Advertisement
does biology involve math: Experimental Design and Data Analysis for Biologists Gerald Peter Quinn, Michael J. Keough, 2002-03-21 Regression, analysis of variance, correlation, graphical. |
does biology involve math: Mathematical Methods in Biology J. David Logan, William Wolesensky, 2009-08-17 A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics. |
does biology involve math: A Course in Mathematical Biology Gerda de Vries, Thomas Hillen, Mark Lewis, Johannes M?ller, Birgitt Sch?nfisch, 2006-07-01 This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?. |
does biology involve math: Intended Evolution Dongxun Zhang, Bob Zhang, 2015-05-05 Discover a new outlook on the process of life—and improve your health as a result In Intended Evolution, authors Dongxun and Bob Zhang introduce a different perspective on the theory of evolution: Life is not only selected by nature but intentionally interacts with it, learning how to better its future. They explain that applying this idea to generally accepted principles of biology can have startling results in your ability to affect your own health—and even your evolution. According to the theory of intended evolution, organisms gather information through sensory experience and use that knowledge to effect change in themselves and their environments. The authors propose that organisms use this saved information to make choices projected to enhance their survival. It is through experience, choices, and action, within a given environment, that life changes itself from moment to moment and determines what changes are needed for future generations. Because of humans’ unique ability to understand how our own evolution functions, we can effect changes within ourselves to influence and enhance our health and fitness, even to lengthen our lifespan. |
does biology involve math: Statistical Methods in Bioinformatics Warren J. Ewens, Gregory R. Grant, 2005-09-30 Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly. (Biometrics) Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces. (Naturwissenschaften) The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details. (Journal American Statistical Association) The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book. (Metrika) |
does biology involve math: BIO2010 National Research Council, Division on Earth and Life Studies, Board on Life Sciences, Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century, 2003-02-13 Biological sciences have been revolutionized, not only in the way research is conductedâ€with the introduction of techniques such as recombinant DNA and digital technologyâ€but also in how research findings are communicated among professionals and to the public. Yet, the undergraduate programs that train biology researchers remain much the same as they were before these fundamental changes came on the scene. This new volume provides a blueprint for bringing undergraduate biology education up to the speed of today's research fast track. It includes recommendations for teaching the next generation of life science investigators, through: Building a strong interdisciplinary curriculum that includes physical science, information technology, and mathematics. Eliminating the administrative and financial barriers to cross-departmental collaboration. Evaluating the impact of medical college admissions testing on undergraduate biology education. Creating early opportunities for independent research. Designing meaningful laboratory experiences into the curriculum. The committee presents a dozen brief case studies of exemplary programs at leading institutions and lists many resources for biology educators. This volume will be important to biology faculty, administrators, practitioners, professional societies, research and education funders, and the biotechnology industry. |
does biology involve math: Mathematical Models in Biology Elizabeth Spencer Allman, John A. Rhodes, 2004 This introductory textbook on mathematical biology focuses on discrete models across a variety of biological subdisciplines. Biological topics treated include linear and non-linear models of populations, Markov models of molecular evolution, phylogenetic tree construction, genetics, and infectious disease models. The coverage of models of molecular evolution and phylogenetic tree construction from DNA sequence data is unique among books at this level. Computer investigations with MATLAB are incorporated throughout, in both exercises and more extensive projects, to give readers hands-on experience with the mathematical models developed. MATLAB programs accompany the text. Mathematical tools, such as matrix algebra, eigenvector analysis, and basic probability, are motivated by biological models and given self-contained developments, so that mathematical prerequisites are minimal. |
does biology involve math: Mathematical Biology Ronald W. Shonkwiler, James Herod, 2009-08-04 This text presents mathematical biology as a field with a unity of its own, rather than only the intrusion of one science into another. The book focuses on problems of contemporary interest, such as cancer, genetics, and the rapidly growing field of genomics. |
does biology involve math: Mathematical Modeling in Systems Biology Brian P. Ingalls, 2022-06-07 An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis. |
