Advertisement
does programming require math: Math for Programmers Paul Orland, 2021-01-12 In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks |
does programming require math: A Programmer's Introduction to Mathematics Jeremy Kun, 2020-05-17 A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog Math Intersect Programming. As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices. |
does programming require math: Mathematics for Computer Programmers Christine Benedyk Kay, 1984 Number systems I. Sets. Integer and real number sets. Format arithmetic. Algorithms. Solving problems using input. process, and output. Algorithms. Flowcharts. Algebraic applications for programming. Language of algebra. Algebraic expressions of not equal. Exponents. Equations. Advanced algebra concepts. Quadratic equations. Linear equations. Linear programming. Functions. Sequence and subscripted variables. Matrices. Binary systems. Number base concepts. Binary, octal, and hexadecimal numbers. Computer codes. Boolean algebra concepts. Mathematical logic. Boolean algebra and computer logic. |
does programming require math: Doing Math with Python Amit Saha, 2015-08-01 Doing Math with Python shows you how to use Python to delve into high school–level math topics like statistics, geometry, probability, and calculus. You’ll start with simple projects, like a factoring program and a quadratic-equation solver, and then create more complex projects once you’ve gotten the hang of things. Along the way, you’ll discover new ways to explore math and gain valuable programming skills that you’ll use throughout your study of math and computer science. Learn how to: –Describe your data with statistics, and visualize it with line graphs, bar charts, and scatter plots –Explore set theory and probability with programs for coin flips, dicing, and other games of chance –Solve algebra problems using Python’s symbolic math functions –Draw geometric shapes and explore fractals like the Barnsley fern, the Sierpinski triangle, and the Mandelbrot set –Write programs to find derivatives and integrate functions Creative coding challenges and applied examples help you see how you can put your new math and coding skills into practice. You’ll write an inequality solver, plot gravity’s effect on how far a bullet will travel, shuffle a deck of cards, estimate the area of a circle by throwing 100,000 darts at a board, explore the relationship between the Fibonacci sequence and the golden ratio, and more. Whether you’re interested in math but have yet to dip into programming or you’re a teacher looking to bring programming into the classroom, you’ll find that Python makes programming easy and practical. Let Python handle the grunt work while you focus on the math. Uses Python 3 |
does programming require math: Mathematics and Programming for Machine Learning with R William Claster, 2020-10-26 Based on the author’s experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms |
does programming require math: 3D Math Primer for Graphics and Game Development, 2nd Edition Fletcher Dunn, Ian Parberry, 2011-11-02 This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for game designers, including the fundamentals of coordinate spaces, vectors, and matrices. It also covers orientation in three dimensions, calculus and dynamics, graphics, and parametric curves. |
does programming require math: Programming for Mathematicians Raymond Seroul, 2012-12-06 Aimed at teaching mathematics students how to program using their knowledge of mathematics, the entire books emphasis is on how to think when programming. Three methods for constructing an algorithm or a program are used: manipulation and enrichment of existing code; use of recurrent sequences; deferral of code writing, in order to deal with one difficulty at a time. Many theorems are mathematically proved and programmed, and the text concludes with an explanation of how a compiler works and how to compile by hand little programs. Intended for anyone who thinks mathematically and wants to program and play with mathematics. |
does programming require math: Beginning Math and Physics for Game Programmers Wendy Stahler, Dustin Clingman, Kaveh Kahrizi, 2004 Whether one is a hobbyist or a budding game design pro, the objective is probably the same: to create the coolest games possible using today's increasingly sophisticated technology. Through clear, step-by-step instructions, author Wendy Stahler covers the trigonometry snippets, vector operations, and 1D/2D/3D motion designers need to improve their level of game development. |
does programming require math: Concrete Mathematics Ronald L. Graham, Donald E. Knuth, Oren Patashnik, 1994-02-28 This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. More concretely, the authors explain, it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems. The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them. |
