Energy Conversion And Management

Advertisement



  energy conversion and management: Energy Conversion and Management Giovanni Petrecca, 2014-08-07 This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, air compressor systems, cooling plants, HVAC, lighting, and heat recovery plants. The book also examines principles of energy auditing and accounting, the correlation between energy and environment, and includes detail on the economic analysis of energy saving investment and education in the field of energy. This book also: · Explores a broad array of power generation and distribution facilities around the concept of energy conversion, from traditional and renewable sources, correlating many apparently disparate topics · Elucidates fundamental formulas and information-rich figures to help readers in solving any practical energy conversion problems · Emphasizes a holistic perspective on energy conversion and management with a vision of each application as a system beyond its individual elements · Includes a set of Key Performance Index using metrics applicable to energy systems brought into operation over the past 30 years · Gives a set of basic formulas and data that are the essentials of energy conversion and that everybody involved in these fields should perfectly know · Adopts a writing style accessible to technicians and managers in the field of energy conversion while maintaining sufficient rigor and coverage for engineers
  energy conversion and management: Energy conversion and management ,
  energy conversion and management: Hydrogen Energy Conversion and Management Mohammad Masud Kamal Khan, Abul Kalam Azad, Amanullah Maung Than Oo, 2023-09-24 Hydrogen Energy Conversion and Management presents the challenges and solutions to the use of hydrogen as the significant energysource of the future. With a focus on the theory and recent technological developments, this book comprehensively addresses theproduction, storage, and real-world applications of hydrogen.Divided into four sections, Section 1 provides an overview of hydrogen technology, including environmental sustainability and thefundamentals of the hydrogen economy and future energy security. Section 2 examines the latest technologies for efficient and costeffectiveproduction of hydrogen, while Section 3 examines the latest technologies for efficient storage and transportation. Finally, Section 4 critically analyzes the challenges, solutions, and implementation prospects for a hydrogen-based fuel economy.Hydrogen Energy Conversion and Management is an invaluable resource for researchers and practitioners involved in the hydrogen economy and for graduates and research students on multidisciplinary subjects involving renewable energy. - Examines the latest technological developments in hydrogen production, storage, and transportation alongside technological solutions to their real-world applications. - Provides step-by-step guidance on new methods, processes, and simulations, supported by experimental data, including hydrogen production from waste. - Focuses on green hydrogen generation methods, including novel approaches in production and storage and practical applications.
  energy conversion and management: Energy for Sustainable Development Md Hasanuzzaman, Nasrudin Abd Rahim, 2019-10-31 Energy for Sustainable Development: Demand, Supply, Conversion and Management presents a comprehensive look at recent developments and provides guidance on energy demand, supply, analysis and forecasting of modern energy technologies for sustainable energy conversion. The book analyzes energy management techniques and the economic and environmental impact of energy usage and storage. Including modern theories and the latest technologies used in the conversion of energy for traditional fossil fuels and renewable energy sources, this book provides a valuable reference on recent innovations. Researchers, engineers and policymakers will find this book to be a comprehensive guide on modern theories and technologies for sustainable development.
  energy conversion and management: Comprehensive Energy Systems Ibrahim Dincer, 2018-02-07 Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language
  energy conversion and management: Energy Yaşar Demirel, 2016-03-16 Expanding on the first edition, ‘Energy: Production, Conversion, Storage, Conservation, and Coupling (2nd Ed.)’ provides readers with a practical understanding of the major aspects of energy. It includes extended chapters with revised data and additional practice problems as well as a new chapter examining sustainability and sustainable energy technologies. Like the first edition, it also explores topics such as energy production, conservation of energy, energy storage and energy coupling. Written for students across a range of engineering and science disciplines, it provides a comprehensive study guide. It is particularly suitable for courses in energy technology, sustainable energy technologies and energy conversion & management, and offers an ideal reference text for students, engineers, energy researchers and industry professionals. * Presents a clear introduction to the basic properties, forms and sources of energy * Includes a range of supporting figures, tables and thermodynamic diagrams * Provides course instructors with a solution manual for practice problems
  energy conversion and management: Energy Conversion D. Yogi Goswami, Frank Kreith, 2017-07-06 This handbook surveys the range of methods and fuel types used in generating energy for industry, transportation, and heating and cooling of buildings. Solar, wind, biomass, nuclear, geothermal, ocean and fossil fuels are discussed and compared, and the thermodynamics of energy conversion is explained. Appendices are provided with fully updated data. Thoroughly revised, this second edition surveys the latest advances in energy conversion from a wide variety of currently available energy sources. It describes energy sources such as fossil fuels, biomass (including refuse-derived biomass fuels), nuclear, solar radiation, wind, geothermal, and ocean, then provides the terminology and units used for each energy resource and their equivalence. It includes an overview of the steam power cycles, gas turbines, internal combustion engines, hydraulic turbines, Stirling engines, advanced fossil fuel power systems, and combined-cycle power plants. It outlines the development, current use, and future of nuclear power.
