricks Workflows Implement data governance policies with Unity Catalog Who this book is for This book is for data engineers, data scientists, and data practitioners who want to learn how to build efficient and scalable data pipelines using Apache Spark, Delta Lake, and Databricks. To get the most out of this book, you should have basic knowledge of data architecture, SQL, and Python programming. |
docker for data engineering: Data Engineering and Applications Jitendra Agrawal, |
docker for data engineering: Data Engineering Best Practices Richard J. Schiller, David Larochelle, 2024-10-11 Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines. |
docker for data engineering: Data Engineering with Scala and Spark Eric Tome, Rupam Bhattacharjee, David Radford, 2024-01-31 Take your data engineering skills to the next level by learning how to utilize Scala and functional programming to create continuous and scheduled pipelines that ingest, transform, and aggregate data Key Features Transform data into a clean and trusted source of information for your organization using Scala Build streaming and batch-processing pipelines with step-by-step explanations Implement and orchestrate your pipelines by following CI/CD best practices and test-driven development (TDD) Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost data engineers know that performance issues in a distributed computing environment can easily lead to issues impacting the overall efficiency and effectiveness of data engineering tasks. While Python remains a popular choice for data engineering due to its ease of use, Scala shines in scenarios where the performance of distributed data processing is paramount. This book will teach you how to leverage the Scala programming language on the Spark framework and use the latest cloud technologies to build continuous and triggered data pipelines. You’ll do this by setting up a data engineering environment for local development and scalable distributed cloud deployments using data engineering best practices, test-driven development, and CI/CD. You’ll also get to grips with DataFrame API, Dataset API, and Spark SQL API and its use. Data profiling and quality in Scala will also be covered, alongside techniques for orchestrating and performance tuning your end-to-end pipelines to deliver data to your end users. By the end of this book, you will be able to build streaming and batch data pipelines using Scala while following software engineering best practices.What you will learn Set up your development environment to build pipelines in Scala Get to grips with polymorphic functions, type parameterization, and Scala implicits Use Spark DataFrames, Datasets, and Spark SQL with Scala Read and write data to object stores Profile and clean your data using Deequ Performance tune your data pipelines using Scala Who this book is for This book is for data engineers who have experience in working with data and want to understand how to transform raw data into a clean, trusted, and valuable source of information for their organization using Scala and the latest cloud technologies. |
docker for data engineering: Data Engineering with Apache Spark, Delta Lake, and Lakehouse Manoj Kukreja, Danil Zburivsky, 2021-10-22 Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected. |
docker for data engineering: Critical Approaches to Data Engineering Systems and Analysis Bora, Abhijit, Changmai, Papul, Maharana, Mrutyunjay, 2024-04-05 The current data engineering demands more than theoretical understanding; it necessitates a practical, nuanced approach. Data engineering involves the intricate orchestration of systems and architectural frameworks for collecting, storing, processing, and analyzing vast datasets. The challenge lies in ensuring this data is managed and harnessed effectively, fostering insightful knowledge and steering organizations toward data-driven decision-making. Critical Approaches to Data Engineering Systems and Analysis unveils the latent potential inherent in diverse data analysis and engineering techniques. It combines compelling perspectives, guidelines, and frameworks, applying statistical and mathematical models. As industries and research communities witness increasing demand for web-based systems, software modules, heuristic models, and survey analysis, the book emphasizes the critical methodologies associated with data verification, reliability, fault tolerance, and viability. |
docker for data engineering: Data Engineering with Google Cloud Platform Adi Wijaya, 2022-03-31 Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book. |
docker for data engineering: Financial Data Engineering Tamer Khraisha, 2024-10-09 Today, investment in financial technology and digital transformation is reshaping the financial landscape and generating many opportunities. Too often, however, engineers and professionals in financial institutions lack a practical and comprehensive understanding of the concepts, problems, techniques, and technologies necessary to build a modern, reliable, and scalable financial data infrastructure. This is where financial data engineering is needed. A data engineer developing a data infrastructure for a financial product possesses not only technical data engineering skills but also a solid understanding of financial domain-specific challenges, methodologies, data ecosystems, providers, formats, technological constraints, identifiers, entities, standards, regulatory requirements, and governance. This book offers a comprehensive, practical, domain-driven approach to financial data engineering, featuring real-world use cases, industry practices, and hands-on projects. You'll learn: The data engineering landscape in the financial sector Specific problems encountered in financial data engineering The structure, players, and particularities of the financial data domain Approaches to designing financial data identification and entity systems Financial data governance frameworks, concepts, and best practices The financial data engineering lifecycle from ingestion to production The varieties and main characteristics of financial data workflows How to build financial data pipelines using open source tools and APIs Tamer Khraisha, PhD, is a senior data engineer and scientific author with more than a decade of experience in the financial sector. |
docker for data engineering: Data Pipelines Pocket Reference James Densmore, 2021-02-10 Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting |
docker for data engineering: Data Engineering with AWS Cookbook Trâm Ngọc Phạm, Gonzalo Herreros González, Viquar Khan, Huda Nofal, 2024-11-29 Master AWS data engineering services and techniques for orchestrating pipelines, building layers, and managing migrations Key Features Get up to speed with the different AWS technologies for data engineering Learn the different aspects and considerations of building data lakes, such as security, storage, and operations Get hands on with key AWS services such as Glue, EMR, Redshift, QuickSight, and Athena for practical learning Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPerforming data engineering with Amazon Web Services (AWS) combines AWS's scalable infrastructure with robust data processing tools, enabling efficient data pipelines and analytics workflows. This comprehensive guide to AWS data engineering will teach you all you need to know about data lake management, pipeline orchestration, and serving layer construction. Through clear explanations and hands-on exercises, you’ll master essential AWS services such as Glue, EMR, Redshift, QuickSight, and Athena. Additionally, you’ll explore various data platform topics such as data governance, data quality, DevOps, CI/CD, planning and performing data migration, and creating Infrastructure as Code. As you progress, you will gain insights into how to enrich your platform and use various AWS cloud services such as AWS EventBridge, AWS DataZone, and AWS SCT and DMS to solve data platform challenges. Each recipe in this book is tailored to a daily challenge that a data engineer team faces while building a cloud platform. By the end of this book, you will be well-versed in AWS data engineering and have gained proficiency in key AWS services and data processing techniques. You will develop the necessary skills to tackle large-scale data challenges with confidence.What you will learn Define your centralized data lake solution, and secure and operate it at scale Identify the most suitable AWS solution for your specific needs Build data pipelines using multiple ETL technologies Discover how to handle data orchestration and governance Explore how to build a high-performing data serving layer Delve into DevOps and data quality best practices Migrate your data from on-premises to AWS Who this book is for If you're involved in designing, building, or overseeing data solutions on AWS, this book provides proven strategies for addressing challenges in large-scale data environments. Data engineers as well as big data professionals looking to enhance their understanding of AWS features for optimizing their workflow, even if they're new to the platform, will find value. Basic familiarity with AWS security (users and roles) and command shell is recommended. |
