Engineering For Sustainable Development

Advertisement



  engineering for sustainable development: Engineering for Sustainable Development Wahidul K. Biswas, Michele John, 2022-10-10 ENGINEERING FOR SUSTAINABLE DEVELOPMENT AN AUTHORITATIVE AND COMPLETE GUIDE TO SUSTAINABLE DEVELOPMENT ENGINEERING In Engineering for Sustainable Development: Theory and Practice, a team of distinguished academics deliver a comprehensive, education-focused discussion on sustainable engineering, bridging the gap between theory and practice by drawing upon illuminating case studies and the latest cutting-edge research. In the book, readers will find an introduction to the sustainable development agenda and sustainable technology development, as well as practical methods and tools for the development and implementation of sustainable engineering solutions. The book highlights the critical role of engineers and the engineering profession in providing sustainability leadership as well as important future-focused solutions to support engineering global sustainable development. The book offers a wide range of civil, mechanical, electrical, and chemical engineering industry applications. Readers will also benefit from: A thorough introduction to contemporary sustainability challenges in the engineering discipline Comprehensive discussions of sustainability assessment tools, including triple bottom line assessment (TBL) and the environmental life cycle assessment (LCA) In-depth examinations of sustainable engineering strategies, including cleaner production and eco-efficiency methods and environmental management systems Detailed review of green engineering principles and industrial symbiosis in engineering application. A link between product stewardship and the design for the environment Perfect for graduate and senior undergraduate students in any engineering discipline, Engineering for Sustainable Development: Theory and Practice will also earn a place in the libraries of consultants and engineers in industry and government with a personal or professional interest in sustainability management.
  engineering for sustainable development: Engineering and Sustainable Community Development Juan Lucena, Jen Schneider, Jon A. Leydens, 2010-10-10 This book, Engineering and Sustainable Community Development, presents an overview of engineering as it relates to humanitarian engineering, service learning engineering, or engineering for community development, often called sustainable community development (SCD). The topics covered include a history of engineers and development, the problems of using industry-based practices when designing for communities, how engineers can prepare to work with communities, and listening in community development. It also includes two case studies -- one of engineers developing a windmill for a community in India, and a second of an engineer mapping communities in Honduras to empower people to use water effectively -- and student perspectives and experiences on one curricular model dealing with community development. Table of Contents: Introduction / Engineers and Development: From Empires to Sustainable Development / Why Design for Industry Will Not Work as Design for Community / Engineering with Community / Listening to Community / ESCD Case Study 1: Sika Dhari's Windmill / ESCD Case Study 2: Building Organizations and Mapping Communities in Honduras / Students' Perspectives on ESCD: A Course Model / Beyond Engineers and Community: A Path Forward
  engineering for sustainable development: Sustainable Development for Engineers Karel Mulder, 2017-09-08 It is crucial that engineers – from students to those already practising – have a deep understanding of the environmental threats facing the world, if they are to become part of the solution and not the problem. Is there a way to reconcile modern lifestyles with the compelling need for change? Could new improved technologies play a key role? If great leaps in the environmental efficiency of technologies are needed, can they be produced? Engineers are in a privileged and hugely influential position to innovate, design and build a sustainable future. But are they engaged or uninterested? Are they knowledgeable or ignorant? This book has been developed by a number of committed educators in European engineering departments under the leadership of Delft University of Technology and the Technical University of Catalunya to meet the perceived gap between what engineers know and what they should know in relation to sustainable development. The University of Delft decided as long ago as 1998 that all of its engineering graduates, working towards careers as designers, managers or researchers, should be prepared for the challenge of sustainable development and, as such, should leave university able to make sustainable development operational in their designs and daily practices. The huge amount of knowledge gathered on best-practice teaching for engineers is reflected in this book. The aim is to give engineering students a grounding in the challenge that sustainable development poses to the engineering profession, the contribution the engineer can make to attaining some of the societal and environmental goals of sustainability, and the barriers and pitfalls engineers will likely need to confront in their professional lives. Concise but comprehensive, the book examines the key tools, skills and techniques that can be used in engineering design and management to ensure that whole-life costs and impacts of engineering schemes are addressed at every stage of planning, implementation and disposal. The book also aims to demonstrate through real-life examples the tangible benefits that have already been achieved in many engineering projects, and to highlight how real improvements can be, and are being, made. Each chapter ends with a series of questions and exercises for the student to undertake. Sustainable Development for Engineers will be essential reading for all engineers and scientists concerned with sustainable development. In particular, it provides key reading and learning materials for undergraduate and postgraduate students reading environmental, chemical, civil or mechanical engineering, manufacturing and design, environmental science, green chemistry and environmental management.