does programming require math: Programming Mathematics Using MATLAB Lisa A. Oberbroeckling, 2020-05-27 Providing an alternative to engineering-focused resources in the area, Programming Mathematics Using MATLAB® introduces the basics of programming and of using MATLAB® by highlighting many mathematical examples. Emphasizing mathematical concepts through the visualization of programming throughout the book, this useful resource utilizes examples that may be familiar to math students (such as numerical integration) and others that may be new (such as fractals). Additionally, the text uniquely offers a variety of MATLAB® projects, all of which have been class-tested thoroughly, and which enable students to put MATLAB® programming into practice while expanding their comprehension of concepts such as Taylor polynomials and the Gram-Schmidt process. Programming Mathematics Using MATLAB® is appropriate for readers familiar with sophomore-level mathematics (vectors, matrices, multivariable calculus), and is useful for math courses focused on MATLAB® specifically and those focused on mathematical concepts which seek to utilize MATLAB® in the classroom. |
does programming require math: Good Math Mark C. Chu-Carroll, 2013-07-18 Mathematics is beautiful--and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you've ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of computer on your desk, this is the book for you. Why do Roman numerals persist? How do we know that some infinities are larger than others? And how can we know for certain a program will ever finish? In this fast-paced tour of modern and not-so-modern math, computer scientist Mark Chu-Carroll explores some of the greatest breakthroughs and disappointments of more than two thousand years of mathematical thought. There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular Good Math blog, you'll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird. Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing. If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark's book will both entertain and enlighten you. |
does programming require math: Elements of Programming Alexander Stepanov, Paul McJones, 2019-06-17 Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. This book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software. |
does programming require math: Math Toolkit for Real-Time Programming Jack Crenshaw, 2000-01-09 Do big math on small machines Write fast and accurate library functions Master analytical and numerical calculus Perform numerical integration to any order Implement z-transform formulas Need to learn the ins and outs of the fundamental math functions in |
does programming require math: Mathematical Computing David Betounes, Mylan Redfern, 2012-12-06 This book teaches introductory computer programming using Maple, offering more mathematically oriented exercises and problems than those found in traditional programming courses, while reinforcing and applying concepts and techniques of calculus. Includes case studies. |
does programming require math: Scala for the Impatient Cay S. Horstmann, 2012-03-08 Scala is a modern programming language for the Java Virtual Machine (JVM) that combines the best features of object-oriented and functional programming languages. Using Scala, you can write programs more concisely than in Java, as well as leverage the full power of concurrency. Since Scala runs on the JVM, it can access any Java library and is interoperable with Java frameworks. Scala for the Impatient concisely shows developers what Scala can do and how to do it. In this book, Cay Horstmann, the principal author of the international best-selling Core Java™, offers a rapid, code-based introduction that’s completely practical. Horstmann introduces Scala concepts and techniques in “blog-sized” chunks that you can quickly master and apply. Hands-on activities guide you through well-defined stages of competency, from basic to expert. Coverage includes Getting started quickly with Scala’s interpreter, syntax, tools, and unique idioms Mastering core language features: functions, arrays, maps, tuples, packages, imports, exception handling, and more Becoming familiar with object-oriented programming in Scala: classes, inheritance, and traits Using Scala for real-world programming tasks: working with files, regular expressions, and XML Working with higher-order functions and the powerful Scala collections library Leveraging Scala’s powerful pattern matching and case classes Creating concurrent programs with Scala actors Implementing domain-specific languages Understanding the Scala type system Applying advanced “power tools” such as annotations, implicits, and delimited continuations Scala is rapidly reaching a tipping point that will reshape the experience of programming. This book will help object-oriented programmers build on their existing skills, allowing them to immediately construct useful applications as they gradually master advanced programming techniques. |
does programming require math: Essential Mathematics for Games and Interactive Applications James M. Van Verth, Lars M. Bishop, 2008-05-19 Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction. |
