Advertisement
freelance data science projects: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today. |
freelance data science projects: Grokking Deep Reinforcement Learning Miguel Morales, 2020-11-10 Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback. Summary We all learn through trial and error. We avoid the things that cause us to experience pain and failure. We embrace and build on the things that give us reward and success. This common pattern is the foundation of deep reinforcement learning: building machine learning systems that explore and learn based on the responses of the environment. Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching. You'll love the perfectly paced teaching and the clever, engaging writing style as you dig into this awesome exploration of reinforcement learning fundamentals, effective deep learning techniques, and practical applications in this emerging field. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology We learn by interacting with our environment, and the rewards or punishments we experience guide our future behavior. Deep reinforcement learning brings that same natural process to artificial intelligence, analyzing results to uncover the most efficient ways forward. DRL agents can improve marketing campaigns, predict stock performance, and beat grand masters in Go and chess. About the book Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback. What's inside An introduction to reinforcement learning DRL agents with human-like behaviors Applying DRL to complex situations About the reader For developers with basic deep learning experience. About the author Miguel Morales works on reinforcement learning at Lockheed Martin and is an instructor for the Georgia Institute of Technology’s Reinforcement Learning and Decision Making course. Table of Contents 1 Introduction to deep reinforcement learning 2 Mathematical foundations of reinforcement learning 3 Balancing immediate and long-term goals 4 Balancing the gathering and use of information 5 Evaluating agents’ behaviors 6 Improving agents’ behaviors 7 Achieving goals more effectively and efficiently 8 Introduction to value-based deep reinforcement learning 9 More stable value-based methods 10 Sample-efficient value-based methods 11 Policy-gradient and actor-critic methods 12 Advanced actor-critic methods 13 Toward artificial general intelligence |
freelance data science projects: JavaScript for Data Science Maya Gans, Toby Hodges, Greg Wilson, 2020 JavaScript is the language of the web. Originally developed for making browser-based interfaces more dynamic, it is now used for large-scale software projects of all kinds, including scientific visualization tools and data services. However, most researchers and data scientists have little or no experience with it. This book is designed to fill that void. It introduces readers to JavaScript's power and idiosyncrasies, and guides them through the key features of the modern version of the language and its tools and libraries. The book places equal focus on client- and server-side programming, and shows readers how to create interactive web content, build and test data services, and visualize data in the browser-- |
freelance data science projects: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning. |
freelance data science projects: Data Feminism Catherine D'Ignazio, Lauren F. Klein, 2020-03-31 A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed. |
freelance data science projects: Data Science Programming All-in-One For Dummies John Paul Mueller, Luca Massaron, 2020-01-09 Your logical, linear guide to the fundamentals of data science programming Data science is exploding—in a good way—with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you’re a beginning student or already mid-career, get your copy now and add even more meaning to your life—and everyone else’s! |
freelance data science projects: Python and R for the Modern Data Scientist Rick J. Scavetta, Boyan Angelov, 2021-06-22 Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together |
freelance data science projects: Software Engineering for Data Scientists Catherine Nelson, 2024-04-16 Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success—and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering,and clearly explains how to apply the best practices from software engineering to data science. Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics that are often missing from introductory data science or coding classes, including how to: Understand data structures and object-oriented programming Clearly and skillfully document your code Package and share your code Integrate data science code with a larger code base Learn how to write APIs Create secure code Apply best practices to common tasks such as testing, error handling, and logging Work more effectively with software engineers Write more efficient, maintainable, and robust code in Python Put your data science projects into production And more |
freelance data science projects: The Data Science Design Manual Steven S. Skiena, 2017-07-01 This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com) |