  engineering for sustainable development: New Developments in Engineering Education for Sustainable Development Walter Leal Filho, Susan Nesbit, 2016-06-23 This book discusses essential approaches and methods in connection with engineering education for sustainable development. Prepared as a follow-up to the 2015 Engineering Education in Sustainable Development (EESD) Conference held in British Columbia, Canada, it offers the engineering community key information on the latest trends and developments in this important field. Reflecting the need to address the links between formal and informal education, the scholars and professionals who contribute to this book show by means of case studies and projects how the goal of fostering sustainable development in the context of engineering education can be achieved. In particular, they discuss the need for restructuring teaching at engineering‐focused institutions of higher education and provide practical examples of how to do so. The book places special emphasis on state-of-the art descriptions of approaches, methods, initiatives and projects from around the world, illustrating the contribution of engineering and affiliated sciences to sustainable development in various contexts, and at an international scale.
  engineering for sustainable development: Engineering for Sustainable Human Development Bernard Amadei, 2014-08-01 The challenge of improving the daily lives of people in developing communities calls for a new generation of global engineers who can operate in environments vastly different from those in the developed world. Engineers must become creative and innovative as they contend with uncertainty, complexity, and constraints in unfamiliar cultural settings. They must also deal with a multitude of technical and nontechnical issues beyond their accustomed practice. In this book, Bernard Amadei addresses the role of engineering in poverty reduction and human development. He introduces a framework to help engineers conduct small-scale projects in communities vulnerable to the consequences of a wide range of adverse events. His framework combines concepts and tools traditionally used by development agencies with techniques from engineering project management and systems thinking. When blended, these tools and techniques from seemingly unrelated fields offer engineers better methods to manage the difficulties inherent in community development projects.Engineering for Sustainable Human Development is about the delivery of projects that are done right from a performance (technical) point of view and are also the right projects from a social, environmental, and economic (context) point of view. This multidisciplinary approach to sustainable engineering will be valuable to practitioners and students, as well as people associated with development organizations and aid agencies.
  engineering for sustainable development: Engineering for Sustainability Gerald Jonker, Jan Harmsen, 2012-05-04 Preface -- 1. Introduction -- 2. Setting up a design assignment -- 3. Structuring the sustainability context -- 4. Creating design solutions -- 5. Acquiring sustainable design competences.
  engineering for sustainable development: Engineering for Sustainable Communities William Edward Kelly, Barbara A. Luke, Richard Newport Wright, 2017 Engineering for Sustainable Communities: Principles and Practices defines and outlines sustainable engineering methods for real-world engineering projects.
  engineering for sustainable development: Sustainable Engineering Bhavik R. Bakshi, 2019-06-13 A multidisciplinary introduction to sustainable engineering exploring challenges and solutions through practical examples and exercises.
  engineering for sustainable development: Engineering for Sustainable Development International Centre for Engineering Education, UNESCO, 2021-03-02 The report highlights the crucial role of engineering in achieving each of the 17 SDGs. It shows how equal opportunities for all is key to ensuring an inclusive and gender balanced profession that can better respond to the shortage of engineers for implementing the SDGs. It provides a snapshot of the engineering innovations that are shaping our world, especially emerging technologies such as big data and AI, which are crucial for addressing the pressing challenges facing humankind and the planet. It analyses the transformation of engineering education and capacity-building at the dawn of the Fourth Industrial Revolution that will enable engineers to tackle the challenges ahead. It highlights the global effort needed to address the specific regional disparities, while summarizing the trends of engineering across the different regions of the world.
  engineering for sustainable development: Sustainable Development in Practice Adisa Azapagic, Slobodan Perdan, Roland Clift, 2004-07-23 This groundbreaking text provides background theory on the concept of sustainable development (environmental, social and economic aspects) and presents a series of practical case studies on such topics as waste water management, air quality, solid waste management and renewable energy.