docker for data engineering: Cracking the Data Engineering Interview Kedeisha Bryan, Taamir Ransome, 2023-11-07 Get to grips with the fundamental concepts of data engineering, and solve mock interview questions while building a strong resume and a personal brand to attract the right employers Key Features Develop your own brand, projects, and portfolio with expert help to stand out in the interview round Get a quick refresher on core data engineering topics, such as Python, SQL, ETL, and data modeling Practice with 50 mock questions on SQL, Python, and more to ace the behavioral and technical rounds Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPreparing for a data engineering interview can often get overwhelming due to the abundance of tools and technologies, leaving you struggling to prioritize which ones to focus on. This hands-on guide provides you with the essential foundational and advanced knowledge needed to simplify your learning journey. The book begins by helping you gain a clear understanding of the nature of data engineering and how it differs from organization to organization. As you progress through the chapters, you’ll receive expert advice, practical tips, and real-world insights on everything from creating a resume and cover letter to networking and negotiating your salary. The chapters also offer refresher training on data engineering essentials, including data modeling, database architecture, ETL processes, data warehousing, cloud computing, big data, and machine learning. As you advance, you’ll gain a holistic view by exploring continuous integration/continuous development (CI/CD), data security, and privacy. Finally, the book will help you practice case studies, mock interviews, as well as behavioral questions. By the end of this book, you will have a clear understanding of what is required to succeed in an interview for a data engineering role.What you will learn Create maintainable and scalable code for unit testing Understand the fundamental concepts of core data engineering tasks Prepare with over 100 behavioral and technical interview questions Discover data engineer archetypes and how they can help you prepare for the interview Apply the essential concepts of Python and SQL in data engineering Build your personal brand to noticeably stand out as a candidate Who this book is for If you’re an aspiring data engineer looking for guidance on how to land, prepare for, and excel in data engineering interviews, this book is for you. Familiarity with the fundamentals of data engineering, such as data modeling, cloud warehouses, programming (python and SQL), building data pipelines, scheduling your workflows (Airflow), and APIs, is a prerequisite. |
docker for data engineering: A Practical Guide to Data Engineering Pedram Ariel Rostami, A Practical Guide to Machine Learning and AI: Part-I is an essential resource for anyone looking to dive into the world of artificial intelligence and machine learning. Whether you're a complete beginner or have some experience in the field, this book will equip you with the fundamental knowledge and hands-on skills needed to harness the power of these transformative technologies. In this comprehensive guide, you'll embark on an engaging journey that starts with the basics of data engineering. You'll gain a solid understanding of big data, the key roles involved, and how to leverage the versatile Python programming language for data-centric tasks. From mastering Python data types and control structures to exploring powerful libraries like NumPy and Pandas, you'll build a strong foundation to tackle more advanced concepts. As you progress, the book delves into the realm of exploratory data analysis (EDA), where you'll learn techniques to clean, transform, and extract insights from your data. This sets the stage for the heart of the book - machine learning. You'll explore both supervised and unsupervised learning, diving deep into regression, classification, clustering, and dimensionality reduction algorithms. Along the way, you'll encounter real-world examples and hands-on exercises to reinforce your understanding and apply what you've learned. But this book goes beyond just the technical aspects. It also addresses the ethical considerations surrounding machine learning, ensuring you develop a well-rounded perspective on the responsible use of these powerful tools. Whether your goal is to jumpstart a career in data science, enhance your existing skills, or simply satisfy your curiosity about the latest advancements in AI, A Practical Guide to Machine Learning and AI: Part-I is your comprehensive companion. Prepare to embark on an enriching journey that will equip you with the knowledge and skills to navigate the exciting frontiers of artificial intelligence and machine learning. |
docker for data engineering: Docker for Developers Richard Bullington-McGuire, Andrew K. Dennis, Michael Schwartz, 2020-09-14 Learn how to deploy and test Linux-based Docker containers with the help of real-world use cases Key FeaturesUnderstand how to make a deployment workflow run smoothly with Docker containersLearn Docker and DevOps concepts such as continuous integration and continuous deployment (CI/CD)Gain insights into using various Docker tools and librariesBook Description Docker is the de facto standard for containerizing apps, and with an increasing number of software projects migrating to containers, it is crucial for engineers and DevOps teams to understand how to build, deploy, and secure Docker environments effectively. Docker for Developers will help you understand Docker containers from scratch while taking you through best practices and showing you how to address security concerns. Starting with an introduction to Docker, you'll learn how to use containers and VirtualBox for development. You'll explore how containers work and develop projects within them after you've explored different ways to deploy and run containers. The book will also show you how to use Docker containers in production in both single-host set-ups and in clusters and deploy them using Jenkins, Kubernetes, and Spinnaker. As you advance, you'll get to grips with monitoring, securing, and scaling Docker using tools such as Prometheus and Grafana. Later, you'll be able to deploy Docker containers to a variety of environments, including the cloud-native Amazon Elastic Kubernetes Service (Amazon EKS), before finally delving into Docker security concepts and best practices. By the end of the Docker book, you'll be able to not only work in a container-driven environment confidently but also use Docker for both new and existing projects. What you will learnGet up to speed with creating containers and understand how they workPackage and deploy your containers to a variety of platformsWork with containers in the cloud and on the Kubernetes platformDeploy and then monitor the health and logs of running containersExplore best practices for working with containers from a security perspectiveBecome familiar with scanning containers and using third-party security tools and librariesWho this book is for If you're a software engineer new to containerization or a DevOps engineer responsible for deploying Docker containers in the cloud and building DevOps pipelines for container-based projects, you'll find this book useful. This Docker containers book is also a handy reference guide for anyone working with a Docker-based DevOps ecosystem or interested in understanding the security implications and best practices for working in container-driven environments. |
docker for data engineering: Data Pipelines with Apache Airflow Bas P. Harenslak, Julian de Ruiter, 2021-04-27 This book teaches you how to build and maintain effective data pipelines. Youll explore the most common usage patterns, including aggregating multiple data sources, connecting to and from data lakes, and cloud deployment. -- |
docker for data engineering: Data Science in Production Ben Weber, 2020 Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub. |