freelance data science projects: Python for Data Science For Dummies John Paul Mueller, Luca Massaron, 2015-06-23 Unleash the power of Python for your data analysis projects with For Dummies! Python is the preferred programming language for data scientists and combines the best features of Matlab, Mathematica, and R into libraries specific to data analysis and visualization. Python for Data Science For Dummies shows you how to take advantage of Python programming to acquire, organize, process, and analyze large amounts of information and use basic statistics concepts to identify trends and patterns. You’ll get familiar with the Python development environment, manipulate data, design compelling visualizations, and solve scientific computing challenges as you work your way through this user-friendly guide. Covers the fundamentals of Python data analysis programming and statistics to help you build a solid foundation in data science concepts like probability, random distributions, hypothesis testing, and regression models Explains objects, functions, modules, and libraries and their role in data analysis Walks you through some of the most widely-used libraries, including NumPy, SciPy, BeautifulSoup, Pandas, and MatPlobLib Whether you’re new to data analysis or just new to Python, Python for Data Science For Dummies is your practical guide to getting a grip on data overload and doing interesting things with the oodles of information you uncover. |
freelance data science projects: Data Pipelines Pocket Reference James Densmore, 2021-02-10 Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting |
freelance data science projects: Data Sketches Nadieh Bremer, Shirley Wu, 2021-02-09 In Data Sketches, Nadieh Bremer and Shirley Wu document the deeply creative process behind 24 unique data visualization projects, and they combine this with powerful technical insights which reveal the mindset behind coding creatively. Exploring 12 different themes – from the Olympics to Presidents & Royals and from Movies to Myths & Legends – each pair of visualizations explores different technologies and forms, blurring the boundary between visualization as an exploratory tool and an artform in its own right. This beautiful book provides an intimate, behind-the-scenes account of all 24 projects and shares the authors’ personal notes and drafts every step of the way. The book features: Detailed information on data gathering, sketching, and coding data visualizations for the web, with screenshots of works-in-progress and reproductions from the authors’ notebooks Never-before-published technical write-ups, with beginner-friendly explanations of core data visualization concepts Practical lessons based on the data and design challenges overcome during each project Full-color pages, showcasing all 24 final data visualizations This book is perfect for anyone interested or working in data visualization and information design, and especially those who want to take their work to the next level and are inspired by unique and compelling data-driven storytelling. |
freelance data science projects: Projects with Young Learners - Primary Resource Books for Teachers Diane Phillips, Sarah Burwood, 2013-05-20 Contains practical, tried-and-tested ideas and materials for planning, organizing, and carrying out project work with children aged between 5 and 13. Combines language and skills development with activities which challenge young learners and motivate them to be independent. |
freelance data science projects: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-06 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder |
freelance data science projects: Python and R for the Modern Data Scientist Rick J. Scavetta, Boyan Angelov, 2021-06-22 Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together |
freelance data science projects: Cracking the Data Science Interview Maverick Lin, 2019-12-17 Cracking the Data Science Interview is the first book that attempts to capture the essence of data science in a concise, compact, and clean manner. In a Cracking the Coding Interview style, Cracking the Data Science Interview first introduces the relevant concepts, then presents a series of interview questions to help you solidify your understanding and prepare you for your next interview. Topics include: - Necessary Prerequisites (statistics, probability, linear algebra, and computer science) - 18 Big Ideas in Data Science (such as Occam's Razor, Overfitting, Bias/Variance Tradeoff, Cloud Computing, and Curse of Dimensionality) - Data Wrangling (exploratory data analysis, feature engineering, data cleaning and visualization) - Machine Learning Models (such as k-NN, random forests, boosting, neural networks, k-means clustering, PCA, and more) - Reinforcement Learning (Q-Learning and Deep Q-Learning) - Non-Machine Learning Tools (graph theory, ARIMA, linear programming) - Case Studies (a look at what data science means at companies like Amazon and Uber) Maverick holds a bachelor's degree from the College of Engineering at Cornell University in operations research and information engineering (ORIE) and a minor in computer science. He is the author of the popular Data Science Cheatsheet and Data Engineering Cheatsheet on GCP and has previous experience in data science consulting for a Fortune 500 company focusing on fraud analytics. |