  engineering for sustainable development: Sustainable Development in Chemical Engineering Vincenzo Piemonte, Marcello De Falco, Angelo Basile, 2013-05-28 Sustainable development is an area that has world-wide appeal, from developed industrialized countries to the developing world. Development of innovative technologies to achieve sustainability is being addressed by many European countries, the USA and also China and India. The need for chemical processes to be safe, compact, flexible, energy efficient, and environmentally benign and conducive to the rapid commercialization of new products poses new challenges for chemical engineers. This book examines the newest technologies for sustainable development in chemical engineering, through careful analysis of the technical aspects, and discussion of the possible fields of industrial development. The book is broad in its coverage, and is divided into four sections: Energy Production, covering renewable energies, innovative solar technologies, cogeneration plants, and smart grids Process Intensification, describing why it is important in the chemical and petrochemical industry, the engineering approach, and nanoparticles as a smart technology for bioremediation Bio-based Platform Chemicals, including the production of bioethanol and biodiesel, bioplastics production and biodegradability, and biosurfactants Soil and Water Remediation, covering water management and re-use, and soil remediation technologies Throughout the book there are case studies and examples of industrial processes in practice.
  engineering for sustainable development: Engineering for Sustainable Development , 2021
  engineering for sustainable development: Engineering Education for Sustainable Development Mikateko Mathebula, 2018-01-02 This book demonstrates how the theoretical concepts of the capabilities approach can be applied in the context of engineering education, and how this could be used to add nuance to our understanding of the contribution higher education can make to human flourishing. In demonstrating the usefulness of the capability approach as a lens through which to evaluate the outputs of engineering education, the author also shows how the capability approach can be informed by, and informs, the concept of ‘sustainable development’ and discusses what pedagogical and curricula implications this may have for education for sustainable development (ESD), particularly in engineering. As such, the book builds on the work of scholars of engineering education, and scholars of university education at the nexus of development and sustainability. Engineering employers, educators and students from diverse contexts discuss both the capabilities and functions that are enlarged by engineering education and the impact these can have on pro-poor engineering or public-good professionalism. The book therefore makes an original conceptual and empirical contribution to our thinking about engineering education research. The book provides inspiration for both engineering educators and students to orient their technical knowledge and transferable skills towards the public good. It will also be of great interest to students and researchers interested in education for sustainable development more generally and to engineers who are interested in doing work that is aligned with the goals of social justice. The book will also appeal to scholars of the capability approach within higher education.
  engineering for sustainable development: Engineering for Sustainable Development Shamila Nair-Bedouelle, 2021 This publication highlights the crucial role of engineering in achieving each of the 17 SDGs by presenting case studies and approaches of the innovations that are shaping our world. Providing a snapshot of these emerging technologies, the report demonstrates how engineering solutions can address pressing human and planetary needs, including poverty alleviation, clean water and energy, natural disaster response, and resilient infrastructure. It further analyses the transformation of engineering education and capacity-building at the dawn of a Fourth Industrial Revolution. It also demonstrates how equal opportunities for all is key to ensuring an inclusive and gender-balanced profession that can better respond to the shortage of engineers prepared to implement the SDGs. Summarizing global engineering trends while noting the widespread effort needed to address specific regional disparities, the report aims to promote global partnerships and catalyze collaboration in engineering with the ultimate goal of delivering on the SDGs.
  engineering for sustainable development: Sustainable Development in Mechanical Engineering Sylvie Nadeau, Yvan Petit, Stéphane Hallé, 2020-05-15 Owing to their specialized training, engineers play a crucial role in the design and development of new products or infrastructure as well as the creation of wealth. Consequently, engineers recognize that in the performance of these functions they have a specific responsibility to take such measures as are appropriate to safeguard the environment, health, safety and well-being of the public. This book proposes a series of fifteen practical cases, integrating knowledge from different fields of the mechanical engineering discipline, along with basic knowledge in environment, occupational health and safety risk management. The cases are descriptions of a real system, it’s functioning and it’s instructions for use. The systems selected represent a broad spectrum of mechanical engineering issues or problems: fluid mechanics, thermodynamics, heat transfer, heating, ventilation and cooling, vibrations, dynamics, statics, failure of materials, automatic and mecatronics, hydraulics, product design, human factors, maintenance, rapid prototyping to name a few. The professional objective of the cases proposed is to design or improve the design of the described system. This book is a must to transfer knowledge to future engineers with respect to hazards resulting from their work.