docker for data engineering: Data Engineering for AI/ML Pipelines Venkata Karthik Penikalapati, Mitesh Mangaonkar, 2024-10-18 DESCRIPTION Data engineering is the art of building and managing data pipelines that enable efficient data flow for AI/ML projects. This book serves as a comprehensive guide to data engineering for AI/ML systems, equipping you with the knowledge and skills to create robust and scalable data infrastructure. This book covers everything from foundational concepts to advanced techniques. It begins by introducing the role of data engineering in AI/ML, followed by exploring the lifecycle of data, from data generation and collection to storage and management. Readers will learn how to design robust data pipelines, transform data, and deploy AI/ML models effectively for real-world applications. The book also explains security, privacy, and compliance, ensuring responsible data management. Finally, it explores future trends, including automation, real-time data processing, and advanced architectures, providing a forward-looking perspective on the evolution of data engineering. By the end of this book, you will have a deep understanding of the principles and practices of data engineering for AI/ML. You will be able to design and implement efficient data pipelines, select appropriate technologies, ensure data quality and security, and leverage data for building successful AI/ML models. KEY FEATURES ● Comprehensive guide to building scalable AI/ML data engineering pipelines. ● Practical insights into data collection, storage, processing, and analysis. ● Emphasis on data security, privacy, and emerging trends in AI/ML. WHAT YOU WILL LEARN ● Architect scalable data solutions for AI/ML-driven applications. ● Design and implement efficient data pipelines for machine learning. ● Ensure data security and privacy in AI/ML systems. ● Leverage emerging technologies in data engineering for AI/ML. ● Optimize data transformation processes for enhanced model performance. WHO THIS BOOK IS FOR This book is ideal for software engineers, ML practitioners, IT professionals, and students wanting to master data pipelines for AI/ML. It is also valuable for developers and system architects aiming to expand their knowledge of data-driven technologies. TABLE OF CONTENTS 1. Introduction to Data Engineering for AI/ML 2. Lifecycle of AI/ML Data Engineering 3. Architecting Data Solutions for AI/ML 4. Technology Selection in AI/ML Data Engineering 5. Data Generation and Collection for AI/ML 6. Data Storage and Management in AI/ML 7. Data Ingestion and Preparation for ML 8. Transforming and Processing Data for AI/ML 9. Model Deployment and Data Serving 10. Security and Privacy in AI/ML Data Engineering 11. Emerging Trends and Future Direction |
docker for data engineering: Docker in Practice, Second Edition Ian Miell, Aidan Sayers, 2019-02-06 Summary Docker in Practice, Second Edition presents over 100 practical techniques, hand-picked to help you get the most out of Docker. Following a Problem/Solution/Discussion format, you'll walk through specific examples that you can use immediately, and you'll get expert guidance on techniques that you can apply to a whole range of scenarios. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Docker's simple idea-wrapping an application and its dependencies into a single deployable container-created a buzz in the software industry. Now, containers are essential to enterprise infrastructure, and Docker is the undisputed industry standard. So what do you do after you've mastered the basics? To really streamline your applications and transform your dev process, you need relevant examples and experts who can walk you through them. You need this book. About the Book Docker in Practice, Second Edition teaches you rock-solid, tested Docker techniques, such as replacing VMs, enabling microservices architecture, efficient network modeling, offline productivity, and establishing a container-driven continuous delivery process. Following a cookbook-style problem/solution format, you'll explore real-world use cases and learn how to apply the lessons to your own dev projects. What's inside Continuous integration and delivery The Kubernetes orchestration tool Streamlining your cloud workflow Docker in swarm mode Emerging best practices and techniques About the Reader Written for developers and engineers using Docker in production. About the Author Ian Miell and Aidan Hobson Sayers are seasoned infrastructure architects working in the UK. Together, they used Docker to transform DevOps at one of the UK's largest gaming companies. Table of Contents PART 1 - DOCKER FUNDAMENTALS Discovering Docker Understanding Docker: Inside the engine room PART 2 - DOCKER AND DEVELOPMENT Using Docker as a lightweight virtual machine Building images Running containers Day-to-day Docker Configuration management: Getting your house in order PART 3 - DOCKER AND DEVOPS Continuous integration: Speeding up your development pipeline Continuous delivery: A perfect fit for Docker principles Network simulation: Realistic environment testing without the pain PART 4 - ORCHESTRATION FROM A SINGLE MACHINE TO THE CLOUD A primer on container orchestration The data center as an OS with Docker Docker platforms PART 5 - DOCKER IN PRODUCTION Docker and security Plain sailing: Running Docker in production Docker in production: Dealing with challenges |
docker for data engineering: Data Engineering with AWS Gareth Eagar, 2023-10-31 Looking to revolutionize your data transformation game with AWS? Look no further! From strong foundations to hands-on building of data engineering pipelines, our expert-led manual has got you covered. Key Features Delve into robust AWS tools for ingesting, transforming, and consuming data, and for orchestrating pipelines Stay up to date with a comprehensive revised chapter on Data Governance Build modern data platforms with a new section covering transactional data lakes and data mesh Book DescriptionThis book, authored by a seasoned Senior Data Architect with 25 years of experience, aims to help you achieve proficiency in using the AWS ecosystem for data engineering. This revised edition provides updates in every chapter to cover the latest AWS services and features, takes a refreshed look at data governance, and includes a brand-new section on building modern data platforms which covers; implementing a data mesh approach, open-table formats (such as Apache Iceberg), and using DataOps for automation and observability. You'll begin by reviewing the key concepts and essential AWS tools in a data engineer's toolkit and getting acquainted with modern data management approaches. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how that transformed data is used by various data consumers. You’ll learn how to ensure strong data governance, and about populating data marts and data warehouses along with how a data lakehouse fits into the picture. After that, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. Then, you'll explore how the power of machine learning and artificial intelligence can be used to draw new insights from data. In the final chapters, you'll discover transactional data lakes, data meshes, and how to build a cutting-edge data platform on AWS. By the end of this AWS book, you'll be able to execute data engineering tasks and implement a data pipeline on AWS like a pro!What you will learn Seamlessly ingest streaming data with Amazon Kinesis Data Firehose Optimize, denormalize, and join datasets with AWS Glue Studio Use Amazon S3 events to trigger a Lambda process to transform a file Load data into a Redshift data warehouse and run queries with ease Visualize and explore data using Amazon QuickSight Extract sentiment data from a dataset using Amazon Comprehend Build transactional data lakes using Apache Iceberg with Amazon Athena Learn how a data mesh approach can be implemented on AWS Who this book is forThis book is for data engineers, data analysts, and data architects who are new to AWS and looking to extend their skills to the AWS cloud. Anyone new to data engineering who wants to learn about the foundational concepts, while gaining practical experience with common data engineering services on AWS, will also find this book useful. A basic understanding of big data-related topics and Python coding will help you get the most out of this book, but it’s not a prerequisite. Familiarity with the AWS console and core services will also help you follow along. |
docker for data engineering: Docker: Up and Running Dr. Gabriel Nicolas Schenker, 2023-04-20 A hands-on guide that will help you compose, package, deploy, and manage applications with ease KEY FEATURES ● Get familiar and work with key components of Docker. ● Learn how to automate CI/CD pipeline using Docker and Jenkins. ● Uncover the top Docker interview questions to crack your next interview. DESCRIPTION Containers are one of the disruptive technologies in IT that have fundamentally changed how software is build, shipped, and run today. If you want to pursue a career as a Software engineer or a DevOps professional, then this book is for you. The book starts by introducing Docker and teaches you how to write and run commands in Docker. The book then explains how to create Docker files, images, and containers, and while doing so, you get a stronghold of Docker tools like Docker Images, Dockerfiles, and Docker Compose. The book will also help you learn how to work with existing container images and how to build, test, and ship your containers containing your applications. Furthermore, the book will help you to deploy and run your containerized applications on Kubernetes and in the cloud. By the end of the book, you will be able to build and deploy enterprise applications with ease. WHAT YOU WILL LEARN ● Learn how to test and debug containerized applications. ● Understand how container orchestration works in Kubernetes. ● Monitor your Docker container's log using Prometheus and Grafana. ● Deploy, update, and scale applications into a Kubernetes cluster using different strategies. ● Learn how to use Snyk to scan vulnerabilities in Docker. WHO THIS BOOK IS FOR This book is for System administrators, Software engineers, DevOps aspirants, Application engineers, and Application developers. TABLE OF CONTENTS 1. Explaining Containers and their Benefits 2. Setting Up Your Environment 3. Getting Familiar with Containers 4. Using Existing Docker Images 5. Creating Your Own Docker Image 6. Demystifying Container Networking 7. Managing Complex Apps with Docker Compose 8. Testing and Debugging Containerized Applications 9. Establishing an Automated Build Pipeline 10. Orchestrating Containers 11. Leveraging Docker Logs to Provide Insight into Your Apps 12. Enabling Zero Downtime Deployments 13. Securing Containers |