freelance data science projects: Leap of Faith Cameron Hamilton, Lauren Speed, 2021-06-15 The fan-favorite couple from Netflix's Love Is Blind share their ups and downs after two years of marriage, love advice for the modern world, and behind-the-scenes anecdotes from the pods-- |
freelance data science projects: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace. |
freelance data science projects: Science Fair Projects for Elementary Schools Patricia Hachten Wee, 1998 Offers step-by-step instructions for a hands-on learning experience for children in grades 2-5 who are doing science fair projects. |
freelance data science projects: Engineering Production-grade Shiny Apps Colin Fay, Vincent Guyader, Sebastien Rochette, Girard Cervan, 2021 Presented in full color, Engineering Production-Grade Shiny Apps helps people build production-grade shiny applications, by providing advice, tools, and a methodology to work on web applications with R. This book starts with an overview of the challenges which arise from any big web application project: organizing work, thinking about the user interface, challenges of teamwork & production environment. Then, it moves to a step by step methodology that goes from the idea to the end application. Each part of this process will cover in detail a series of tools and methods to use while building production-ready shiny applications. Finally, the book will end with a series of approaches and advice about optimizations for production-- |
freelance data science projects: Programming Skills For Data Science Freeman, Programming Skills for Data Science brings together all the foundation skills needed to transform raw data into actionable insights for domains ranging from urban planning to precision medicine, even if you have no programming or data science experience. Guided by expert instructors Michael Freeman and Joel Ross, this book will help learners install the tools required to solve professional-level data science problems, including widely used R language, RStudio integrated development environment, and Git version-control system. It explains how to wrangle data into a form where it can be easily used, analyzed, and visualized so others can see the patterns uncovered. Step by step, students will master powerful R programming techniques and troubleshooting skills for probing data in new ways, and at larger scales. |
freelance data science projects: JavaScript for Data Science Maya Gans, Toby Hodges, Greg Wilson, 2020-02-03 JavaScript is the native language of the Internet. Originally created to make web pages more dynamic, it is now used for software projects of all kinds, including scientific visualization and data services. However, most data scientists have little or no experience with JavaScript, and most introductions to the language are written for people who want to build shopping carts rather than share maps of coral reefs. This book will introduce you to JavaScript's power and idiosyncrasies and guide you through the key features of the language and its tools and libraries. The book places equal focus on client- and server-side programming, and shows readers how to create interactive web content, build and test data services, and visualize data in the browser. Topics include: The core features of modern JavaScript Creating templated web pages Making those pages interactive using React Data visualization using Vega-Lite Using Data-Forge to wrangle tabular data Building a data service with Express Unit testing with Mocha All of the material is covered by the Creative Commons Attribution-Noncommercial 4.0 International license (CC-BY-NC-4.0) and is included in the book's companion website. . Maya Gans is a freelance data scientist and front-end developer by way of quantitative biology. Toby Hodges is a bioinformatician turned community coordinator who works at the European Molecular Biology Laboratory. Greg Wilson co-founded Software Carpentry, and is now part of the education team at RStudio |
freelance data science projects: Building Machine Learning Pipelines Hannes Hapke, Catherine Nelson, 2020-07-13 Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques |
freelance data science projects: Bayesian Inference in Statistical Analysis George E. P. Box, George C. Tiao, 2011-01-25 Its main objective is to examine the application and relevance of Bayes' theorem to problems that arise in scientific investigation in which inferences must be made regarding parameter values about which little is known a priori. Begins with a discussion of some important general aspects of the Bayesian approach such as the choice of prior distribution, particularly noninformative prior distribution, the problem of nuisance parameters and the role of sufficient statistics, followed by many standard problems concerned with the comparison of location and scale parameters. The main thrust is an investigation of questions with appropriate analysis of mathematical results which are illustrated with numerical examples, providing evidence of the value of the Bayesian approach. |