  engineering for sustainable development: Sustainable Environmental Engineering Walter Z. Tang, Mika Sillanpää, 2018-08-01 The important resource that explores the twelve design principles of sustainable environmental engineering Sustainable Environmental Engineering (SEE) is to research, design, and build Environmental Engineering Infrastructure System (EEIS) in harmony with nature using life cycle cost analysis and benefit analysis and life cycle assessment and to protect human health and environments at minimal cost. The foundations of the SEE are the twelve design principles (TDPs) with three specific rules for each principle. The TDPs attempt to transform how environmental engineering could be taught by prioritizing six design hierarchies through six different dimensions. Six design hierarchies are prevention, recovery, separation, treatment, remediation, and optimization. Six dimensions are integrated system, material economy, reliability on spatial scale, resiliency on temporal scale, and cost effectiveness. In addition, the authors, two experts in the field, introduce major computer packages that are useful to solve real environmental engineering design problems. The text presents how specific environmental engineering issues could be identified and prioritized under climate change through quantification of air, water, and soil quality indexes. For water pollution control, eight innovative technologies which are critical in the paradigm shift from the conventional environmental engineering design to water resource recovery facility (WRRF) are examined in detail. These new processes include UV disinfection, membrane separation technologies, Anammox, membrane biological reactor, struvite precipitation, Fenton process, photocatalytic oxidation of organic pollutants, as well as green infrastructure. Computer tools are provided to facilitate life cycle cost and benefit analysis of WRRF. This important resource: • Includes statistical analysis of engineering design parameters using Statistical Package for the Social Sciences (SPSS) • Presents Monte Carlos simulation using Crystal ball to quantify uncertainty and sensitivity of design parameters • Contains design methods of new energy, materials, processes, products, and system to achieve energy positive WRRF that are illustrated with Matlab • Provides information on life cycle costs in terms of capital and operation for different processes using MatLab Written for senior or graduates in environmental or chemical engineering, Sustainable Environmental Engineering defines and illustrates the TDPs of SEE. Undergraduate, graduate, and engineers should find the computer codes are useful in their EEIS design. The exercise at the end of each chapter encourages students to identify EEI engineering problems in their own city and find creative solutions by applying the TDPs. For more information, please visit www.tang.fiu.edu.
  engineering for sustainable development: Introduction to Sustainability for Engineers Toolseeram Ramjeawon, 2020-02-13 Introduction to Sustainability for Engineers aims to incorporate sustainability into curricula for undergraduate engineering students. The book starts with an introduction to the concept of sustainability, outlining core principles for sustainable development to guide engineering practice and decision making, including key tools aimed at enabling, measuring and communicating sustainability. It also describes concepts as life cycle assessment, environmental economics, related institutional architecture and policy framework, business context of sustainability, and sustainable buildings and infrastructure. Appendices at the end of the book presents a summary of key concepts, strategies and tools introduced in the main text. Five Key Benefits: A comprehensive textbook for engineering students to develop competency in sustainability. Presents a framework for engineers to put sustainability into practice. Presents the link between sustainability and the design process. It shows the application of a sustainable engineering design process for putting sustainability into practice. There are well woven case studies and links to websites for learning in various engineering disciplines. Includes challenging exercises at the end of each chapter that will inspire students and stimulate discussion in the class.