docker for data engineering: Google Cloud Platform for Data Engineering Alasdair Gilchrist, Google Cloud Platform for Data Engineering is designed to take the beginner through a journey to become a competent and certified GCP data engineer. The book, therefore, is split into three parts; the first part covers fundamental concepts of data engineering and data analysis from a platform and technology-neutral perspective. Reading part 1 will bring a beginner up to speed with the generic concepts, terms and technologies we use in data engineering. The second part, which is a high-level but comprehensive introduction to all the concepts, components, tools and services available to us within the Google Cloud Platform. Completing this section will provide the beginner to GCP and data engineering with a solid foundation on the architecture and capabilities of the GCP. Part 3, however, is where we delve into the moderate to advanced techniques that data engineers need to know and be able to carry out. By this time the raw beginner you started the journey at the beginning of part 1 will be a knowledgable albeit inexperienced data engineer. However, by the conclusion of part 3, they will have gained the advanced knowledge of data engineering techniques and practices on the GCP to pass not only the certification exam but also most interviews and practical tests with confidence. In short part 3, will provide the prospective data engineer with detailed knowledge on setting up and configuring DataProc - GCPs version of the Spark/Hadoop ecosystem for big data. They will also learn how to build and test streaming and batch data pipelines using pub/sub/ dataFlow and BigQuery. Furthermore, they will learn how to integrate all the ML and AI Platform components and APIs. They will be accomplished in connecting data analysis and visualisation tools such as Datalab, DataStudio and AI notebooks amongst others. They will also by now know how to build and train a TensorFlow DNN using APIs and Keras and optimise it to run large public data sets. Also, they will know how to provision and use Kubeflow and Kube Pipelines within Google Kubernetes engines to run container workloads as well as how to take advantage of serverless technologies such as Cloud Run and Cloud Functions to build transparent and seamless data processing platforms. The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable. |
docker for data engineering: Practical Docker with Python Sathyajith Bhat, 2018-07-26 Learn the key differences between containers and virtual machines. Adopting a project based approach, this book introduces you to a simple Python application to be developed and containerized with Docker. After an introduction to Containers and Docker you'll be guided through Docker installation and configuration. You'll also learn basic functions and commands used in Docker by running a simple container using Docker commands. The book then moves on to developing a Python based Messaging Bot using required libraries and virtual environment where you'll add Docker Volumes to your project, ensuring your container data is safe. You'll create a database container and link your project to it and finally, bring up the Bot-associated database all at once with Docker Compose. What You'll Learn Build, run, and distribute Docker containers Develop a Python App and containerize it Use Dockerfile to run the Python App Define and run multi-container applications with Docker Compose Work with persisting data generated by and used by Docker containers Who This Book Is For Intermediate developers/DevOps practitioners who are looking to improve their build and release workflow by containerizing applications |
docker for data engineering: Official Google Cloud Certified Professional Data Engineer Study Guide Dan Sullivan, 2020-05-18 The proven Study Guide that prepares you for this new Google Cloud exam The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. Build and operationalize storage systems, pipelines, and compute infrastructure Understand machine learning models and learn how to select pre-built models Monitor and troubleshoot machine learning models Design analytics and machine learning applications that are secure, scalable, and highly available. This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform. |
docker for data engineering: Big Data on Kubernetes Neylson Crepalde, 2024-07-19 Gain hands-on experience in building efficient and scalable big data architecture on Kubernetes, utilizing leading technologies such as Spark, Airflow, Kafka, and Trino Key Features Leverage Kubernetes in a cloud environment to integrate seamlessly with a variety of tools Explore best practices for optimizing the performance of big data pipelines Build end-to-end data pipelines and discover real-world use cases using popular tools like Spark, Airflow, and Kafka Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn today's data-driven world, organizations across different sectors need scalable and efficient solutions for processing large volumes of data. Kubernetes offers an open-source and cost-effective platform for deploying and managing big data tools and workloads, ensuring optimal resource utilization and minimizing operational overhead. If you want to master the art of building and deploying big data solutions using Kubernetes, then this book is for you. Written by an experienced data specialist, Big Data on Kubernetes takes you through the entire process of developing scalable and resilient data pipelines, with a focus on practical implementation. Starting with the basics, you’ll progress toward learning how to install Docker and run your first containerized applications. You’ll then explore Kubernetes architecture and understand its core components. This knowledge will pave the way for exploring a variety of essential tools for big data processing such as Apache Spark and Apache Airflow. You’ll also learn how to install and configure these tools on Kubernetes clusters. Throughout the book, you’ll gain hands-on experience building a complete big data stack on Kubernetes. By the end of this Kubernetes book, you’ll be equipped with the skills and knowledge you need to tackle real-world big data challenges with confidence.What you will learn Install and use Docker to run containers and build concise images Gain a deep understanding of Kubernetes architecture and its components Deploy and manage Kubernetes clusters on different cloud platforms Implement and manage data pipelines using Apache Spark and Apache Airflow Deploy and configure Apache Kafka for real-time data ingestion and processing Build and orchestrate a complete big data pipeline using open-source tools Deploy Generative AI applications on a Kubernetes-based architecture Who this book is for If you’re a data engineer, BI analyst, data team leader, data architect, or tech manager with a basic understanding of big data technologies, then this big data book is for you. Familiarity with the basics of Python programming, SQL queries, and YAML is required to understand the topics discussed in this book. |
docker for data engineering: Azure Data Engineer Associate Certification Guide Newton Alex, 2022-02-28 Become well-versed with data engineering concepts and exam objectives to achieve Azure Data Engineer Associate certification Key Features Understand and apply data engineering concepts to real-world problems and prepare for the DP-203 certification exam Explore the various Azure services for building end-to-end data solutions Gain a solid understanding of building secure and sustainable data solutions using Azure services Book DescriptionAzure is one of the leading cloud providers in the world, providing numerous services for data hosting and data processing. Most of the companies today are either cloud-native or are migrating to the cloud much faster than ever. This has led to an explosion of data engineering jobs, with aspiring and experienced data engineers trying to outshine each other. Gaining the DP-203: Azure Data Engineer Associate certification is a sure-fire way of showing future employers that you have what it takes to become an Azure Data Engineer. This book will help you prepare for the DP-203 examination in a structured way, covering all the topics specified in the syllabus with detailed explanations and exam tips. The book starts by covering the fundamentals of Azure, and then takes the example of a hypothetical company and walks you through the various stages of building data engineering solutions. Throughout the chapters, you'll learn about the various Azure components involved in building the data systems and will explore them using a wide range of real-world use cases. Finally, you’ll work on sample questions and answers to familiarize yourself with the pattern of the exam. By the end of this Azure book, you'll have gained the confidence you need to pass the DP-203 exam with ease and land your dream job in data engineering.What you will learn Gain intermediate-level knowledge of Azure the data infrastructure Design and implement data lake solutions with batch and stream pipelines Identify the partition strategies available in Azure storage technologies Implement different table geometries in Azure Synapse Analytics Use the transformations available in T-SQL, Spark, and Azure Data Factory Use Azure Databricks or Synapse Spark to process data using Notebooks Design security using RBAC, ACL, encryption, data masking, and more Monitor and optimize data pipelines with debugging tips Who this book is for This book is for data engineers who want to take the DP-203: Azure Data Engineer Associate exam and are looking to gain in-depth knowledge of the Azure cloud stack. The book will also help engineers and product managers who are new to Azure or interviewing with companies working on Azure technologies, to get hands-on experience of Azure data technologies. A basic understanding of cloud technologies, extract, transform, and load (ETL), and databases will help you get the most out of this book. |