does programming require math: Mathematical Logic through Python Yannai A. Gonczarowski, Noam Nisan, 2022-07-31 Using a unique pedagogical approach, this text introduces mathematical logic by guiding students in implementing the underlying logical concepts and mathematical proofs via Python programming. This approach, tailored to the unique intuitions and strengths of the ever-growing population of programming-savvy students, brings mathematical logic into the comfort zone of these students and provides clarity that can only be achieved by a deep hands-on understanding and the satisfaction of having created working code. While the approach is unique, the text follows the same set of topics typically covered in a one-semester undergraduate course, including propositional logic and first-order predicate logic, culminating in a proof of Gödel's completeness theorem. A sneak peek to Gödel's incompleteness theorem is also provided. The textbook is accompanied by an extensive collection of programming tasks, code skeletons, and unit tests. Familiarity with proofs and basic proficiency in Python is assumed. |
does programming require math: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
does programming require math: How to Solve it George Pólya, 2014 Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams.--Back cover. |
does programming require math: Java Programming Ralph Bravaco, Shai Simonson, 2009-02-01 Java Programming, From The Ground Up, with its flexible organization, teaches Java in a way that is refreshing, fun, interesting and still has all the appropriate programming pieces for students to learn. The motivation behind this writing is to bring a logical, readable, entertaining approach to keep your students involved. Each chapter has a Bigger Picture section at the end of the chapter to provide a variety of interesting related topics in computer science. The writing style is conversational and not overly technical so it addresses programming concepts appropriately. Because of the flexibile organization of the text, it can be used for a one or two semester introductory Java programming class, as well as using Java as a second language. The text contains a large variety of carefully designed exercises that are more effective than the competition. |
does programming require math: Mathematics for Game Developers Christopher Tremblay, 2004 The author introduces the major branches of mathematics that are essential for game development and demonstrates the applications of these concepts to game programming. |
does programming require math: A Mind for Numbers Barbara A. Oakley, 2014-07-31 Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. In her book, she offers you the tools needed to get a better grasp of that intimidating but inescapable field. |
does programming require math: Computer Graphics from Scratch Gabriel Gambetta, 2021-05-13 Computer Graphics from Scratch demystifies the algorithms used in modern graphics software and guides beginners through building photorealistic 3D renders. Computer graphics programming books are often math-heavy and intimidating for newcomers. Not this one. Computer Graphics from Scratch takes a simpler approach by keeping the math to a minimum and focusing on only one aspect of computer graphics, 3D rendering. You’ll build two complete, fully functional renderers: a raytracer, which simulates rays of light as they bounce off objects, and a rasterizer, which converts 3D models into 2D pixels. As you progress you’ll learn how to create realistic reflections and shadows, and how to render a scene from any point of view. Pseudocode examples throughout make it easy to write your renderers in any language, and links to live JavaScript demos of each algorithm invite you to explore further on your own. Learn how to: Use perspective projection to draw 3D objects on a 2D plane Simulate the way rays of light interact with surfaces Add mirror-like reflections and cast shadows to objects Render a scene from any camera position using clipping planes Use flat, Gouraud, and Phong shading to mimic real surface lighting Paint texture details onto basic shapes to create realistic-looking objects Whether you’re an aspiring graphics engineer or a novice programmer curious about how graphics algorithms work, Gabriel Gambetta’s simple, clear explanations will quickly put computer graphics concepts and rendering techniques within your reach. All you need is basic coding knowledge and high school math. Computer Graphics from Scratch will cover the rest. |
does programming require math: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-03-08 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. |
does programming require math: Mathematics for 3D Game Programming and Computer Graphics Eric Lengyel, 2020-08 Sooner or later, all game programmers run into coding issues that require an understanding of mathematics or physics concepts such as collision detection, 3D vectors, transformations, game theory, or basic calculus. Unfortunately, most programmers frequently have a limited understanding of these essential mathematics and physics concepts. MATHEMATICS AND PHYSICS FOR PROGRAMMERS, THIRD EDITION provides a simple but thorough grounding in the mathematics and physics topics that programmers require to write algorithms and programs using a non-language-specific approach. Applications and examples from game programming are included throughout, and exercises follow each chapter for additional practice. The book's companion website provides sample code illustrating the mathematical and physics topics discussed in the book. |