  engineering for sustainable development: Sustainable Development for Engineers Karel Mulder, 2017-09-08 It is crucial that engineers – from students to those already practising – have a deep understanding of the environmental threats facing the world, if they are to become part of the solution and not the problem. Is there a way to reconcile modern lifestyles with the compelling need for change? Could new improved technologies play a key role? If great leaps in the environmental efficiency of technologies are needed, can they be produced? Engineers are in a privileged and hugely influential position to innovate, design and build a sustainable future. But are they engaged or uninterested? Are they knowledgeable or ignorant? This book has been developed by a number of committed educators in European engineering departments under the leadership of Delft University of Technology and the Technical University of Catalunya to meet the perceived gap between what engineers know and what they should know in relation to sustainable development. The University of Delft decided as long ago as 1998 that all of its engineering graduates, working towards careers as designers, managers or researchers, should be prepared for the challenge of sustainable development and, as such, should leave university able to make sustainable development operational in their designs and daily practices. The huge amount of knowledge gathered on best-practice teaching for engineers is reflected in this book. The aim is to give engineering students a grounding in the challenge that sustainable development poses to the engineering profession, the contribution the engineer can make to attaining some of the societal and environmental goals of sustainability, and the barriers and pitfalls engineers will likely need to confront in their professional lives. Concise but comprehensive, the book examines the key tools, skills and techniques that can be used in engineering design and management to ensure that whole-life costs and impacts of engineering schemes are addressed at every stage of planning, implementation and disposal. The book also aims to demonstrate through real-life examples the tangible benefits that have already been achieved in many engineering projects, and to highlight how real improvements can be, and are being, made. Each chapter ends with a series of questions and exercises for the student to undertake. Sustainable Development for Engineers will be essential reading for all engineers and scientists concerned with sustainable development. In particular, it provides key reading and learning materials for undergraduate and postgraduate students reading environmental, chemical, civil or mechanical engineering, manufacturing and design, environmental science, green chemistry and environmental management.
  engineering for sustainable development: Transition Engineering Susan Krumdieck, 2019-09-19 Transition Engineering: Building a Sustainable Future examines new strategies emerging in response to the mega-issues of global climate change, decline in world oil supply, scarcity of key industrial minerals, and local environmental constraints. These issues pose challenges for organizations, businesses, and communities, and engineers will need to begin developing ideas and projects to implement the transition of engineered systems. This work presents a methodology for shifting away from unsustainable activities. Teaching the Transition Engineering approach and methodology is the focus of the text, and the concept is presented in a way that engineers can begin applying it in their work.
  engineering for sustainable development: Sustainability in Engineering Design Anthony Johnson, Andy Gibson, 2014-02-11 Designed for use in engineering design courses, and as a reference for industry professionals learning sustainable design concepts and practical methods, Sustainability in Engineering Design focuses on designers as the driving force behind sustainable products. This book introduces sustainability concepts and explains the application of sustainable methods to the engineering design process. The book also covers important design topics such as project and team management, client management, performance prediction, and the social and environmental effects of sustainable engineering design. These concepts and methods are supported with a wealth of worked examples, discussion questions, and primary case studies to aid comprehension. - Applies research-based methods to achieve real-world results for rapidly evolving industry trends - Focuses on design engineers as the starting point of creating sustainable design - Provides practical methods and design tools to guide engineering designers in creating sustainably designed and engineering products - Incorporates all aspects of sustainable engineering design, including the material selection, production, and marketing of products - Includes cutting-edge sustainable design model case studies based on the authors' own research and experiences
  engineering for sustainable development: Becoming Part of the Solution Bill Wallace, 2005-01-01
  engineering for sustainable development: Sustainable Engineering Practice , 2004 Sustainable Engineering Practice: An Introduction provides a broad, fundamental understanding of sustainability principles and their application to engineering work. It is intended to fill a need for a primer on sustainability that can be introduced early in an engineer's career: it brings together all the basic dimensions of the history, concepts, and applications of sustainable engineering; and through a variety of examples and references, inspires and encourages engineers to pursue and integrate sustainable engineering into their work on a life-long basis. The report contains: background summary of the role and accomplishments of engineers in sustainable development. The complete report, Engineers and Sustainable Development, is contained on the accompanying CD ROM; summary of the major commitments made and implementation activities agreed upon at the World Summit on Sustainable Development, held in Johannesburg, South Africa, in September 2002, and the initial steps taken by the U.S. engineering community and its global partners; wide spectrum of examples, which describe how sustainability principles can and are being integrated and applied in engineering education, researc will benefit from this primer on sustainable development and its concepts and applications.
  engineering for sustainable development: Mechanical Engineering for Sustainable Development C. S. P. Rao, G. Amba Prasad Rao, N. Selvaraj, P. S. C. Bose, V. P. Chandramohan, 2021-03-31 This volume provides valuable insight into diverse topics related to mechanical engineering and presents state-of-the-art work on sustainable development being carried out throughout the world by budding researchers and scientists. Divided into three sections, the volume covers machine design, materials and manufacturing, and thermal engineering. It presents innovative research work on machine design that is of relevance to such varied fields as the automotive industry, agriculture, and human anatomy. The second section addresses materials characterization, an important tool in assessing proper materials for application-oriented jobs, and emerging unconventional machining processes that are important in design engineering for new products and tools. The section on thermal engineering broadly covers the use of viable alternate fuels, such as HHO, biodiesel, etc., with the objective of reducing the burden on petroleum reserves and the environment.