does biology involve math: How Not to Be Wrong Jordan Ellenberg, 2014-05-29 “Witty, compelling, and just plain fun to read . . . —Evelyn Lamb, Scientific American The Freakonomics of math—a math-world superstar unveils the hidden beauty and logic of the world and puts its power in our hands The math we learn in school can seem like a dull set of rules, laid down by the ancients and not to be questioned. In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it. Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer? How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God. Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how. |
does biology involve math: A Biologist's Guide to Mathematical Modeling in Ecology and Evolution Sarah P. Otto, Troy Day, 2011-09-19 Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available |
does biology involve math: Computational Cell Biology Christopher P. Fall, Eric S. Marland, John M. Wagner, John J. Tyson, 2007-06-04 This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool. |
does biology involve math: Modeling and Simulation in Medicine and the Life Sciences Frank C. Hoppensteadt, Charles S. Peskin, 2012-12-06 The result of lectures given by the authors at New York University, the University of Utah, and Michigan State University, the material is written for students who have had only one term of calculus, but it contains material that can be used in modeling courses in applied mathematics at all levels through early graduate courses. Numerous exercises are given as well as solutions to selected exercises, so as to lead readers to discover interesting extensions of that material. Throughout, illustrations depict physiological processes, population biology phenomena, corresponding models, and the results of computer simulations. Topics covered range from population phenomena to demographics, genetics, epidemics and dispersal; in physiological processes, including the circulation, gas exchange in the lungs, control of cell volume, the renal counter-current multiplier mechanism, and muscle mechanics; to mechanisms of neural control. Each chapter is graded in difficulty, so a reading of the first parts of each provides an elementary introduction to the processes and their models. |
does biology involve math: Physics & Chemistry Crac, 2007-05-01 Popular among university applicants and their advisers alike, these guides present a wide range of information on a specific degree discipline, laid out in tabular format enabling at-a-glance course comparison. |
does biology involve math: Modeling Life Alan Garfinkel, Jane Shevtsov, Yina Guo, 2017-09-06 This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science? |
does biology involve math: Mathematical Models in Biology Leah Edelstein-Keshet, 1988-01-01 Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field. |
does biology involve math: Mathematical Biology James D. Murray, 2007-06-12 Mathematical Biology is a richly illustrated textbook in an exciting and fast growing field. Providing an in-depth look at the practical use of math modeling, it features exercises throughout that are drawn from a variety of bioscientific disciplines - population biology, developmental biology, physiology, epidemiology, and evolution, among others. It maintains a consistent level throughout so that graduate students can use it to gain a foothold into this dynamic research area. |
does biology involve math: Dynamical Systems in Population Biology Xiao-Qiang Zhao, 2013-06-05 Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a model are periodic functions of time with commensurate period, a periodic system arises; if these periodic functions have different (minimal) periods, we get an almost periodic system. The existing reference books, from the dynamical systems point of view, mainly focus on autonomous biological systems. The book of Hess [106J is an excellent reference for periodic parabolic boundary value problems with applications to population dynamics. Since the publication of this book there have been extensive investigations on periodic, asymptotically periodic, almost periodic, and even general nonautonomous biological systems, which in turn have motivated further development of the theory of dynamical systems. In order to explain the dynamical systems approach to periodic population problems, let us consider, as an illustration, two species periodic competitive systems dUI dt = !I(t,Ul,U2), (0. |
does biology involve math: Dynamic Models in Biology Stephen P. Ellner, John Guckenheimer, 2011-09-19 From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering. |
does biology involve math: What Makes Biology Unique? Ernst Mayr, 2007-04-16 This book, a collection of essays written by the most eminent evolutionary biologist of the twentieth century, explores biology as an autonomous science, offers insights on the history of evolutionary thought, critiques the contributions of philosophy to the science of biology, and comments on several of the major ongoing issues in evolutionary theory. Notably, Mayr explains that Darwin's theory of evolution is actually five separate theories, each with its own history, trajectory and impact. Natural selection is a separate idea from common descent, and from geographic speciation, and so on. A number of the perennial Darwinian controversies may well have been caused by the confounding of the five separate theories into a single composite. Those interested in evolutionary theory, or the philosophy and history of science will find useful ideas in this book, which should appeal to virtually anyone with a broad curiosity about biology. |