docker for data engineering: Introduction to Apache Flink Ellen Friedman, Ellen Friedman, M D, Kostas Tzoumas, 2016-10-19 There’s growing interest in learning how to analyze streaming data in large-scale systems such as web traffic, financial transactions, machine logs, industrial sensors, and many others. But analyzing data streams at scale has been difficult to do well—until now. This practical book delivers a deep introduction to Apache Flink, a highly innovative open source stream processor with a surprising range of capabilities. Authors Ellen Friedman and Kostas Tzoumas show technical and nontechnical readers alike how Flink is engineered to overcome significant tradeoffs that have limited the effectiveness of other approaches to stream processing. You’ll also learn how Flink has the ability to handle both stream and batch data processing with one technology. Learn the consequences of not doing streaming well—in retail and marketing, IoT, telecom, and banking and finance Explore how to design data architecture to gain the best advantage from stream processing Get an overview of Flink’s capabilities and features, along with examples of how companies use Flink, including in production Take a technical dive into Flink, and learn how it handles time and stateful computation Examine how Flink processes both streaming (unbounded) and batch (bounded) data without sacrificing performance |
docker for data engineering: Modern Data Engineering with Apache Spark Scott Haines, 2022-03-23 Leverage Apache Spark within a modern data engineering ecosystem. This hands-on guide will teach you how to write fully functional applications, follow industry best practices, and learn the rationale behind these decisions. With Apache Spark as the foundation, you will follow a step-by-step journey beginning with the basics of data ingestion, processing, and transformation, and ending up with an entire local data platform running Apache Spark, Apache Zeppelin, Apache Kafka, Redis, MySQL, Minio (S3), and Apache Airflow. Apache Spark applications solve a wide range of data problems from traditional data loading and processing to rich SQL-based analysis as well as complex machine learning workloads and even near real-time processing of streaming data. Spark fits well as a central foundation for any data engineering workload. This book will teach you to write interactive Spark applications using Apache Zeppelin notebooks, write and compile reusable applications and modules, and fully test both batch and streaming. You will also learn to containerize your applications using Docker and run and deploy your Spark applications using a variety of tools such as Apache Airflow, Docker and Kubernetes. Reading this book will empower you to take advantage of Apache Spark to optimize your data pipelines and teach you to craft modular and testable Spark applications. You will create and deploy mission-critical streaming spark applications in a low-stress environment that paves the way for your own path to production. What You Will Learn Simplify data transformation with Spark Pipelines and Spark SQL Bridge data engineering with machine learning Architect modular data pipeline applications Build reusable application components and libraries Containerize your Spark applications for consistency and reliability Use Docker and Kubernetes to deploy your Spark applications Speed up application experimentation using Apache Zeppelin and Docker Understand serializable structured data and data contracts Harness effective strategies for optimizing data in your data lakes Build end-to-end Spark structured streaming applications using Redis and Apache Kafka Embrace testing for your batch and streaming applications Deploy and monitor your Spark applications Who This Book Is For Professional software engineers who want to take their current skills and apply them to new and exciting opportunities within the data ecosystem, practicing data engineers who are looking for a guiding light while traversing the many challenges of moving from batch to streaming modes, data architects who wish to provide clear and concise direction for how best to harness and use Apache Spark within their organization, and those interested in the ins and outs of becoming a modern data engineer in today's fast-paced and data-hungry world |
docker for data engineering: Software Engineering for Data Scientists Catherine Nelson, 2024-04-16 Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success—and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering,and clearly explains how to apply the best practices from software engineering to data science. Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics that are often missing from introductory data science or coding classes, including how to: Understand data structures and object-oriented programming Clearly and skillfully document your code Package and share your code Integrate data science code with a larger code base Learn how to write APIs Create secure code Apply best practices to common tasks such as testing, error handling, and logging Work more effectively with software engineers Write more efficient, maintainable, and robust code in Python Put your data science projects into production And more |
docker for data engineering: Google Certification Guide - Google Professional Data Engineer Cybellium Ltd, Google Certification Guide - Google Professional Data Engineer Navigate the Data Landscape with Google Cloud Expertise Embark on a journey to become a Google Professional Data Engineer with this comprehensive guide. Tailored for data professionals seeking to leverage Google Cloud's powerful data solutions, this book provides a deep dive into the core concepts, practices, and tools necessary to excel in the field of data engineering. Inside, You'll Explore: Fundamentals to Advanced Data Concepts: Understand the full spectrum of Google Cloud data services, from BigQuery and Dataflow to AI and machine learning integrations. Practical Data Engineering Scenarios: Learn through hands-on examples and real-life case studies that demonstrate how to effectively implement data solutions on Google Cloud. Focused Exam Strategy: Prepare for the certification exam with detailed insights into the exam format, including key topics, study strategies, and practice questions. Current Trends and Best Practices: Stay abreast of the latest advancements in Google Cloud data technologies, ensuring your skills are up-to-date and industry-relevant. Authored by a Data Engineering Expert Written by an experienced data engineer, this guide bridges practical application with theoretical knowledge, offering a comprehensive and practical learning experience. Your Comprehensive Guide to Data Engineering Certification Whether you're an aspiring data engineer or an experienced professional looking to validate your Google Cloud skills, this book is an invaluable resource, guiding you through the nuances of data engineering on Google Cloud and preparing you for the Professional Data Engineer exam. Elevate Your Data Engineering Skills This guide is more than a certification prep book; it's a deep dive into the art of data engineering in the Google Cloud ecosystem, designed to equip you with advanced skills and knowledge for a successful career in data engineering. Begin Your Data Engineering Journey Step into the world of Google Cloud data engineering with confidence. This guide is your first step towards mastering the concepts and practices of data engineering and achieving certification as a Google Professional Data Engineer. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com |
docker for data engineering: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail |
docker for data engineering: MCA Microsoft Certified Associate Azure Data Engineer Study Guide Benjamin Perkins, 2023-08-02 Prepare for the Azure Data Engineering certification—and an exciting new career in analytics—with this must-have study aide In the MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203, accomplished data engineer and tech educator Benjamin Perkins delivers a hands-on, practical guide to preparing for the challenging Azure Data Engineer certification and for a new career in an exciting and growing field of tech. In the book, you’ll explore all the objectives covered on the DP-203 exam while learning the job roles and responsibilities of a newly minted Azure data engineer. From integrating, transforming, and consolidating data from various structured and unstructured data systems into a structure that is suitable for building analytics solutions, you’ll get up to speed quickly and efficiently with Sybex’s easy-to-use study aids and tools. This Study Guide also offers: Career-ready advice for anyone hoping to ace their first data engineering job interview and excel in their first day in the field Indispensable tips and tricks to familiarize yourself with the DP-203 exam structure and help reduce test anxiety Complimentary access to Sybex’s expansive online study tools, accessible across multiple devices, and offering access to hundreds of bonus practice questions, electronic flashcards, and a searchable, digital glossary of key terms A one-of-a-kind study aid designed to help you get straight to the crucial material you need to succeed on the exam and on the job, the MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203 belongs on the bookshelves of anyone hoping to increase their data analytics skills, advance their data engineering career with an in-demand certification, or hoping to make a career change into a popular new area of tech. |
docker for data engineering: Machine Learning Engineering with MLflow Natu Lauchande, 2021-08-27 Get up and running, and productive in no time with MLflow using the most effective machine learning engineering approach Key FeaturesExplore machine learning workflows for stating ML problems in a concise and clear manner using MLflowUse MLflow to iteratively develop a ML model and manage it Discover and work with the features available in MLflow to seamlessly take a model from the development phase to a production environmentBook Description MLflow is a platform for the machine learning life cycle that enables structured development and iteration of machine learning models and a seamless transition into scalable production environments. This book will take you through the different features of MLflow and how you can implement them in your ML project. You will begin by framing an ML problem and then transform your solution with MLflow, adding a workbench environment, training infrastructure, data management, model management, experimentation, and state-of-the-art ML deployment techniques on the cloud and premises. The book also explores techniques to scale up your workflow as well as performance monitoring techniques. As you progress, you'll discover how to create an operational dashboard to manage machine learning systems. Later, you will learn how you can use MLflow in the AutoML, anomaly detection, and deep learning context with the help of use cases. In addition to this, you will understand how to use machine learning platforms for local development as well as for cloud and managed environments. This book will also show you how to use MLflow in non-Python-based languages such as R and Java, along with covering approaches to extend MLflow with Plugins. By the end of this machine learning book, you will be able to produce and deploy reliable machine learning algorithms using MLflow in multiple environments. What you will learnDevelop your machine learning project locally with MLflow's different featuresSet up a centralized MLflow tracking server to manage multiple MLflow experimentsCreate a model life cycle with MLflow by creating custom modelsUse feature streams to log model results with MLflowDevelop the complete training pipeline infrastructure using MLflow featuresSet up an inference-based API pipeline and batch pipeline in MLflowScale large volumes of data by integrating MLflow with high-performance big data librariesWho this book is for This book is for data scientists, machine learning engineers, and data engineers who want to gain hands-on machine learning engineering experience and learn how they can manage an end-to-end machine learning life cycle with the help of MLflow. Intermediate-level knowledge of the Python programming language is expected. |
docker for data engineering: Exam DP-200 & DP-201: Azure Data Engineer Associate 89 Test Prep Questions Ger Arevalo, 2019-08-29 This book is designed to be an ancillary to the classes, labs, and hands on practice that you have diligently worked on in preparing to obtain your DP-200 & DP-201: Azure Data Engineer Associate certification. I won’t bother talking about the benefits of certifications. This book tries to reinforce the knowledge that you have gained in your process of studying. It is meant as one of the end steps in your preparation for the DP-200 & DP-201 exams. This book is short, but It will give you a good gauge of your readiness. Learning can be seen in 4 stages: 1. Unconscious Incompetence 2. Conscious Incompetence 3. Conscious Competence 4. Unconscious Competence This book will assume the reader has already gone through the needed classes, labs, and practice. It is meant to take the reader from stage 2, Conscious Incompetence, to stage 3 Conscious Competence. At stage 3, you should be ready to take the exam. Only real-world scenarios and work experience will take you to stage 4, Unconscious Competence. Before we get started, we all have doubts when preparing to take an exam. What is your reason and purpose for taking this exam? Remember your reason and purpose when you have some doubts. Obstacle is the way. Control your mind, attitude, and you can control the situation. Persistence leads to confidence. Confidence erases doubts. |
docker for data engineering: Learn Docker in a Month of Lunches Elton Stoneman, 2020-08-04 Summary Go from zero to production readiness with Docker in 22 bite-sized lessons! Learn Docker in a Month of Lunches is an accessible task-focused guide to Docker on Linux, Windows, or Mac systems. In it, you’ll learn practical Docker skills to help you tackle the challenges of modern IT, from cloud migration and microservices to handling legacy systems. There’s no excessive theory or niche-use cases—just a quick-and-easy guide to the essentials of Docker you’ll use every day. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology The idea behind Docker is simple: package applications in lightweight virtual containers that can be easily installed. The results of this simple idea are huge! Docker makes it possible to manage applications without creating custom infrastructures. Free, open source, and battle-tested, Docker has quickly become must-know technology for developers and administrators. About the book Learn Docker in a Month of Lunches introduces Docker concepts through a series of brief hands-on lessons. Following a learning path perfected by author Elton Stoneman, you’ll run containers by chapter 2 and package applications by chapter 3. Each lesson teaches a practical skill you can practice on Windows, macOS, and Linux systems. By the end of the month you’ll know how to containerize and run any kind of application with Docker. What's inside Package applications to run in containers Put containers into production Build optimized Docker images Run containerized apps at scale About the reader For IT professionals. No previous Docker experience required. About the author Elton Stoneman is a consultant, a former architect at Docker, a Microsoft MVP, and a Pluralsight author. Table of Contents PART 1 - UNDERSTANDING DOCKER CONTAINERS AND IMAGES 1. Before you begin 2. Understanding Docker and running Hello World 3. Building your own Docker images 4. Packaging applications from source code into Docker Images 5. Sharing images with Docker Hub and other registries 6. Using Docker volumes for persistent storage PART 2 - RUNNING DISTRIBUTED APPLICATIONS IN CONTAINERS 7. Running multi-container apps with Docker Compose 8. Supporting reliability with health checks and dependency checks 9. Adding observability with containerized monitoring 10. Running multiple environments with Docker Compose 11. Building and testing applications with Docker and Docker Compose PART 3 - RUNNING AT SCALE WITH A CONTAINER ORCHESTRATOR 12. Understanding orchestration: Docker Swarm and Kubernetes 13. Deploying distributed applications as stacks in Docker Swarm 14. Automating releases with upgrades and rollbacks 15. Configuring Docker for secure remote access and CI/CD 16. Building Docker images that run anywhere: Linux, Windows, Intel, and Arm PART 4 - GETTING YOUR CONTAINERS READY FOR PRODUCTION 17. Optimizing your Docker images for size, speed, and security 18. Application configuration management in containers 19. Writing and managing application logs with Docker 20. Controlling HTTP traffic to containers with a reverse proxy 21. Asynchronous communication with a message queue 22. Never the end |
docker for data engineering: Pragmatic AI Noah Gift, 2018-07-12 Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value. Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need Quickly review all the Python you need to start building machine learning applications Master the AI and ML toolchain and project lifecycle Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more Work with Microsoft Azure AI APIs Walk through building six real-world AI applications, from start to finish Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. |