  energy conversion and management: ENERGY ENGINEERING AND MANAGEMENT, Second Edition CHAKRABARTI, AMLAN, 2018-11-01 The textbook is designed for B.Tech students of Electrical/Mechanical/Industrial Engineering and M.Tech students of Power System/Energy Engineering/Energy Management. It will also be useful for MBA courses on Energy Management conducted by some universities through distance education mode. The book, now in its Second Edition, offers an exhaustive discussion of the energy analysis methodologies and tools to optimize the utilization of energy and how to enhance efficiency during conversion of energy from one form to another. It illustrates the energy analysis methods used in factories, transportation systems and buildings highlighting the various forms of use. It also discusses the thermodynamic principles of energy conversion and constitution of energy balance equation for such systems. The book examines the energy costs in our everyday life in terms of energy inputs in food cultivation. It also discusses similar energy costs of using fuels, other goods and services in our daily life KEY FEATURES • Includes numerous questions and answers on Energy Management • Contains problems and solutions on Energy Management • Provides MCQs for the preparation of certified energy auditor examination conducted by the Bureau of Energy Efficiency, GoI • Includes Case Studies NEW TO THE SECOND EDITION • Includes new chapters on Electrical Systems, Transformers, Electric Motors, Pumps and Fans, Compressors, Water Heaters, Electrolytic Processes, and Energy Control Centre • Incorporates latest topics in the existing chapters • Provides critical case studies
  energy conversion and management: Advanced Ceramics for Energy Conversion and Storage Olivier Guillon, 2019-11-20 In order to enable an affordable, sustainable, fossil-free future energy supply, research activities on relevant materials and related technologies have been intensified in recent years, Advanced Ceramics for Energy Conversion and Storage describes the current state-of-the-art concerning materials, properties, processes, and specific applications. Academic and industrial researchers, materials scientists, and engineers will be able to get a broad overview of the use of ceramics in energy applications, while at the same time become acquainted with the most recent developments in the field. With chapters written by recognized experts working in their respective fields the book is a valuable reference source covering the following application areas: ceramic materials and coatings for gas turbines; heat storage and exchange materials for solar thermal energy; ceramics for nuclear energy; ceramics for energy harvesting (thermoelectrics, piezoelectrics, and sunlight conversion); ceramic gas separation membranes; solid oxide fuel cells and electrolysers; and electrochemical storage in battery cells. Advanced Ceramics for Energy Conversion and Storage offers a sound base for understanding the complex requirements related to the technological fields and the ceramic materials that make them possible. The book is also suitable for people with a solid base in materials science and engineering that want to specialize in ceramics. - Presents an extensive overview of ceramic materials involved in energy conversion and storage - Updates on the tremendous progress that has been achieved in recent years - Showcases authors at the forefront of their fields, including results from the huge amount of published data - Provides a list of requirements for the materials used for each energy technology - Includes an evaluation and comparison of materials available, including their structure, properties and performance
  energy conversion and management: Energy for Sustainable Development Md Hasanuzzaman, Nasrudin Abd Rahim, 2019-10-30 Energy for Sustainable Development: Demand, Supply, Conversion and Management presents a comprehensive look at recent developments and provides guidance on energy demand, supply, analysis and forecasting of modern energy technologies for sustainable energy conversion. The book analyzes energy management techniques and the economic and environmental impact of energy usage and storage. Including modern theories and the latest technologies used in the conversion of energy for traditional fossil fuels and renewable energy sources, this book provides a valuable reference on recent innovations. Researchers, engineers and policymakers will find this book to be a comprehensive guide on modern theories and technologies for sustainable development. - Uniquely covers Energy Demand, Supply, Conversion and Management in one complete reference - Offers relevant information for both undergraduate and postgraduate programs on energy conversion, making it a key reference for study - Includes extensive coverage that links energy conversion with efficiency and management through storage, savings, economics and environmental impact