freelance data science projects: Work Disrupted Jeff Schwartz, 2021-01-07 If you only read one book on the future of work, Work Disrupted: Opportunity, Resilience, and Growth in the Accelerated Future of Work should be that book. The future of work swept in sooner than expected, accelerated by Covid-19, creating an urgent need for new maps, new mindsets, new strategies-- and most importantly, a trusted guide to take us on this journey. That guide is Jeff Schwartz. A founding partner of Deloitte Consulting’s Future of Work practice, Schwartz brings clarity, humor, wisdom, and practical advice to the future of work, a topic surrounded by misinformation, fear, and confusion. With a fundamental belief in the power of human innovation and creativity, Schwartz presents the key issues, critical choices, and potential pitfalls that must be on everyone’s radar. If you're anxious about robots taking away your job in the future, you will take comfort in the realistic perspective, fact-based insights, and practical steps Schwartz offers. If you're not sure where to even begin to prepare, follow his level-headed advice and easy-to-follow action plans. If you're a business leader caught between keeping up, while also being thoughtful about the next moves, you will appreciate the playbook directed at you. If you're wondering how Covid-19 will change how and where you will work, Work Disrupted has you covered. Written in a conversational style by Schwartz, with Suzanne Riss, an award-winning journalist and book author, Work Disrupted offers a welcome alternative to books on the topic that lack a broad perspective or dwell on the problems rather than offer solutions. Timely and insightful, the book includes the impact of Covid-19 on our present and future work. Interviews with leading thinkers on the future of work offer additional perspectives and guidance.Cartoons created for the book by leading business illustrator Tom Fishburne bring to life the reader’s journey and the complex issues surrounding the topic. Told from the perspective of an economist, management advisor, and social commentator, Work Disrupted offers hope--and practical advice--exploring such topics as: How we frame what lies ahead is a critical navigational tool. Discover the signposts that can serve as practical guides for individuals who have families to support, mortgages to pay, and want to stay gainfully employed no matter what the future holds. The importance of recognizing the rapidly evolving opportunities in front of us. Learn how to build resilience—in careers, organizations, and leaders—for what lies ahead. Why exploring new mental models helps us discover the steps we need to take to thrive. Individuals can decide how to protect their livelihood while businesses and public institutions can consider how they can lead and support workforces to thrive in twenty-first-century careers and work. Jeff's marvelous book is a roadmap for the new world of work with clear signposts. His insights will help readers discover opportunities, take action, and find hope in uncertain times. The ideas are fresh, beautifully crafted, and immediately applicable. This is not only a book to be read, but savored and used. —Dave Ulrich, Rensis Likert Professor, Ross School of Business, University of Michigan; Partner, the RBL Group; Co-author Reinventing the Organization |
freelance data science projects: Bring Your Human to Work: 10 Surefire Ways to Design a Workplace That Is Good for People, Great for Business, and Just Might Change the World Erica Keswin, 2018-09-28 WALL STREET JOURNAL BESTSELLER The secret to business success? Get REAL and be HUMAN! As human beings, we are built to connect and form relationships. So, it should be no surprise that relationships must also translate into the workplace, where we spend most of our time! Companies that recognize this will retain the most productive, creative, and loyal employees, and invariably seize the competitive edge. The most successful leaders are those who actively form quality relationships with their employees, who honor fundamental human qualities—authenticity, openness, and basic politeness—and apply them day in and day out. Paying attention and genuinely caring about the effects people have on one another other is key to developing a winning culture where people perform at the top of their game and want to work. As a workplace strategist and business coach, Erica Keswin has spent over 20 years working with top business leaders and executives to build successful organizations that honor relationships. Featuring case studies from top brands such as, Lyft, Starbucks, Mogul, and SoulCycle, to name a few, Bring Your Human to Work distills the key practices of the most human companies into applicable advice that any business leader can use to build a “human workplace.” These building blocks include: • Understanding your company’s role in the world, beyond financial profit • Encouraging employees to be healthy in body and spirit • Running your meetings with clear purpose • Making space for face-to-face interaction • Building professional development into company culture • Inspiring your workforce to give back to the community • Simply saying “thank you” A human company is real, genuine, aligned, and true to itself. A real company flaunts its humanity, instead of hiding it. It’s what the most successful, sustainable companies are doing today, and there’s no reason yours can’t be the same. Keswin’s leadership lessons foster fairness, devotion, and joy in the workplace—all critical elements of a successful business. By bringing your human to work, you can design a workplace that is good for people, great for business, and just might change the world. |