does programming require math: A Practical Theory of Programming Eric C.R. Hehner, 2012-09-08 There are several theories of programming. The first usable theory, often called Hoare's Logic, is still probably the most widely known. In it, a specification is a pair of predicates: a precondition and postcondition (these and all technical terms will be defined in due course). Another popular and closely related theory by Dijkstra uses the weakest precondition predicate transformer, which is a function from programs and postconditions to preconditions. lones's Vienna Development Method has been used to advantage in some industries; in it, a specification is a pair of predicates (as in Hoare's Logic), but the second predicate is a relation. Temporal Logic is yet another formalism that introduces some special operators and quantifiers to describe some aspects of computation. The theory in this book is simpler than any of those just mentioned. In it, a specification is just a boolean expression. Refinement is just ordinary implication. This theory is also more general than those just mentioned, applying to both terminating and nonterminating computation, to both sequential and parallel computation, to both stand-alone and interactive computation. And it includes time bounds, both for algorithm classification and for tightly constrained real-time applications. |
does programming require math: Discrete Mathematics and Functional Programming Thomas VanDrunen, 2013 This book provides a distinct way to teach discrete mathematics. Since discrete mathematics is crucial for rigorous study in computer science, many texts include applications of mathematical topics to computer science or have selected topics of particular interest to computer science. This text fully integrates discrete mathematics with ...... |
does programming require math: Notes on Diffy Qs Jiri Lebl, 2019-11-13 Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions. |
does programming require math: The Haskell Road to Logic, Maths and Programming Kees Doets, Jan Eijck, 2004 Long ago, when Alexander the Great asked the mathematician Menaechmus for a crash course in geometry, he got the famous reply ``There is no royal road to mathematics.'' Where there was no shortcut for Alexander, there is no shortcut for us. Still, the fact that we have access to computers and mature programming languages means that there are avenues for us that were denied to the kings and emperors of yore. The purpose of this book is to teach logic and mathematical reasoning in practice, and to connect logical reasoning with computer programming in Haskell. Haskell emerged in the 1990s as a standard for lazy functional programming, a programming style where arguments are evaluated only when the value is actually needed. Haskell is a marvelous demonstration tool for logic and maths because its functional character allows implementations to remain very close to the concepts that get implemented, while the laziness permits smooth handling of infinite data structures. This book does not assume the reader to have previous experience with either programming or construction of formal proofs, but acquaintance with mathematical notation, at the level of secondary school mathematics is presumed. Everything one needs to know about mathematical reasoning or programming is explained as we go along. After proper digestion of the material in this book, the reader will be able to write interesting programs, reason about their correctness, and document them in a clear fashion. The reader will also have learned how to set up mathematical proofs in a structured way, and how to read and digest mathematical proofs written by others. This is the updated, expanded, and corrected second edition of a much-acclaimed textbook. Praise for the first edition: 'Doets and van Eijck's ``The Haskell Road to Logic, Maths and Programming'' is an astonishingly extensive and accessible textbook on logic, maths, and Haskell.' Ralf Laemmel, Professor of Computer Science, University of Koblenz-Landau |
does programming require math: Applied Mathematical Programming Stephen P. Bradley, Arnoldo C. Hax, Thomas L. Magnanti, 1977 Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem. |