  energy conversion and management: Municipal Solid Waste to Energy Conversion Processes Gary C. Young, 2010-11-29 MUNICIPAL SOLID WASTE TO ENERGY CONVERSION PROCESSES A TECHNICAL AND ECONOMIC REVIEW OF EMERGING WASTE DISPOSAL TECHNOLOGIES Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons reviews the current state of the solid waste disposal industry. It details how the proven plasma gasification technology can be used to manage Municipal Solid Waste (MSW) and to generate energy and revenues for local communities in an environmentally safe manner with essentially no wastes. Beginning with an introduction to pyrolysis/gasification and combustion technologies, the book provides many case studies on various waste-to-energy (WTE) technologies and creates an economic and technical baseline from which all current and emerging WTE technologies could be compared and evaluated. Topics include: Pyrolysis/gasification technology, the most suitable and economically viable approach for the management of wastes Combustion technology Other renewable energy resources including wind and hydroelectric energy Plasma economics Cash flows as a revenue source for waste solids-to-energy management Plant operations, with an independent case study of Eco-Valley plant in Utashinai, Japan Extensive case studies of garbage to liquid fuels, wastes to electricity, and wastes to power ethanol plants illustrate how currently generated MSW and past wastes in landfills can be processed with proven plasma gasification technology to eliminate air and water pollution from landfills.
  energy conversion and management: Waste to Energy Conversion Technology Naomi B Klinghoffer, Marco J Castaldi, 2013-05-15 Increasing global consumerism and population has led to an increase in the levels of waste produced. Waste to energy (WTE) conversion technologies can be employed to convert residual wastes into clean energy, rather than sending these wastes directly to landfill. Waste to energy conversion technology explores the systems, technology and impacts of waste to energy conversion.Part one provides an introduction to WTE conversion and reviews the waste hierarchy and WTE systems options along with the corresponding environmental, regulatory and techno-economic issues facing this technology. Part two goes on to explore further specific aspects of WTE systems, engineering and technology and includes chapters on municipal solid waste (MSW) combustion plants and WTE systems for district heating. Finally, part three highlights pollution control systems for waste to energy technologies.Waste to energy conversion technology is a standard reference book for plant managers, building engineers and consultants requiring an understanding of WTE technologies, and researchers, scientists and academics interested in the field. - Reviews the waste hierarchy and waste to energy systems options along with the environmental and social impact of WTE conversion plants - Explores the engineering and technology behind WTE systems including considerations of municipal solid waste (MSW) its treatment, combustion and gasification - Considers pollution control systems for WTE technologies including the transformation of wast combustion facilities from major polluters to pollution sinks
  energy conversion and management: Materials in Energy Conversion, Harvesting, and Storage Kathy Lu, 2014-08-07 First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today’s energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.
  energy conversion and management: Solar Energy Conversion Systems Jeffrey R. S. Brownson, 2013-11-09 Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners, and economists. Traditional texts in solar energy engineering have often emerged from mechanical or chemical engineering fields. Instead, Solar Energy Conversion Systems approaches solar energy conversion from the perspectives of integrative design, environmental technology, sustainability science, and materials science in the wake of amazing new thin films, polymers, and glasses developed by the optoelectronics and semiconductor industries. This is a new solar text for the new generation of green job designers and developers. It's highlighted with vignettes that break down solar conversion into useful stories and provides common points of reference, as well as techniques, for effective estimation of evolving technologies. - Contextualizes solar conversion for systems design and implementation in practical applications - Provides a complete understanding of solar power, from underlying science to essential economic outcomes - Analytical approach emphasizes systems simulations from measured irradiance and weather data rather than estimations from rules of thumb - Emphasizes integrative design and solar utility, where trans-disciplinary teams can develop sustainable solar solutions that increase client well-being and ecosystems services for a given locale
  energy conversion and management: Electromechanical Energy Conversion Zeki Uğurata Kocabiyikoğlu, 2020-08-09 This book is intended to be a textbook for undergraduate students studying electrical and electronic engineering in universities and colleges. Therefore, the level and amount of the knowledge to be transferred to the reader is kept to as much as what can be taught in one academic semester of a university or a college course. Although the subject is rather classical and somehow well established in some respects, it is vast and can be difficult to grasp if unnecessary details are not avoided. This book is aimed to give the reader just what is necessary - with plenty of short and easily understandable examples and drawings, figures, and tables. A course on electromechanical energy conversion is a necessity in all universities and colleges entitled to grant a license for electrical engineering. This book is aimed at meeting the requirements of this essential subject by providing necessary information to complete the course. A compact chapter is included with figures and tables on energy and the restraints on its production brought about by global climate change. A new approach has been tried for some of the classic subjects including magnetic circuits and electrical machines together with today’s much-used motors.
  energy conversion and management: Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems A. Pandikumar, Perumal Rameshkumar, 2020-05-13 Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.
  energy conversion and management: Renewable energy conversion systems Muhammad Kamran, Muhammad Rayyan Fazal, 2021-05-15 Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems
  energy conversion and management: Magnetocaloric Energy Conversion Andrej Kitanovski, Jaka Tušek, Urban Tomc, Uroš Plaznik, Marko Ožbolt, Alojz Poredoš, 2014-12-03 This book provides the latest research on a new alternative form of technology, the magnetocaloric energy conversion. This area of research concerns magnetic refrigeration and cooling, magnetic heat pumping and magnetic power generation. The book’s systematic approach offers the theoretical basis of magnetocaloric energy conversion and its various sub domains and this is supported with the practical examples. Besides these fundamentals, the book also introduces potential solutions to engineering problems in magnetocalorics and to alternative technologies of solid state energy conversion. The aim of the book is therefore to provide engineers with the most up-to-date information and also to facilitate the understanding, design and construction of future magnetocaloric energy conversion devices. The magnetocaloric energy conversion represents an alternative to compressor based refrigerators and heat pumps. It is a serious alternative to power generation with low enthalpy heat sources. This green technology offers an opportunity to use environmentally friendly solid refrigerants and the potentially high energy efficiency follows the trends of future energy conversion devices. This book is intended for postgraduate students and researchers of refrigeration, heat pumping, power generation alternatives, heat regenerators and advanced heat transfer mechanisms.
  energy conversion and management: Power Conversion and Control of Wind Energy Systems Bin Wu, Yongqiang Lang, Navid Zargari, Samir Kouro, 2011-08-09 The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.
  energy conversion and management: Photovoltaic Solar Energy Conversion Shiva Gorjian, Ashish Shukla, 2020-07-17 Photovoltaic Solar Energy Conversion - Technologies, Applications and Environmental Impacts features comprehensive and up-to-date knowledge on the photovoltaic solar energy conversion technology and describes its different aspects in the context of most recent scientific and technological advances. It also provides an insight into future developments in this field by covering four distinct topics include PV Cells and Modules, Applications of PV Systems, Life Cycle and Environmental Impacts and PV Market and Policies. An up-to-date reference book on the advances of photovoltaic solar energy conversion technology Describes different aspects of PV and PVT technologies in a comprehensive way Provides information on design, development, and monitoring of PV systems Covers applications of PV and PVT systems in the urban, industry, and agriculture sectors Features new concepts, environmental impacts, market and policies of the PV technology
  energy conversion and management: Thermoelectric Energy Conversion Ryoji Funahashi, 2021-02-05 Thermoelectric Energy Conversion: Theories and Mechanisms, Materials, Devices, and Applications provides readers with foundational knowledge on key aspects of thermoelectric conversion and reviews future prospects. Sections cover the basic theories and mechanisms of thermoelectric physics, the chemical and physical aspects of classical to brand-new materials, measurement techniques of thermoelectric conversion properties from the materials to modules and current research, including the physics, crystallography and chemistry aspects of processing to produce thermoelectric devices. Finally, the book discusses thermoelectric conversion applications, including cooling, generation, energy harvesting, space, sensor and other emerging areas of applications. Reviews key applications of thermoelectric energy conversion, including cooling, power generation, energy harvesting, and applications for space and sensing Discusses a wide range of materials, including skutterudites, heusler materials, chalcogenides, oxides, low dimensional materials, and organic materials Provides the fundamentals of thermoelectric energy conversion, including the physics, phonon conduction, electronic correlation, magneto-seebeck theories, topological insulators and thermionics
  energy conversion and management: Microbial Energy Conversion Zhenhong Yuan, 2018-05-22 The book provides an overview on various microorganisms and their industrialization in energy conversion, such as ethanol fermentation, butanol fermentation, biogas fermentation and fossil energy conversion. It also covers microbial oil production, hydrogen production and electricity generation. The content is up to date and suits well for both researchers and industrial audiences.
  energy conversion and management: Advances in Wind Energy Conversion Technology Mathew Sathyajith, Geeta Susan Philip, 2011-04-29 With an annual growth rate of over 35%, wind is the fastest growing energy source in the world today. As a result of intensive research and developmental efforts, the technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - right from the wind resource analysis to grid integration of the wind generated electricity. The chapters are contributed by academic and industrial experts having vast experience in these areas. Each chapter begins with an introduction explaining the current status of the technology and proceeds further to the advanced lever to cater for the needs of readers from different subject backgrounds. Extensive bibliography/references appended to each chapter give further guidance to the interested readers.
  energy conversion and management: Advances in Sustainable Energy Ahmad Vasel, David S-K. Ting, 2019-03-29 This book reveals key challenges to ensuring the secure and sustainable production and use of energy resources, and provides corresponding solutions. It discusses the latest advances in renewable energy generation, and includes studies on climate change and social sustainability. In turn, the book goes beyond theory and describes practical challenges and solutions associated with energy and sustainability. In particular, it addresses: · renewable energy conversion technologies; · transmission, storage and consumption; · green buildings and the green economy; and · waste and recycling. The book presents the current state of knowledge on renewable energy and sustainability, supported by detailed examples and case studies, making it not only a cutting-edge source of information for experts and researchers in the field, but also an educational tool for related undergraduate and graduate courses.