  engineering for sustainable development: Sustainable Development and Renovation in Architecture, Urbanism and Engineering Pilar Mercader-Moyano, 2017-03-17 This book provides an overview of the environmental problems that arise from construction activity, focusing on refurbishment as an alternative to the current crisis in the construction sector, as well as on measures designed to minimize the effects on the environment. Furthermore, it offers professionals insights into alternative eco-efficient solutions using new materials to minimize environmental impacts and offers solutions that they can incorporate into their own designs and buildings. It also demonstrates best practices in the cooperation between various universities in Andalusia in Spain and Latin America and many public and private companies and organizations. This book serves as a valuable reference resource for professionals and researchers and provides an overview on the status of investigations to find solutions to improve sustainable development in terms of materials, systems, facilities, neighborhoods, buildings, and awareness of the society involved.
  engineering for sustainable development: Rethinking Sustainable Development Tan Yigitcanlar, 2010-01-01 This book investigates the role of urban, regional and infrastructure planning in achieving sustainable urban and infrastructure development, providing insights into overcoming the consequences of unsustainable development--Provided by publisher.
  engineering for sustainable development: The Global Engineers Evan Thomas, 2020-07-17 The Global Engineers: Building a Safe and Equitable World Together, is inspired by the opportunities for engineers to contribute to global prosperity. This book presents a vision for Global Engineering, and identifies that engineers should be concerned with the unequal and unjust distribution of access to basic services, such as water, sanitation, energy, food, transportation, and shelter. As engineers, we should place an emphasis on identifying the drivers, determinants, and solutions to increasing equitable access to reliable services. Global Engineering envisions a world where everyone has safe water, sanitation, energy, food, shelter, and infrastructure, and can live in health, dignity, and prosperity. This book seeks to examine the role and ultimately the impact of engineers in global development. Engineers are solutions-oriented people. We enjoy the opportunity to identify a product or need, and design appropriate technical solutions. However, the structural and historical barriers to global prosperity requires that Engineers focus more broadly on improving the tools and practice of poverty reduction and that we include health, economics, policy, and governance as relevant expertise with which we are conversant. Engineers must become activists and advocates, rejecting ahistorical technocratic approaches that suggest poverty can be solved without justice or equity. Engineers must leverage our professional skills and capacity to generate evidence and positive impact toward rectifying inequalities and improving lives. Half of this book is dedicated to profiles of engineers and other technical professionals who have dedicated their careers to searching for solutions to global development challenges. These stories introduce the reader to the diverse opportunities and challenges in Global Engineering.
  engineering for sustainable development: Sustainable Engineering Catherine Mulligan, 2019-01-30 Sustainable Engineering: Principles and Implementation provides a comprehensive overview of the interdisciplinary field of sustainability as it applies to engineering and methods for implementation of sustainable practices. Due to increasing constraints on resources and on the environment and effects of climate change, engineers are being faced with new challenges. While it is generally believed that the concepts of sustainable design must be adhered to so that future generations may be protected, the execution and practice of these concepts are very difficult. It is therefore the focus of this book to give both a conceptual understanding as well as practical skills to apply sustainable engineering principles to engineering design. This book introduces relevant theory, principles, and ethical expectations for engineers, presents concepts related to industrial ecology, green engineering, and eco-design, and details frameworks that indicate the challenges and constraints of applying sustainable development principles. It describes the tools, protocols, and guidelines that are currently available through case studies and examples from around the world. The book is designed to be used by undergraduate and graduate students in any engineering program (with particular emphasis on civil, environmental and chemical engineering) and other programs in which sustainability is taught, in addition to practicing scientists and engineers and all others concerned with the sustainability of products, projects and processes. Specific Features: Discusses sources of contaminants and their impact on the environment Addresses sustainable assessment techniques, policies, protocols and guidelines Describes new tools and technologies for achieving sustainable engineering Includes social and economic sustainability dimensions Offers case studies demonstrating implementation of sustainable engineering practices
  engineering for sustainable development: Sustainable Development Through Engineering Innovations Harvinder Singh, Puneet Pal Singh Cheema, Prashant Garg, 2021-03-01 This book comprises select peer-reviewed papers presented at the International Conference on Sustainable Development through Engineering Innovations (SDEI) 2020. It presents recent advances, new directions, and opportunities for sustainable and resilient approaches to design and protect the built-environment through engineering innovations & interventions. The topics covered are highly diverse and include all civil engineering and construction-related aspects such as construction and environmental Issues, durability and survivability under extreme conditions, design of new materials for sustainability, eco-efficient and ultra-high performance cementitious materials, embedded structural and foundation systems and environmental geomechanics. The book will be of potential interest to the researchers and students in the fields of civil engineering, architecture and sustainable development.