does biology involve math: A Primer in Mathematical Models in Biology Lee A. Segel, Leah Edelstein-Keshet, 2013-05-09 A textbook on mathematical modelling techniques with powerful applications to biology, combining theoretical exposition with exercises and examples. |
does biology involve math: The Math of Life and Death Kit Yates, 2021-04-27 Few of us really appreciate the full power of math--the extent to which its influence is not only in every office and every home, but also in every courtroom and hospital ward. In this ... book, Kit Yates explores the true stories of life-changing events in which the application--or misapplication--of mathematics has played a critical role: patients crippled by faulty genes and entrepreneurs bankrupted by faulty algorithms; innocent victims of miscarriages of justice; and the unwitting victims of software glitches--Publisher marketing. |
does biology involve math: Transfer of Learning Charles Hohensee, Joanne Lobato, 2021-04-09 This book provides a common language for and makes connections between transfer research in mathematics education and transfer research in related fields. It generates renewed excitement for and increased visibility of transfer research, by showcasing and aggregating leading-edge research from the transfer research community. This book also helps to establish transfer as a sub-field of research within mathematics education and extends and refines alternate perspectives on the transfer of learning. The book provides an overview of current knowledge in the field as well as informs future transfer research. |
does biology involve math: Applications Of Calculus To Biology And Medicine: Case Studies From Lake Victoria Nathan Ryan, Dorothy I Wallace, 2017-08-17 Biology majors and pre-health students at many colleges and universities are required to take a semester of calculus but rarely do such students see authentic applications of its techniques and concepts. Applications of Calculus to Biology and Medicine: Case Studies from Lake Victoria is designed to address this issue: it prepares students to engage with the research literature in the mathematical modeling of biological systems, assuming they have had only one semester of calculus. The text includes projects, problems and exercises: the projects ask the students to engage with the research literature, problems ask the students to extend their understanding of the materials and exercises ask the students to check their understanding as they read the text. Students who successfully work their way through the text will be able to engage in a meaningful way with the research literature to the point that they would be able to make genuine contributions to the literature. |
does biology involve math: Life's Devices Steven Vogel, 1988-12-21 Describes how living things bump up against nonbiological reality. |
does biology involve math: Calculus and ODEs David Pearson, 1996 This book starts with an introduction to the area and explanation of the most commonly used functions, it then moves on through differentiation, special function, derivatives, integrals and onto full differential equations. |
does biology involve math: Mathematical Biology II James D. Murray, 2011-02-15 This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences.--SHORT BOOK REVIEWS |
does biology involve math: Cardiovascular Biomechanics Peter R. Hoskins, Patricia V. Lawford, Barry J. Doyle, 2017-02-16 This book provides a balanced presentation of the fundamental principles of cardiovascular biomechanics research, as well as its valuable clinical applications. Pursuing an integrated approach at the interface of the life sciences, physics and engineering, it also includes extensive images to explain the concepts discussed. With a focus on explaining the underlying principles, this book examines the physiology and mechanics of circulation, mechanobiology and the biomechanics of different components of the cardiovascular system, in-vivo techniques, in-vitro techniques, and the medical applications of this research. Written for undergraduate and postgraduate students and including sample problems at the end of each chapter, this interdisciplinary text provides an essential introduction to the topic. It is also an ideal reference text for researchers and clinical practitioners, and will benefit a wide range of students and researchers including engineers, physicists, biologists and clinicians who are interested in the area of cardiovascular biomechanics. |
does biology involve math: Mathematics And The Natural Sciences: The Physical Singularity Of Life Giuseppe Longo, Francis Bailly, 2011-03-04 This book identifies the organizing concepts of physical and biological phenomena by an analysis of the foundations of mathematics and physics. Our aim is to propose a dialog between different conceptual universes and thus to provide a unification of phenomena. The role of “order” and symmetries in the foundations of mathematics is linked to the main invariants and principles, among them the geodesic principle (a consequence of symmetries), which govern and confer unity to various physical theories. Moreover, an attempt is made to understand causal structures, a central element of physical intelligibility, in terms of both symmetries and symmetry breakings. A distinction between the principles of (conceptual) construction and of proofs, both in physics and in mathematics, guides most of the work.The importance of mathematical tools is also highlighted to clarify differences in the models for physics and biology that are proposed by