freelance data science projects: Fun Experiments with Matter Rob Ives, 2017-08-01 Make a giant fountain from a soda pop bottle, write messages in invisible ink, and blow monster bubbles! Use readily available items and simple step-by-step instructions to create these amazing science projects. Discover the science behind each experiment, and have fun sharing with your friends and family. It squeezes, it stretches, it flows, it makes crystals—it's matter! |
freelance data science projects: The Freelance Way Robert Vlach, 2022-03-02 The most comprehensive book for freelancers ever written - Packed with proven freelance know-how, including advice from world-class experts like David Allen (Getting Things Done), Adam Grant (Give and Take), Austin Kleon (Show Your Work), and David H. Hansson (Remote: Office Not Required). The Freelance Way is THE business book for independent professionals. It presents the best available and fully up-to-date freelance know-how, compiled from hundreds of quality sources, including surveys, the latest market data, advice from world-class experts, as well as real-life experiences and stories from hundreds of professionals in different fields and countries, which makes the book highly relevant to freelancers worldwide. The contents of this volume cover all the basics and best practices for beginning freelancers, as well as advanced career strategies and tools for freelance veterans. There are practical tips for greater productivity, successful teamwork, smart pricing, powerful business negotiations, bulletproof personal finance, effective marketing, and much more. |
freelance data science projects: A Project Guide to Wind, Weather, and the Atmosphere Marylou Morano Kjelle, 2010-10 Simple experiments give a hands on approach to studyinig sunlight, air temperature, and atmospheric pressure to help explain how events that occur miles about Earth's surface produce different types of weather. |
freelance data science projects: Open Talent John Winsor, Jin H. Paik, 2024-01-16 In the new world of hybrid work and AI, one thing is clear: the war for talent is over—and talent won. With sparsely populated offices and people working from wherever they are, and with AI emerging everywhere in business and dominating headlines, our work lives have undergone a remarkable transformation, seemingly overnight. But the reality is that for years the ever-growing digital wave has been breaking down organizational boundaries and increasing the adoption of open innovation, including the use of crowdsourcing platforms as a talent solution. Now the imperative is clear: adapt to and leverage this new, digitally enabled world of open talent—or get left behind. In this eye-opening, essential guidebook, John Winsor and Jin Paik, with their work at the Laboratory for Innovation Science at Harvard, show how the massive reset of the pandemic allowed talented workers everywhere to exit their jobs without leaving the workforce. Now many are freelancing for multiple companies or are starting small businesses, challenging hiring managers as never before amidst a transformed workforce. What's more, talent has more power than ever using platforms such as Freelancer.com, Fiverr, and Upwork, setting their own terms for work: what, where, when, and at what price. How can companies adapt? The key, the authors argue, is shifting to a more distributed idea and structure of collaborative work. The authors call this a networked organization, where talent is culled from both inside and outside the organization and viewed through a single lens—as a global ecosystem that can be tapped as needed. With rich stories, keen insights, and an abundance of practical advice, Winsor and Paik provide a new framework and operating model for transforming your organization into a talent-orchestrating, problem-solving machine. |