  energy conversion and management: Modeling Power Electronics and Interfacing Energy Conversion Systems M. Godoy Simoes, Felix A. Farret, 2016-09-16 Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.
  energy conversion and management: Model Predictive Control of Wind Energy Conversion Systems Venkata Yaramasu, Bin Wu, 2016-12-19 Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.
  energy conversion and management: Nanostructured Materials for Solar Energy Conversion Tetsuo Soga, 2006-12-14 Nanostructured Materials for Solar Energy Conversion covers a wide variety of materials and device types from inorganic materials to organic materials. This book deals with basic semiconductor physics, modelling of nanostructured solar cell, nanostructure of conventional solar cells such as silicon, CIS and CdTe, dye-sensitized solar cell, organic solar cell, photosynthetic materials, fullerene, extremely thin absorber (ETA) solar cell, quantum structured solar cell, intermediate band solar cell, carbon nanotube, etc. including basic principle and the latest results. There are many books written on conventional p-n junction solar cells, but few books focus on new concepts in this area.* Focuses on the use of nanostructured materials for solar energy* Looks at a wide variety of materials and device types* Covers both organic and inorganic materials
  energy conversion and management: Handbook of Clean Energy Systems, 6 Volume Set Jinyue Yan, 2015-06-22 The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.
  energy conversion and management: Energy Conversion Ibrahim H. Al-Bahadly, 2019-01-16 Energy conversion technology has always been a main focus for researchers in order to meet the increasing demand as well as securing a clean, consistent and reliable energy supply. The constantly rising fuel price is another good reason to develop alternative systems such as wind turbines, hydropower, photovoltaic systems and other renewable energy solutions. This book contains a collection of selected research works in the areas of electric energy generation, renewable energy sources, hybrid system, electromechanical energy conversion, electric machines, power electronic converters and inverters, energy storage, smart grid and traditional energy conversion systems. The book intends to provide academic and industry professionals working in the field of energy conversion and related applications with an update in energy conversion technology, particularly from the applied perspective.
  energy conversion and management: Wave Energy Conversion John Brooke, 2003-09-26 Wave energy, together with other renewable energy resources is expected to provide a small but significant proportion of future energy requirements without adding to pollution and global warming. This practical and concise reference considers alternative application methods, explains the concepts behind wave energy conversion and investigates wave power activities across the globe. Explores the potential of using the power generated by waves as a natural energy resource Considers the power transfer systems needed to do this, and looks at the environmental impacts
  energy conversion and management: Energy Harvesting Alireza Khaligh, Omer C. Onar, 2017-12-19 Also called energy scavenging, energy harvesting captures, stores, and uses clean energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, green resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.
  energy conversion and management: 2d Inorganic Materials Beyond Graphene C N R Rao, Umesh Vasudeo Waghmare, 2017-08-28 Two-dimensional materials have had widespread applications in nanoelectronics, catalysis, gas capture, water purification, energy storage and conversion. Initially based around graphene, research has since moved on to looking at alternatives, including transitions metal dichalcogenides, layered topological insulators, metallic mono-chalcogenides, borocarbonitrides and phosphorene.This book provides a review of research in the field of these materials, including investigation into their defects, analysis on hybrid structures focusing on their properties and synthesis, and characterization and applications of 2D materials beyond graphene. It is designed to be a single-point reference for students, teachers and researchers of chemistry and its related subjects, particularly in the field of nanomaterials.
  energy conversion and management: Exergy Analysis for Energy Conversion Systems Efstathios Michaelides, 2021-04-08 Discover a straightforward and holistic look at energy conversion and conservation processes using the exergy concept with this thorough text. Explains the fundamental energy conversion processes in numerous diverse systems, ranging from jet engines and nuclear reactors to human bodies. Provides examples for applications to practical energy conversion processes and systems that use our naturally occurring energy resources, such as fossil fuels, solar energy, wind, geothermal, and nuclear fuels. With more than one-hundred diverse cases and solved examples, readers will be able to perform optimizations for a cleaner environment, a sustainable energy future, and affordable energy generation. An essential tool for practicing scientists and engineers who work or do research in the area of energy and exergy, as well as graduate students and faculty in chemical engineering, mechanical engineering and physics.
  energy conversion and management: IGEC Transactions, Volume 1: Energy Conversion and Management Jian Zhao,
  energy conversion and management: Nanomaterials For Energy Conversion And Storage Dunwei Wang, Guozhong Cao, 2017-11-10 The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.