continuous and discrete mathematics, such as computational simulations.Since biology is particularly complex and not as well understood at a theoretical level, we propose a “unification by concepts” which in any case should precede mathematization. This constitutes an outline for unification also based on highlighting conceptual differences, complex points of passage and technical irreducibilities of one field to another. Indeed, we suppose here a very common monist point of view, namely the view that living objects are “big bags of molecules”. The main question though is to understand which “theory” can help better understand these bags of molecules. They are, indeed, rather “singular”, from the physical point of view. Technically, we express this singularity through the concept of “extended criticality”, which provides a logical extension of the critical transitions that are known in physics. The presentation is mostly kept at an informal and conceptual level./a |
does biology involve math: What is Mathematics? Richard Courant, Herbert Robbins, 1996 The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but not real understanding or greater intellectual independence. The new edition of this classic work seeks to address this problem. Its goal is to put the meaning back into mathematics. Lucid . . . easily understandable.--Albert Einstein. 301 linecuts. |
does biology involve math: Algebraic Statistics for Computational Biology L. Pachter, B. Sturmfels, 2005-08-22 This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology. |
does biology involve math: A Primer on Natural Resource Science Fred S. Guthery, 2008-04-02 In wildlife, fisheries, forestry, and range management departments around the country, natural resource scientists and their students advance understanding of the natural world largely through the collection and analysis of data. These students learn how to acquire data in the field and analyze them using modeling and other statistical methods. What they do not learn, contends author Fred S. Guthery, is what science means as an intellectual pursuit and where natural resource science fits in the scientific tradition. He argues that without education about the nature and philosophy of science, the wildlife field has become enamored with its methodologies at the expense of gaining real knowledge, leading to what some have characterized as “a crisis in how wildlife science is pursued.” With A Primer on Natural Resource Science, Guthery intends to put learning about the nature of science into the natural resource scientist’s university curriculum. In the first part of the book, “Perspectives,” Guthery describes the principles of the scientific endeavor, discussing the nature of reasoning, of facts, of creativity and critical thinking. In the second part, “Practice,” he presents the “mechanics” of science, explaining the roles of experiment, observation, models, and statistics. He also demystifies the essential activity of publishing, telling students and researchers why they must do it and how to do it successfully. Throughout the book, Guthery uses his long experience and the body of his own research to relate the philosophical underpinnings of science to the realities of field biology. By providing real-life examples in the practice of natural resource science, Guthery offers practical, occasionally painful, and sometimes humorous lessons on the human urge to know about nature through science. |
does biology involve math: Models and Computability S. Barry Cooper, John K. Truss, Association for Symbolic Logic, 1999-06-17 Second of two volumes providing a comprehensive guide to the current state of mathematical logic. |
does biology involve math: A New Biology for the 21st Century National Research Council, Division on Earth and Life Studies, Board on Life Sciences, Committee on a New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology Revolution, 2009-11-20 Now more than ever, biology has the potential to contribute practical solutions to many of the major challenges confronting the United States and the world. A New Biology for the 21st Century recommends that a New Biology approach-one that depends on greater integration within biology, and closer collaboration with physical, computational, and earth scientists, mathematicians and engineers-be used to find solutions to four key societal needs: sustainable food production, ecosystem restoration, optimized biofuel production, and improvement in human health. The approach calls for a coordinated effort to leverage resources across the federal, private, and academic sectors to help meet challenges and improve the return on life science research in general. |
does biology involve math: Strengthening the Linkages Between the Sciences and the Mathematical Sciences National Research Council, Commission on Physical Sciences, Mathematics, and Applications, Committee on Strengthening the Linkages Between the Sciences and the Mathematical Sciences, 2000-04-05 Over three hundred years ago, Galileo is reported to have said, The laws of nature are written in the language of mathematics. Often mathematics and science go hand in hand, with one helping develop and improve the other. Discoveries in science, for example, open up new advances in statistics, computer science, operations research, and pure and applied mathematics which in turn enabled new practical technologies and advanced entirely new frontiers of science. Despite the interdependency that exists between these two disciplines, cooperation