freelance data science projects: R Data Mining Andrea Cirillo, 2017-11-29 Mine valuable insights from your data using popular tools and techniques in R About This Book Understand the basics of data mining and why R is a perfect tool for it. Manipulate your data using popular R packages such as ggplot2, dplyr, and so on to gather valuable business insights from it. Apply effective data mining models to perform regression and classification tasks. Who This Book Is For If you are a budding data scientist, or a data analyst with a basic knowledge of R, and want to get into the intricacies of data mining in a practical manner, this is the book for you. No previous experience of data mining is required. What You Will Learn Master relevant packages such as dplyr, ggplot2 and so on for data mining Learn how to effectively organize a data mining project through the CRISP-DM methodology Implement data cleaning and validation tasks to get your data ready for data mining activities Execute Exploratory Data Analysis both the numerical and the graphical way Develop simple and multiple regression models along with logistic regression Apply basic ensemble learning techniques to join together results from different data mining models Perform text mining analysis from unstructured pdf files and textual data Produce reports to effectively communicate objectives, methods, and insights of your analyses In Detail R is widely used to leverage data mining techniques across many different industries, including finance, medicine, scientific research, and more. This book will empower you to produce and present impressive analyses from data, by selecting and implementing the appropriate data mining techniques in R. It will let you gain these powerful skills while immersing in a one of a kind data mining crime case, where you will be requested to help resolving a real fraud case affecting a commercial company, by the mean of both basic and advanced data mining techniques. While moving along the plot of the story you will effectively learn and practice on real data the various R packages commonly employed for this kind of tasks. You will also get the chance of apply some of the most popular and effective data mining models and algos, from the basic multiple linear regression to the most advanced Support Vector Machines. Unlike other data mining learning instruments, this book will effectively expose you the theory behind these models, their relevant assumptions and when they can be applied to the data you are facing. By the end of the book you will hold a new and powerful toolbox of instruments, exactly knowing when and how to employ each of them to solve your data mining problems and get the most out of your data. Finally, to let you maximize the exposure to the concepts described and the learning process, the book comes packed with a reproducible bundle of commented R scripts and a practical set of data mining models cheat sheets. Style and approach This book takes a practical, step-by-step approach to explain the concepts of data mining. Practical use-cases involving real-world datasets are used throughout the book to clearly explain theoretical concepts. |
freelance data science projects: Programming Collective Intelligence Toby Segaran, 2007-08-16 Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details. -- Dan Russell, Google Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths. -- Tim Wolters, CTO, Collective Intellect |
freelance data science projects: Data Mining For Dummies Meta S. Brown, 2014-09-04 Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining. |
freelance data science projects: 3D Deep Learning with Python Xudong Ma, Vishakh Hegde, Lilit Yolyan, 2022-10-31 Visualize and build deep learning models with 3D data using PyTorch3D and other Python frameworks to conquer real-world application challenges with ease Key FeaturesUnderstand 3D data processing with rendering, PyTorch optimization, and heterogeneous batchingImplement differentiable rendering concepts with practical examplesDiscover how you can ease your work with the latest 3D deep learning techniques using PyTorch3DBook Description With this hands-on guide to 3D deep learning, developers working with 3D computer vision will be able to put their knowledge to work and get up and running in no time. Complete with step-by-step explanations of essential concepts and practical examples, this book lets you explore and gain a thorough understanding of state-of-the-art 3D deep learning. You'll see how to use PyTorch3D for basic 3D mesh and point cloud data processing, including loading and saving ply and obj files, projecting 3D points into camera coordination using perspective camera models or orthographic camera models, rendering point clouds and meshes to images, and much more. As you implement some of the latest 3D deep learning algorithms, such as differential rendering, Nerf, synsin, and mesh RCNN, you'll realize how coding for these deep learning models becomes easier using the PyTorch3D library. By the end of this deep learning book, you'll be ready to implement your own 3D deep learning models confidently. What you will learnDevelop 3D computer vision models for interacting with the environmentGet to grips with 3D data handling with point clouds, meshes, ply, and obj file formatWork with 3D geometry, camera models, and coordination and convert between themUnderstand concepts of rendering, shading, and more with easeImplement differential rendering for many 3D deep learning modelsAdvanced state-of-the-art 3D deep learning models like Nerf, synsin, mesh RCNNWho this book is for This book is for beginner to intermediate-level machine learning practitioners, data scientists, ML engineers, and DL engineers who are looking to become well-versed with computer vision techniques using 3D data. |