docker for data engineering: Advanced Information Systems Engineering Xavier Franch, Geert Poels, Frederik Gailly, Monique Snoeck, 2022-06-02 This book constitutes the refereed proceedings of the 34th International Conference on Advanced Information Systems Engineering, CAiSE 2022, which was held in Leuven, Belgium, during June 6-10, 2022. The 31 full papers included in these proceedings were selected from 203 submissions. They were organized in topical sections as follows: Process mining; sustainable and explainable applications; tools and methods to support research and design; process modeling; natural language processing techniques in IS engineering; process monitoring and simulation; graph and network models; model analysis and comprehension; recommender systems; conceptual models, metamodels and taxonomies; and services engineering and digitalization. |
docker for data engineering: Industry 4.1 Fan-Tien Cheng, 2021-10-26 Industry 4.1 Intelligent Manufacturing with Zero Defects Discover the future of manufacturing with this comprehensive introduction to Industry 4.0 technologies from a celebrated expert in the field Industry 4.1: Intelligent Manufacturing with Zero Defects delivers an in-depth exploration of the functions of intelligent manufacturing and its applications and implementations through the Intelligent Factory Automation (iFA) System Platform. The book’s distinguished editor offers readers a broad range of resources that educate and enlighten on topics as diverse as the Internet of Things, edge computing, cloud computing, and cyber-physical systems. You’ll learn about three different advanced prediction technologies: Automatic Virtual Metrology (AVM), Intelligent Yield Management (IYM), and Intelligent Predictive Maintenance (IPM). Different use cases in a variety of manufacturing industries are covered, including both high-tech and traditional areas. In addition to providing a broad view of intelligent manufacturing and covering fundamental technologies like sensors, communication standards, and container technologies, the book offers access to experimental data through the IEEE DataPort. Finally, it shows readers how to build an intelligent manufacturing platform called an Advanced Manufacturing Cloud of Things (AMCoT). Readers will also learn from: An introduction to the evolution of automation and development strategy of intelligent manufacturing A comprehensive discussion of foundational concepts in sensors, communication standards, and container technologies An exploration of the applications of the Internet of Things, edge computing, and cloud computing The Intelligent Factory Automation (iFA) System Platform and its applications and implementations A variety of use cases of intelligent manufacturing, from industries like flat-panel, semiconductor, solar cell, automotive, aerospace, chemical, and blow molding machine Perfect for researchers, engineers, scientists, professionals, and students who are interested in the ongoing evolution of Industry 4.0 and beyond, Industry 4.1: Intelligent Manufacturing with Zero Defects will also win a place in the library of laypersons interested in intelligent manufacturing applications and concepts. Completely unique, this book shows readers how Industry 4.0 technologies can be applied to achieve the goal of Zero Defects for all product |
docker for data engineering: Big Data, Cloud Computing, Data Science & Engineering Roger Lee, 2018-08-13 This book presents the outcomes of the 3rd IEEE/ACIS International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD 2018), which was held on July 10–12, 2018 in Kanazawa. The aim of the conference was to bring together researchers and scientists, businesspeople and entrepreneurs, teachers, engineers, computer users, and students to discuss the various fields of computer science, to share their experiences, and to exchange new ideas and information in a meaningful way. All aspects (theory, applications and tools) of computer and information science, the practical challenges encountered along the way, and the solutions adopted to solve them are all explored here. The conference organizers selected the best papers from among those accepted for presentation. The papers were chosen on the basis of review scores submitted by members of the program committee and subsequently underwent further rigorous review. Following this second round of review, 13 of the conference’s most promising papers were selected for this Springer (SCI) book. We eagerly await the important contributions that we know these authors will make to the field of computer and information science. |
docker for data engineering: Machine Learning Interviews Susan Shu Chang, 2023-11-29 As tech products become more prevalent today, the demand for machine learning professionals continues to grow. But the responsibilities and skill sets required of ML professionals still vary drastically from company to company, making the interview process difficult to predict. In this guide, data science leader Susan Shu Chang shows you how to tackle the ML hiring process. Having served as principal data scientist in several companies, Chang has considerable experience as both ML interviewer and interviewee. She'll take you through the highly selective recruitment process by sharing hard-won lessons she learned along the way. You'll quickly understand how to successfully navigate your way through typical ML interviews. This guide shows you how to: Explore various machine learning roles, including ML engineer, applied scientist, data scientist, and other positions Assess your interests and skills before deciding which ML role(s) to pursue Evaluate your current skills and close any gaps that may prevent you from succeeding in the interview process Acquire the skill set necessary for each machine learning role Ace ML interview topics, including coding assessments, statistics and machine learning theory, and behavioral questions Prepare for interviews in statistics and machine learning theory by studying common interview questions |
docker for data engineering: Building Big Data Pipelines with Apache Beam Jan Lukavsky, 2022-01-21 Implement, run, operate, and test data processing pipelines using Apache Beam Key FeaturesUnderstand how to improve usability and productivity when implementing Beam pipelinesLearn how to use stateful processing to implement complex use cases using Apache BeamImplement, test, and run Apache Beam pipelines with the help of expert tips and techniquesBook Description Apache Beam is an open source unified programming model for implementing and executing data processing pipelines, including Extract, Transform, and Load (ETL), batch, and stream processing. This book will help you to confidently build data processing pipelines with Apache Beam. You'll start with an overview of Apache Beam and understand how to use it to implement basic pipelines. You'll also learn how to test and run the pipelines efficiently. As you progress, you'll explore how to structure your code for reusability and also use various Domain Specific Languages (DSLs). Later chapters will show you how to use schemas and query your data using (streaming) SQL. Finally, you'll understand advanced Apache Beam concepts, such as implementing your own I/O connectors. By the end of this book, you'll have gained a deep understanding of the Apache Beam model and be able to apply it to solve problems. What you will learnUnderstand the core concepts and architecture of Apache BeamImplement stateless and stateful data processing pipelinesUse state and timers for processing real-time event processingStructure your code for reusabilityUse streaming SQL to process real-time data for increasing productivity and data accessibilityRun a pipeline using a portable runner and implement data processing using the Apache Beam Python SDKImplement Apache Beam I/O connectors using the Splittable DoFn APIWho this book is for This book is for data engineers, data scientists, and data analysts who want to learn how Apache Beam works. Intermediate-level knowledge of the Java programming language is assumed. |
Docker for Data Science - JUIT
Docker for Data Science Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server — Joshua Cook
The Data Engineering Cookbook - Darwin Pricing
What do you actually need to learn to become an awesome data engineer? Look no further, you nd it here. How to use this document: This is not a training! It's a collection of skills, that I value …
Impact Factor: 8 - IJIRSET
Jun 4, 2024 · benefits of using Docker for local Apache Spark development are signif icant from a data engineering perspective. One of the primary advantages of Docker is its ability to create …
Docker Tutorial - Duke University
What is Docker? Docker is a tool that makes it easier to create, run and deploy applications Docker allows developers to package libraries, dependencies, and other necessary parts for …
Container Readiness Guide - CIO.GOV
Mirantis Kubernetes System - Enterprise-ready container platform for building, configuring, and distributing Docker containers. Kubernetes (k8s) - Open-source container orchestration …
Install Data Engineering Integration on Docker with the …
Docker allows independent containers to run within a single Linux instance. A docker image is an executable package that can run an application, a code, run-time files, environment variables, …
Cloudera Data Engineering Overview
Cloudera Data Engineering allows you to create, manage, and schedule Apache Spark jobs without the overhead of creating and maintaining Spark clusters.