and collaboration between mathematical scientists and scientists have only occurred by chance. To encourage new collaboration between the mathematical sciences and other fields and to sustain present collaboration, the National Research Council (NRC) formed a committee representing a broad cross-section of scientists from academia, federal government laboratories, and industry. The goal of the committee was to examine the mechanisms for strengthening interdisciplinary research between mathematical sciences and the sciences, with a strong focus on suggesting the most effective mechanisms of collaboration. Strengthening the Linkages Between the Sciences and the Mathematical Sciences provides the findings and recommendations of the committee as well as case studies of cross-discipline collaboration, the workshop agenda, and federal agencies that provide funding for such collaboration. |
does biology involve math: Introduction to Mathematical Oncology Yang Kuang, John D. Nagy, Steffen E. Eikenberry, 2016-04-05 Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology. |
does biology involve math: Which One Doesn't Belong? Christopher Danielson, 2019-02-12 Talking math with your child is simple and even entertaining with this better approach to shapes! Written by a celebrated math educator, this innovative inquiry encourages critical thinking and sparks memorable mathematical conversations. Children and their parents answer the same question about each set of four shapes: Which one doesn't belong? There's no one right answer--the important thing is to have a reason why. Kids might describe the shapes as squished, smooshed, dented, or even goofy. But when they justify their thinking, they're talking math! Winner of the Mathical Book Prize for books that inspire children to see math all around them. This is one shape book that will both challenge readers' thinking and encourage them to think outside the box.--Kirkus Reviews, STARRED review |
does biology involve math: Model Based Learning and Instruction in Science John Clement, Mary Anne Rea-Ramirez, 2007-12-07 Anyone involved in science education will find that this text can enhance their pedagogical practice. It describes new, model-based teaching methods that integrate social and cognitive perspectives for science instruction. It presents research that describes how these new methods are applied in a diverse group of settings, including middle school biology, high school physics, and college chemistry classrooms. They offer practical tips for teaching the toughest of key concepts. |
does biology involve math: Mathematical Concepts and Methods in Modern Biology Raina Robeva, Terrell Hodge, 2013-02-26 Mathematical Concepts and Methods in Modern Biology offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology.Designed around the principles of project-based learning and problem-solving, the book considers biological topics such as neuronal networks, plant population growth, metabolic pathways, and phylogenetic tree reconstruction. The mathematical modeling tools brought to bear on these topics include Boolean and ordinary differential equations, projection matrices, agent-based modeling and several algebraic approaches. Heavy computation in some of the examples is eased by the use of freely available open-source software. - Features self-contained chapters with real biological research examples using freely available computational tools - Spans several mathematical techniques at basic to advanced levels - Offers broad perspective on the uses of algebraic geometry/polynomial algebra in molecular systems biology |
does biology involve math: The Nature of Science in Science Education W.F. McComas, 2006-04-11 This is the first book to blend a justification for the inclusion of the history and philosophy of science in science teaching with methods by which this vital content can be shared with a variety of learners. It contains a complete analysis of the variety of tools developed thus far to assess learning in this domain. This book is relevant to science methods instructors, science education graduate students and science teachers. |
Introduction to Mathematical Bio…
interdisciplinary field of mathematical biology. A typical case study in …
THE ROLE OF MATHEMATICS I…
Mathematical biology or biomathematics is a fast-growing well-recognized …
Basic Mathematics for Biologists - U…
In Biology, as is the case with many sciences, you will occasionally encounter …
lecture 1 the role of mathematics in biology - Harvard University
how do we get from dead molecules to living organisms? how do the collective interactions of molecular components give rise to the phenotype of the organism? Marc Kirschner, “The …
Introduction to Mathematical Biology - Ohio State University
interdisciplinary field of mathematical biology. A typical case study in mathemati-cal biology consists of several steps. The initial step is a description of a biological process which gives …
THE ROLE OF MATHEMATICS IN BIOLOGY - South …
Mathematical biology or biomathematics is a fast-growing well-recognized and the most exciting modern application of mathematics. This is an interdisciplinary research area with a range of …
Basic Mathematics for Biologists - Universiteit Utrecht
In Biology, as is the case with many sciences, you will occasionally encounter mathematics. Wherever you go after your Biology degree, you are likely to encounter models – interesting …
Math of Microbiology: an Approach to Increase Math Skills in ...