does programming require math: The Math Myth Andrew Hacker, 2010-05-25 A New York Times–bestselling author looks at mathematics education in America—when it’s worthwhile, and when it’s not. Why do we inflict a full menu of mathematics—algebra, geometry, trigonometry, even calculus—on all young Americans, regardless of their interests or aptitudes? While Andrew Hacker has been a professor of mathematics himself, and extols the glories of the subject, he also questions some widely held assumptions in this thought-provoking and practical-minded book. Does advanced math really broaden our minds? Is mastery of azimuths and asymptotes needed for success in most jobs? Should the entire Common Core syllabus be required of every student? Hacker worries that our nation’s current frenzied emphasis on STEM is diverting attention from other pursuits and even subverting the spirit of the country. Here, he shows how mandating math for everyone prevents other talents from being developed and acts as an irrational barrier to graduation and careers. He proposes alternatives, including teaching facility with figures, quantitative reasoning, and understanding statistics. Expanding upon the author’s viral New York Times op-ed, The Math Myth is sure to spark a heated and needed national conversation—not just about mathematics but about the kind of people and society we want to be. “Hacker’s accessible arguments offer plenty to think about and should serve as a clarion call to students, parents, and educators who decry the one-size-fits-all approach to schooling.” —Publishers Weekly, starred review |
does programming require math: Type Theory and Functional Programming Simon Thompson, 1991 This book explores the role of Martin-Lof s constructive type theory in computer programming. The main focus of the book is how the theory can be successfully applied in practice. Introductory sections provide the necessary background in logic, lambda calculus and constructive mathematics, and exercises and chapter summaries are included to reinforce understanding. |
does programming require math: Category Theory for Programmers (New Edition, Hardcover) Bartosz Milewski, 2019-08-24 Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might, therefore, come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well-structured programs are easier to understand and maintain and are less likely to contain bugs. Category theory provides the language to talk about structure and learning it will make you a better programmer. |
does programming require math: The Smartest Kids in the World Amanda Ripley, 2014-07-29 Following three teenagers who chose to spend one school year living in Finland, South Korea, and Poland, a literary journalist recounts how attitudes, parenting, and rigorous teaching have revolutionized these countries' education results. |
does programming require math: Changing Minds Andrea A. DiSessa, 2000 How computer technology can transform science education for children. |
does programming require math: Ultralearning Scott H. Young, 2019-08-06 Now a Wall Street Journal bestseller. Learn a new talent, stay relevant, reinvent yourself, and adapt to whatever the workplace throws your way. Ultralearning offers nine principles to master hard skills quickly. This is the essential guide to future-proof your career and maximize your competitive advantage through self-education. In these tumultuous times of economic and technological change, staying ahead depends on continual self-education—a lifelong mastery of fresh ideas, subjects, and skills. If you want to accomplish more and stand apart from everyone else, you need to become an ultralearner. The challenge of learning new skills is that you think you already know how best to learn, as you did as a student, so you rerun old routines and old ways of solving problems. To counter that, Ultralearning offers powerful strategies to break you out of those mental ruts and introduces new training methods to help you push through to higher levels of retention. Scott H. Young incorporates the latest research about the most effective learning methods and the stories of other ultralearners like himself—among them Benjamin Franklin, chess grandmaster Judit Polgár, and Nobel laureate physicist Richard Feynman, as well as a host of others, such as little-known modern polymath Nigel Richards, who won the French World Scrabble Championship—without knowing French. Young documents the methods he and others have used to acquire knowledge and shows that, far from being an obscure skill limited to aggressive autodidacts, ultralearning is a powerful tool anyone can use to improve their career, studies, and life. Ultralearning explores this fascinating subculture, shares a proven framework for a successful ultralearning project, and offers insights into how you can organize and exe - cute a plan to learn anything deeply and quickly, without teachers or budget-busting tuition costs. Whether the goal is to be fluent in a language (or ten languages), earn the equivalent of a college degree in a fraction of the time, or master multiple tools to build a product or business from the ground up, the principles in Ultralearning will guide you to success. |