freelance data science projects: Cracking the Data Science Interview Leondra R. Gonzalez, Aaren Stubberfield, 2024-02-29 Rise above the competition and excel in your next interview with this one-stop guide to Python, SQL, version control, statistics, machine learning, and much more Key Features Acquire highly sought-after skills of the trade, including Python, SQL, statistics, and machine learning Gain the confidence to explain complex statistical, machine learning, and deep learning theory Extend your expertise beyond model development with version control, shell scripting, and model deployment fundamentals Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe data science job market is saturated with professionals of all backgrounds, including academics, researchers, bootcampers, and Massive Open Online Course (MOOC) graduates. This poses a challenge for companies seeking the best person to fill their roles. At the heart of this selection process is the data science interview, a crucial juncture that determines the best fit for both the candidate and the company. Cracking the Data Science Interview provides expert guidance on approaching the interview process with full preparation and confidence. Starting with an introduction to the modern data science landscape, you’ll find tips on job hunting, resume writing, and creating a top-notch portfolio. You’ll then advance to topics such as Python, SQL databases, Git, and productivity with shell scripting and Bash. Building on this foundation, you'll delve into the fundamentals of statistics, laying the groundwork for pre-modeling concepts, machine learning, deep learning, and generative AI. The book concludes by offering insights into how best to prepare for the intensive data science interview. By the end of this interview guide, you’ll have gained the confidence, business acumen, and technical skills required to distinguish yourself within this competitive landscape and land your next data science job.What you will learn Explore data science trends, job demands, and potential career paths Secure interviews with industry-standard resume and portfolio tips Practice data manipulation with Python and SQL Learn about supervised and unsupervised machine learning models Master deep learning components such as backpropagation and activation functions Enhance your productivity by implementing code versioning through Git Streamline workflows using shell scripting for increased efficiency Who this book is for Whether you're a seasoned professional who needs to brush up on technical skills or a beginner looking to enter the dynamic data science industry, this book is for you. To get the most out of this book, basic knowledge of Python, SQL, and statistics is necessary. However, anyone familiar with other analytical languages, such as R, will also find value in this resource as it helps you revisit critical data science concepts like SQL, Git, statistics, and deep learning, guiding you to crack through data science interviews. |
freelance data science projects: Production-Ready Applied Deep Learning Tomasz Palczewski, Jaejun (Brandon) Lee, Lenin Mookiah, 2022-08-30 Supercharge your skills for developing powerful deep learning models and distributing them at scale efficiently using cloud services Key Features Understand how to execute a deep learning project effectively using various tools available Learn how to develop PyTorch and TensorFlow models at scale using Amazon Web Services Explore effective solutions to various difficulties that arise from model deployment Book Description Machine learning engineers, deep learning specialists, and data engineers encounter various problems when moving deep learning models to a production environment. The main objective of this book is to close the gap between theory and applications by providing a thorough explanation of how to transform various models for deployment and efficiently distribute them with a full understanding of the alternatives. First, you will learn how to construct complex deep learning models in PyTorch and TensorFlow. Next, you will acquire the knowledge you need to transform your models from one framework to the other and learn how to tailor them for specific requirements that deployment environments introduce. The book also provides concrete implementations and associated methodologies that will help you apply the knowledge you gain right away. You will get hands-on experience with commonly used deep learning frameworks and popular cloud services designed for data analytics at scale. Additionally, you will get to grips with the authors' collective knowledge of deploying hundreds of AI-based services at a large scale. By the end of this book, you will have understood how to convert a model developed for proof of concept into a production-ready application optimized for a particular production setting. What you will learn Understand how to develop a deep learning model using PyTorch and TensorFlow Convert a proof-of-concept model into a production-ready application Discover how to set up a deep learning pipeline in an efficient way using AWS Explore different ways to compress a model for various deployment requirements Develop Android and iOS applications that run deep learning on mobile devices Monitor a system with a deep learning model in production Choose the right system architecture for developing and deploying a model Who this book is for Machine learning engineers, deep learning specialists, and data scientists will find this book helpful in closing the gap between the theory and application with detailed examples. Beginner-level knowledge in machine learning or software engineering will help you grasp the concepts covered in this book easily. |