TEMENOS DATA ENGINEERING Installation
TEMENOS DATA ENGINEERING Installation Document – R22.0.22 – PostgreSQL Version 1.0
Using Docker Containers to Improve Reproducibility in
This tutorial presents how Docker con-tainers can overcome these issues and aid the reproducibility of research artifacts in software and web engineering and discusses their …
Deploying a scalable Data Science environment using Docker
In this sense, we present a computing environment based on free software tools over commodity computers. Thus, we show how to deploy an easily scalable Spark cluster using Docker …
A Survey on Docker Container and its Use Cases - IRJET
Docker methodologies promote quick shipping, testing, and deploying code anywhere, which reduces the delay between code development and its deployment in production.
Studying the Practices of Deploying Machine Learning …
Our results indicate that six categories of ML-based projects use Docker for deployment, including ML Applications, MLOps/ AIOps, Toolkits, DL Frameworks, Models, and Documentation.
- Linux, Docker, Remote Development, Git Summer 2023 Data …
I started off this internship having to learn everything there was to data engineering and Apache Airflow, so I spent the first 4 weeks learning SQL, Docker (to install Airflow), and learning how …
“Docker” for (open)data - The GovLab
In this paper, we present a novel approach for packaging open data we call Docker for Data, inspired by the eponymous cloud container solution. With Docker for Data, we package …
How to Install Data Engineering Integration 10.4.0 on Docker …
Docker allows independent containers to run within a single Linux instance. A docker image is an executable package that can run an application, a code, run-time files, environment variables, …
Challenges in Docker Development: A Large-scale Study …
We observed a tag t to be relevant to Docker if its αand βvalues are higher than or equal to certain thresholds. Our experiments used an extensive range of thresholds for α= {0.1, 0.2, …
Cloud Data Security Methods: Kubernetes vs Docker Swarm
Data protection is among the key problems with clouds services. There are three main aspects of data security to take into account.
A Large-scale Data Set and an Empirical Study of Docker …
In this paper, we create a recent and more comprehensive data set by collecting data from Docker Hub, GitHub, and Bitbucket. Our data set contains information about 3,364,529 Docker images …
Challenges in Docker Development: A Large-scale Study …
We determined that 30 topics that developers discuss can be grouped into 13 main categories. Most of the posts belong to categories of application development, configu-ration, and …
Engineering for Data Scientists - Valohai
This eBook is to help pick up engineering best practices with simple tips. I hope that we can teach even the most seasoned pros something new and get you talking with your team on how you …
Docker for Data Science - JUIT
Docker for Data Science Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server — Joshua Cook
The Data Engineering Cookbook - Darwin Pricing
What do you actually need to learn to become an awesome data engineer? Look no further, you nd it here. How to use this document: This is not a training! It's a collection of skills, that I value …
Impact Factor: 8 - IJIRSET
Jun 4, 2024 · benefits of using Docker for local Apache Spark development are signif icant from a data engineering perspective. One of the primary advantages of Docker is its ability to create …
Docker Tutorial - Duke University
What is Docker? Docker is a tool that makes it easier to create, run and deploy applications Docker allows developers to package libraries, dependencies, and other necessary parts for …
Container Readiness Guide - CIO.GOV
Mirantis Kubernetes System - Enterprise-ready container platform for building, configuring, and distributing Docker containers. Kubernetes (k8s) - Open-source container orchestration …
Install Data Engineering Integration on Docker with the …
Docker allows independent containers to run within a single Linux instance. A docker image is an executable package that can run an application, a code, run-time files, environment variables, …
Cloudera Data Engineering Overview
Cloudera Data Engineering allows you to create, manage, and schedule Apache Spark jobs without the overhead of creating and maintaining Spark clusters.
TEMENOS DATA ENGINEERING Installation
TEMENOS DATA ENGINEERING Installation Document – R22.0.22 – PostgreSQL Version 1.0
Using Docker Containers to Improve Reproducibility in
This tutorial presents how Docker con-tainers can overcome these issues and aid the reproducibility of research artifacts in software and web engineering and discusses their …
Deploying a scalable Data Science environment using Docker
In this sense, we present a computing environment based on free software tools over commodity computers. Thus, we show how to deploy an easily scalable Spark cluster using Docker …
A Survey on Docker Container and its Use Cases - IRJET
Docker methodologies promote quick shipping, testing, and deploying code anywhere, which reduces the delay between code development and its deployment in production.
Studying the Practices of Deploying Machine Learning …
Our results indicate that six categories of ML-based projects use Docker for deployment, including ML Applications, MLOps/ AIOps, Toolkits, DL Frameworks, Models, and Documentation.
- Linux, Docker, Remote Development, Git Summer 2023 …
I started off this internship having to learn everything there was to data engineering and Apache Airflow, so I spent the first 4 weeks learning SQL, Docker (to install Airflow), and learning how …
“Docker” for (open)data - The GovLab
In this paper, we present a novel approach for packaging open data we call Docker for Data, inspired by the eponymous cloud container solution. With Docker for Data, we package …
How to Install Data Engineering Integration 10.4.0 on …
Docker allows independent containers to run within a single Linux instance. A docker image is an executable package that can run an application, a code, run-time files, environment variables, …
Challenges in Docker Development: A Large-scale Study …
We observed a tag t to be relevant to Docker if its αand βvalues are higher than or equal to certain thresholds. Our experiments used an extensive range of thresholds for α= {0.1, 0.2, …
Cloud Data Security Methods: Kubernetes vs Docker Swarm
Data protection is among the key problems with clouds services. There are three main aspects of data security to take into account.
A Large-scale Data Set and an Empirical Study of Docker …
In this paper, we create a recent and more comprehensive data set by collecting data from Docker Hub, GitHub, and Bitbucket. Our data set contains information about 3,364,529 Docker images …
Challenges in Docker Development: A Large-scale Study …
We determined that 30 topics that developers discuss can be grouped into 13 main categories. Most of the posts belong to categories of application development, configu-ration, and …
Engineering for Data Scientists - Valohai
This eBook is to help pick up engineering best practices with simple tips. I hope that we can teach even the most seasoned pros something new and get you talking with your team on how you …