  engineering for sustainable development: Sustainable Water Engineering Susanne Charlesworth, Colin A. Booth, Kemi Adeyeye, 2020-12-24 Sustainable Water Engineering introduces the latest thinking from academic, stakeholder and practitioner perspectives who address challenges around flooding, water quality issues, water supply, environmental quality and the future for sustainable water engineering. In addition, the book addresses historical legacies, strategies at multiple scales, governance and policy. Offers well-structured content that is strategic in its approach Covers up-to-date issues and examples from both developed and developing nations Include the latest research in the field that is ideal for undergraduates and post-graduate researchers Presents real world applications, showing how engineers, environmental consultancies and international institutions can use the concepts and strategies
  engineering for sustainable development: Engineering Applications in Sustainable Design and Development, SI Edition Bradley Striebig, Adebayo A. Ogundipe, Maria Papadakis, 2015-01-01 ENGINEERING APPLICATIONS IN SUSTAINABLE DESIGN AND DEVELOPMENT is an invaluable resource for today's engineering student. Focusing on pressing contemporary issues, the text puts product design in the context of models of sustainability. Relevant case studies from across the globe will be of interest to engineers in training, and active learning exercises in each chapter help students learn to apply theory to real world situations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
  engineering for sustainable development: Sustainable Engineering Krishna R. Reddy, Claudio Cameselle, Jeffrey A. Adams, 2019-04-22 Comprehensively covers the definition, methodology, and current applications of the principles of sustainability and resiliency in every engineering discipline This book contains detailed information about sustainability and resiliency principles and applications in engineering practice, and provides information on how to use scientific tools for sustainability assessment that help engineers select the best alternative for each project or activity. Logically organized around the three pillars of sustainability—environment, economy, and society—it is a primary resource for students and professionals alike. Sustainable Engineering: Drivers, Metrics, Tools, and Applications offers numerous ways to help engineers contribute towards global sustainable development while solving some of the grand challenges the world is facing today. The first part of the book covers the environmental, economic, and social impacts associated with project/product development as well as society as a whole. This is followed by a section devoted to sustainability metrics and assessment tools, which includes material flow analysis and material budget, carbon footprint analysis, life cycle assessment, environmental health risk assessment, and more. Next comes an in-depth examination of sustainable engineering practices, including sustainable energy engineering, sustainable waste management, and green and sustainable buildings. The book concludes with a look at how sustainable engineering may be applied to different engineering (i.e. environmental, chemical, civil, materials, infrastructure) projects. Some of the key features of this book include the following: Provides a complete and sensible understanding of the important concepts of sustainability, resiliency, and sustainable engineering Offers detailed explanations of sustainable engineering practices in waste management and remediation of contaminated sites, civil construction and infrastructure, and climate geoengineering Presents a set of case studies across different engineering disciplines such as bio/chemical, environmental, materials, construction, and infrastructure engineering that demonstrate the practical applicability of sustainability assessment tools to diverse projects Includes questions at the end of each chapter as well as a solutions manual for academic adopters The depth of coverage found in Sustainable Engineering: Drivers, Metrics, Tools, and Applications makes it an ideal textbook for graduate students across all engineering disciplines and a handy resource for active professionals.