does programming require math: Learn to Program with Small Basic Majed Marji, Ed Price, 2016-04-16 Small Basic is a free, beginner-friendly programming language created by Microsoft. Inspired by BASIC, which introduced programming to millions of first-time PC owners in the 1970s and 1980s, Small Basic is a modern language that makes coding simple and fun. Learn to Program with Small Basic introduces you to the empowering world of programming. You’ll master the basics with simple activities like displaying messages and drawing colorful pictures, and then work your way up to programming games! Learn how to: –Program your computer to greet you by name –Make a game of rock-paper-scissors using If/Else statements –Create an interactive treasure map using arrays –Draw intricate geometric patterns with just a few lines of code –Simplify complex programs by breaking them into bite-sized subroutines You’ll also learn to command a turtle to draw shapes, create magical moving text, solve math problems quickly, help a knight slay a dragon, and more! Each chapter ends with creative coding challenges so you can take your skills to the next level. Learn to Program with Small Basic is the perfect place to start your computer science journey. |
does programming require math: From Mathematics to Generic Programming Alexander A. Stepanov, Daniel E. Rose, 2014-11-13 In this substantive yet accessible book, pioneering software designer Alexander Stepanov and his colleague Daniel Rose illuminate the principles of generic programming and the mathematical concept of abstraction on which it is based, helping you write code that is both simpler and more powerful. If you’re a reasonably proficient programmer who can think logically, you have all the background you’ll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you’ll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You’ll also gain deep insight into the value of mathematics to programming—insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn about How to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiency Ancient paradoxes, beautiful theorems, and the productive tension between continuous and discrete A simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on it Powerful mathematical approaches to abstraction How abstract algebra provides the idea at the heart of generic programming Axioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structures Surprising subtleties of simple programming tasks and what you can learn from them How practical implementations can exploit theoretical knowledge |
does programming require math: Applied Cryptography Bruce Schneier, 2017-05-25 From the world's most renowned security technologist, Bruce Schneier, this 20th Anniversary Edition is the most definitive reference on cryptography ever published and is the seminal work on cryptography. Cryptographic techniques have applications far beyond the obvious uses of encoding and decoding information. For developers who need to know about capabilities, such as digital signatures, that depend on cryptographic techniques, there's no better overview than Applied Cryptography, the definitive book on the subject. Bruce Schneier covers general classes of cryptographic protocols and then specific techniques, detailing the inner workings of real-world cryptographic algorithms including the Data Encryption Standard and RSA public-key cryptosystems. The book includes source-code listings and extensive advice on the practical aspects of cryptography implementation, such as the importance of generating truly random numbers and of keeping keys secure. . . .the best introduction to cryptography I've ever seen. . . .The book the National Security Agency wanted never to be published. . . . -Wired Magazine . . .monumental . . . fascinating . . . comprehensive . . . the definitive work on cryptography for computer programmers . . . -Dr. Dobb's Journal . . .easily ranks as one of the most authoritative in its field. -PC Magazine The book details how programmers and electronic communications professionals can use cryptography-the technique of enciphering and deciphering messages-to maintain the privacy of computer data. It describes dozens of cryptography algorithms, gives practical advice on how to implement them into cryptographic software, and shows how they can be used to solve security problems. The book shows programmers who design computer applications, networks, and storage systems how they can build security into their software and systems. With a new Introduction by the author, this premium edition will be a keepsake for all those committed to computer and cyber security. |
does programming require math: A Tour of the Calculus David Berlinski, 2011-04-27 Were it not for the calculus, mathematicians would have no way to describe the acceleration of a motorcycle or the effect of gravity on thrown balls and distant planets, or to prove that a man could cross a room and eventually touch the opposite wall. Just how calculus makes these things possible and in doing so finds a correspondence between real numbers and the real world is the subject of this dazzling book by a writer of extraordinary clarity and stylistic brio. Even as he initiates us into the mysteries of real numbers, functions, and limits, Berlinski explores the furthest implications of his subject, revealing how the calculus reconciles the precision of numbers with the fluidity of the changing universe. An odd and tantalizing book by a writer who takes immense pleasure in this great mathematical tool, and tries to create it in others.--New York Times Book Review |
DOES Definition & Meaning - Merriam-Webster
The meaning of DOES is present tense third-person singular of do; plural of doe.