Project objective: increase math skills relevant to science careers through multiple math exposures in a Microbiology course. Perspective on the students: all students taking the 300 …
Math for Biology - An Introduction - Lehman
Terri A. Grosso Math for Biology - An Introduction. Math for Biology - An Introduction Terri A. Grosso Outline Di erential Equations - An Overview The Law of Mass Action Enzyme Kinetics …
Math Placement Recommendations for Biology Majors
All biology majors should take the Math Placement Exam (MPE) to determine which math class they are eligible enroll in their first semester. Students who have not yet taken the exam can …
What Is Mathematical Biology and How Useful Is It?
Work in mathematical biology is typically a collaboration between a mathematician and a biologist. The latter will pose the biological ques-tions or describe a set of experiments, while the former …
Mathematical Biology major - University of Pittsburgh
Students will acquire fundamental skills in mathematical analysis and simulation, specialized experience in mathematical modeling in biology and neuroscience, and knowledge of …
Math 155: Calculus for the Biological Sciences - Colorado …
Functions and modeling are the main tools needed to use mathematics to study biology. Modeling is the art of taking a description of a biological phenomenon and converting it into …
Biology, Mathematics, and a Mathematical Biology Laboratory
What is the function of mathematical biology? Our answer to this question, and the guiding philosophy of this book, is simple: The function of mathematical biology is to exploit the natural …
Mathematics for Biosciences: Biology and Medicine as an …
Mathematical Biology is the application of mathematical concepts, modeling and techniques to solve problems in biology and physiology. It is one of the fastest growing research areas in …
What is Biomath - American Mathematical Society
Biomathematics is the use of mathematical models to help understand phenomena in biology. Modern experimental biology is very good at taking biological systems apart (at all levels of …
On the Edge of Mathematics and Biology Integration: …
MathBench Biology Modules represent one example of how biology educators can incorporate materials to improve quantitative skills and reasoning into introductory courses.
Cambridge IGCSE Biology Revision Guide SAMPLE
In biology, there are lots of contexts where maths is used. You will be calculating magnification and using scale when working with microscopes. Probability and ratio are used to interpret the …
Getting Started in Mathematical Biology - American …
Mathematical biology, like mathematical chemistry and physics, is a highly interdiscipli- nary area that defies classification into the usual categories of mathematical research. The area lies at …
Some Applications of Mathematics for the Biology Classroom …
Key Words: Math in biology; mathematical applications; quantification in biology. Biology and mathematics are inextricably linked. By making biology more quantitative, teachers can …
Reimagining the Introductory Math Curriculum for Life …
Nov 4, 2020 · that is relevant to biological systems or connect with students’ interests in biology. We developed a transformative approach to teaching college-level math, using a dynamical …
Why Is Mathematical Biology So Hard? - Sites@Duke
Nov 4, 2015 · Although there is a long history of the applica-tions of mathematics to biology, only recently has mathematical biology become an accepted, though perhaps not respected, …
Why Is Mathematical Biology So Hard? - American …
mathematical biology become an accepted branch of applied mathematics. Undergraduates are doing research projects and graduate students are writ-ing Ph.D. dissertations in mathematical …