  energy conversion and management: Byproducts from Agriculture and Fisheries Benjamin K. Simpson, Alberta N. Aryee, Fidel Toldrá, 2019-11-04 Ranging from biofuels to building materials, and from cosmetics to pharmaceuticals, the list of products that may be manufactured using discards from farming and fishery operations is extensive. Byproducts from Agriculture and Fisheries examines the procedures and technologies involved in this process of reconstitution, taking an environmentally aware approach as it explores the developing role of value-added byproducts in the spheres of food security, waste management, and climate control. An international group of authors contributes engaging and insightful chapters on a wide selection of animal and plant byproducts, discussing the practical business of byproduct recovery within the vital contexts of shifting socio-economic concerns and the emergence of green chemistry. This important text: Covers recent developments, current research, and emerging technologies in the fields of byproduct recovery and utilization Explores potential opportunities for future research and the prospective socioeconomic benefits of green waste management Includes detailed descriptions of procedures for the transformation of the wastes into of value-added food and non-food products With its combination of practical instruction and broader commentary, Byproducts from Agriculture and Fisheries offers essential insight and expertise to all students and professionals working in agriculture, environmental science, food science, and any other field concerned with sustainable resources.
  energy conversion and management: Handbook of Energy Efficiency and Renewable Energy D. Yogi Goswami, Frank Kreith, 2007-05-07 Brought to you by the creator of numerous bestselling handbooks, the Handbook of Energy Efficiency and Renewable Energy provides a thorough grounding in the analytic techniques and technological developments that underpin renewable energy use and environmental protection. The handbook emphasizes the engineering aspects of energy conservation and renewable energy. Taking a world view, the editors discuss key topics underpinning energy efficiency and renewable energy systems. They provide content at the forefront of the contemporary debate about energy and environmental futures. This is vital information for planning a secure energy future. Practical in approach, the book covers technologies currently available or expected to be ready for implementation in the near future. It sets the stage with a survey of current and future world-wide energy issues, then explores energy policies and incentives for conservation and renewable energy, covers economic assessment methods for conservation and generation technologies, and discusses the environmental costs of various energy generation technologies. The book goes on to examine distributed generation and demand side management procedures and gives a perspective on the efficiencies, economics, and environmental costs of fossil and nuclear technologies. Highlighting energy conservation as the cornerstone of a successful national energy strategy, the book covers energy management strategies for industry and buildings, HVAC controls, co-generation, and advances in specific technologies such as motors, lighting, appliances, and heat pumps. It explores energy storage and generation from renewable sources and underlines the role of infrastructure security and risk analysis in planning future energy transmission and storage systems. These features and more make the Handbook of Energy Efficiency and Renewable Energy the tool for designing the energy sources of the future.
  energy conversion and management: Renewable Hydrogen Production Ibrahim Dincer, Haris Ishaq, 2021-11-27 Renewable Hydrogen Production provides a comprehensive analysis of renewable energy-based hydrogen production. Through simulation analysis and experimental investigations, the book provides fundamentals, compares existing hydrogen production applications, discusses novel technologies, and offers insights into the future directions of this rapidly evolving industry. This all-in-one resource on how to produce clean hydrogen production to enhance energy efficiency and support sustainable development will appeal to a wide variety of industries and professionals. - Addresses the production of clean hydrogen from the major sources of renewable energy, including wind, solar, geothermal, hydro, biomass and marine energy - Presents information from simulations and experimental analyses - Offers insights into the future of renewable hydrogen production
  energy conversion and management: Microgrid Technologies C. Sharmeela, P. Sivaraman, P. Sanjeevikumar, Jens Bo Holm-Nielsen, 2021-04-13 Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems. Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids, battery management systems for microgrid applications, power system analysis for microgrids, and many others. The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices. The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library.
  energy conversion and management: Third Generation Photovoltaics Martin A. Green, 2006-09-05 Photovoltaics, the direct conversion of sunlight to electricity, is now the fastest growing technology for electricity generation. Present first generation products use the same silicon wafers as in microelectronics. Second generation thin-films, now entering the market, have the potential to greatly improve the economics by eliminating material costs. Martin Green, one of the world’s foremost photovoltaic researchers, argues in this book that second generation photovoltaics will eventually reach its own material cost constraints, engendering a third generation of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches for improving photovoltaic performance and outlines possible implementation paths.
Energy Conversion and Management | Journal - ScienceDirect
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original …