DOES Definition & Meaning | Dictionary.com
Does definition: a plural of doe.. See examples of DOES used in a sentence.
"Do" vs. "Does" – What's The Difference? | Thesaurus.com
Aug 18, 2022 · Both do and does are present tense forms of the verb do. Which is the correct form to use depends on the subject of your sentence. In this article, we’ll explain the difference …
Do vs. Does: How to Use Does vs Do in Sentences - Confused Words
Apr 16, 2019 · When using infinitives with do and does, it is important to remember that DO is the base form of the verb, while DOES is the third-person singular form. Here are some examples: …
DOES | English meaning - Cambridge Dictionary
Get a quick, free translation! DOES definition: 1. he/she/it form of do 2. he/she/it form of do 3. present simple of do, used with he/she/it. Learn more.
Grammar: When to Use Do, Does, and Did - Proofed
Aug 12, 2022 · We’ve put together a guide to help you use do, does, and did as action and auxiliary verbs in the simple past and present tenses.
does verb - Definition, pictures, pronunciation and usage ...
Definition of does verb in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Do or Does: Which is Correct? – Strategies for Parents
Nov 29, 2021 · Like other verbs, “do” gets an “s” in the third-person singular, but we spell it with “es” — “does.” Let’s take a closer look at how “do” and “does” are different and when to use …
Do or Does – How to Use Them Correctly - Two Minute English
Mar 28, 2024 · Understanding when to use “do” and “does” is key for speaking and writing English correctly. Use “do” with the pronouns I, you, we, and they. For example, “I do like pizza” or …
DOES definition and meaning | Collins English Dictionary
Does is the third person singular in the present tense of do 1. Collins COBUILD Advanced Learner’s Dictionary. Copyright © HarperCollins Publishers. English Easy Learning Grammar …
DOES Definition & Meaning - Merriam-Webster
The meaning of DOES is present tense third-person singular of do; plural of doe.
DOES Definition & Meaning | Dictionary.com
Does definition: a plural of doe.. See examples of DOES used in a sentence.
"Do" vs. "Does" – What's The Difference? | Thesaurus.com
Aug 18, 2022 · Both do and does are present tense forms of the verb do. Which is the correct form to use depends on the subject of your sentence. In this article, we’ll explain the difference …
Do vs. Does: How to Use Does vs Do in Sentences - Confused Words
Apr 16, 2019 · When using infinitives with do and does, it is important to remember that DO is the base form of the verb, while DOES is the third-person singular form. Here are some examples: …
DOES | English meaning - Cambridge Dictionary
Get a quick, free translation! DOES definition: 1. he/she/it form of do 2. he/she/it form of do 3. present simple of do, used with he/she/it. Learn more.
Grammar: When to Use Do, Does, and Did - Proofed
Aug 12, 2022 · We’ve put together a guide to help you use do, does, and did as action and auxiliary verbs in the simple past and present tenses.
does verb - Definition, pictures, pronunciation and usage ...
Definition of does verb in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Do or Does: Which is Correct? – Strategies for Parents
Nov 29, 2021 · Like other verbs, “do” gets an “s” in the third-person singular, but we spell it with “es” — “does.” Let’s take a closer look at how “do” and “does” are different and when to use …
Do or Does – How to Use Them Correctly - Two Minute English
Mar 28, 2024 · Understanding when to use “do” and “does” is key for speaking and writing English correctly. Use “do” with the pronouns I, you, we, and they. For example, “I do like pizza” or …
DOES definition and meaning | Collins English Dictionary
Does is the third person singular in the present tense of do 1. Collins COBUILD Advanced Learner’s Dictionary. Copyright © HarperCollins Publishers. English Easy Learning Grammar …