freelance data science projects: Industry 4.0, AI, and Data Science Vikram Bali, Kakoli Banerjee, Narendra Kumar, Sanjay Gour, Sunil Kumar Chawla, 2021-07-20 The aim of this book is to provide insight into Data Science and Artificial Learning Techniques based on Industry 4.0, conveys how Machine Learning & Data Science are becoming an essential part of industrial and academic research. Varying from healthcare to social networking and everywhere hybrid models for Data Science, Al, and Machine Learning are being used. The book describes different theoretical and practical aspects and highlights how new systems are being developed. Along with focusing on the research trends, challenges and future of AI in Data Science, the book explores the potential for integration of advanced AI algorithms, addresses the challenges of Data Science for Industry 4.0, covers different security issues, includes qualitative and quantitative research, and offers case studies with working models. This book also provides an overview of AI and Data Science algorithms for readers who do not have a strong mathematical background. Undergraduates, postgraduates, academicians, researchers, and industry professionals will benefit from this book and use it as a guide. |
freelance data science projects: Rethinking Information Work G. Kim Dority, 2016-02-22 A state-of-the-art guide to the world of library and information science that gives readers valuable insights into the field and practical tools to succeed in it. As the field of information science continues to evolve, professional-level opportunities in traditional librarianshipespecially in school and public librarieshave stalled and contracted, while at the same time information-related opportunities in non-library settings continue to expand. These two coinciding trends are opening up many new job opportunities for LIS professionals, but the challenge lies in helping them (and LIS students) understand how to align their skills and mindsets with these new opportunities.The new edition of G. Kim Dority's Rethinking Information Work: A Career Guide for Librarians and Other Information Professionals gives readers helpful information on self-development, including learning to thrive on change, using key career skills like professional networking and brand-building, and how to make wise professional choices. Taking readers through a planning process that starts with self-examination and ends in creating an actionable career path, the book presents an expansive approach that considers all LIS career possibilities and introduces readers to new opportunities. This guide is appropriate for those embarking on careers in library and information science as well as those looking to make a change, providing career design strategies that can be used to build a lifetime of career opportunity. |
freelance data science projects: Data Analytics for Absolute Beginners: a Deconstructed Guide to Data Literacy Oliver Theobald, 2019-07-21 While exposure to data has become more or less a daily ritual for the rank-and-file knowledge worker, true understanding-treated in this book as data literacy-resides in knowing what lies behind the data. Everything from the data's source to the specific choice of input variables, algorithmic transformations, and visual representation shape the accuracy, relevance, and value of the data and mark its journey from raw data to business insight. It's also important to grasp the terminology and basic concepts of data analytics as much as it is to have the financial literacy to be successful as a decisionmaker in the business world. In this book, we make sense of data analytics without the assumption that you understand specific data science terminology or advanced programming languages to set you on your path. Topics covered in this book: Data Mining Big Data Machine Learning Alternative Data Data Management Web Scraping Regression Analysis Clustering Analysis Association Analysis Data Visualization Business Intelligence |
freelance data science projects: Text Mining with R Julia Silge, David Robinson, 2017-06-12 Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling. |
如何开始 Freelancer 生涯? - 知乎
下面是13个寻找和发布自由职业(包括兼职和全职)的freelance网站。 其中,国外网站的比例明显超过国内。 这一是说明国外对远程式工作方式的接受度远远大于我国;另一个则说明如果我 …
upwork怎样入门呢太难了这玩意。? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …
freelanceforum.org
freelanceforum.org
如何开始 Freelancer 生涯? - 知乎
下面是13个寻找和发布自由职业(包括兼职和全职)的freelance网站。 其中,国外网站的比例明显超过国内。 这一是说明国外对远程式工作方式的接受度远远大于我国;另一个则说明如果 …
upwork怎样入门呢太难了这玩意。? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …
freelanceforum.org
freelanceforum.org