Energy Conversion and Management - ScienceDirect
Read the latest articles of Energy Conversion and Management at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

Energy Conversion and Management: X | Journal - ScienceDirect
The journal Energy Conversion and Management: X provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original …

Guide for authors - Energy Conversion and Management
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original …

Energy Conversion and Management | Vol 321, 1 December 2024 ...
Dec 1, 2024 · Read the latest articles of Energy Conversion and Management at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

Energy Conversion and Management | Vol 336, 15 July 2025 ...
Read the latest articles of Energy Conversion and Management at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

Stable microencapsulated phase change materials with ultrahigh …
Nov 1, 2020 · Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage

Energy Conversion and Management | Vol 205, 1 February 2020 ...
Read the latest articles of Energy Conversion and Management at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

Thermoelectric generators: A review of applications
May 15, 2017 · Since the recent energy crisis, researchers and industrials have looked mainly to manage energy in a better way, especially by increasing energy system efficiency. This …

A comprehensive review on hybrid power system for PEMFC-HEV: …
Sep 1, 2018 · In this review, we have made a comprehensive research on energy management strategy (EMS) of the hybrid power system (HPS) for PEMFC-HEV in recent years. This paper …

Energy Conversion and Management | Journal - ScienceDirect
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original …

Energy Conversion and Management - ScienceDirect
Read the latest articles of Energy Conversion and Management at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

Energy Conversion and Management: X | Journal - ScienceDirect
The journal Energy Conversion and Management: X provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original …

Guide for authors - Energy Conversion and Management
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original …

Energy Conversion and Management | Vol 321, 1 December 2024 ...
Dec 1, 2024 · Read the latest articles of Energy Conversion and Management at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

Energy Conversion and Management | Vol 336, 15 July 2025 ...
Read the latest articles of Energy Conversion and Management at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

Stable microencapsulated phase change materials with ultrahigh …
Nov 1, 2020 · Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage

Energy Conversion and Management | Vol 205, 1 February 2020 ...
Read the latest articles of Energy Conversion and Management at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

Thermoelectric generators: A review of applications
May 15, 2017 · Since the recent energy crisis, researchers and industrials have looked mainly to manage energy in a better way, especially by increasing energy system efficiency. This …

A comprehensive review on hybrid power system for PEMFC-HEV: …
Sep 1, 2018 · In this review, we have made a comprehensive research on energy management strategy (EMS) of the hybrid power system (HPS) for PEMFC-HEV in recent years. This paper …