  engineering for sustainable development: Sustainable Process Engineering Gyorgy Szekely, 2021-03-08 Sustainable process engineering is a methodology to design new and redesign existing processes that follow the principles of green chemistry and green engineering, and ultimately contribute to a sustainable development. The newest achievements of chemical engineering, opened new opportunities to design more efficient, safe, compact and environmentally benign chemical processes. The book provides a guide to sustainable process design applicable in various industrial fields. • Discusses the topic from a wide angle: chemistry, materials, processes, and equipment. • Includes state-of-the-art research achievements that are yet to be industrially implemented. • Transfers knowledge between chemists and chemical engineers. • QR codes direct the readers to animations, short videos, magazines, and blogs on specific topics • Worked examples deepen the understanding of the sustainable assessment of chemical manufacturing processes
  engineering for sustainable development: Engineering for Sustainable Development and Living Jacqueline A. Stagner, David S-K. Ting, 2021-05-01 What can we do to preserve a future for the next generation to cherish? A potent answer is to exercise good stewardship in realizing more sustainable living and development. This volume brings together experts from around the world to disseminate the latest knowledge and research toward this end, i.e., engineering for more sustainable development and living. Let us learn from a living cell that utilizes inherited biological intelligence to organize its resources for current needs and future existence. We also have the responsibility to ensure universal access to electricity and increase the share of renewable energies. Cost effective hybrid renewable energy systems should also be considered and furthered. Advancing energy storage is a necessary striving for managing a future toilet paper crisis. More accurate accounting of weather is crucial in furthering energy efficiency for human thermal comfort. With cooling making up the highest energy cost in many medical structures, combining low-energy building strategies with source-efficient and low-cost manufacturing envelopes can contribute effectively to mitigating climate change. To realize calculated improvements in practice, we must assess the performance after implementation of the promising measures. Construction is definitely the right place to start incorporating sustainable development and living. Another means to promote sustainability is to improve engineering system performance. Simple means such as a rightly positioned cylindrical rod can enhance systems that involve heat exchangers. An important lesson came through dealing with COVID-19, teaching us to provide adaptation strategies through water-energy-food nexus planning, building resilient communities for tomorrow.
  engineering for sustainable development: Sustainable Engineering David Allen, David R. Shonnard, 2011-12-28 Assessing Engineering Designs for Environmental, Economic, and Social Impact Engineers will play a central role in addressing one of the twenty-first century’s key challenges: the development of new technologies that address societal needs and wants within the constraints imposed by limited natural resources and the need to protect environmental systems. To create tomorrow’s sustainable products, engineers must carefully consider environmental, economic, and social factors in evaluating their designs. Fortunately, quantitative tools for incorporating sustainability concepts into engineering designs and performance metrics are now emerging. Sustainable Engineering introduces these tools and shows how to apply them. Building on widely accepted principles they first introduced in Green Engineering, David T. Allen and David R. Shonnard discuss key aspects of designing sustainable systems in any engineering discipline. Their powerful, unified approach integrates essential engineering and quantitative design skills, industry perspectives, and case studies, enabling engineering professionals, educators, and students to incorporate sustainability throughout their work. Coverage includes A concise review of the natural resource and environmental challenges engineers face when designing for sustainability Analysis and legislative frameworks for addressing environmental issues and sustainability Methods for identifying green and sustainable materials Principles for improving the sustainability of engineering designs Tools for evaluating sustainable designs and monetizing their benefits
  engineering for sustainable development: Sustainable Development for Engineers Karel Mulder, 2006-04 It is crucial that engineers - from students to those already practising - have a deep understanding of the environmental threats facing the world, if they are to become part of the solution and not the problem. Is there a way to reconcile modern lifestyles with the compelling need for change? Could new improved technologies play a key role? If great leaps in the environmental efficiency of technologies are needed, can they be produced? Engineers are in a privileged and hugely influential position to innovate, design and build a sustainable future. But are they engaged or uninterested? Are they knowledgeable or ignorant? This book has been developed by a number of committed educators in European engineering departments under the leadership of Delft University of Technology and the Technical University of Catalunya to meet the perceived gap between what engineers know and what they should know in relation to sustainable development. The University of Delft decided as long ago as 1998 that all of its engineering graduates, working towards careers as designers, managers or researchers, should be prepared for the challenge of sustainable development and, as such, should leave university able to make sustainable development operational in their designs and daily practices. The huge amount of knowledge gathered on best-practice teaching for engineers is reflected in this book. The aim is to give engineering students a grounding in the challenge that sustainable development poses to the engineering profession, the contribution the engineer can make to attaining some of the societal and environmental goals of sustainability, and the barriers and pitfalls engineers will likely need to confront in their professional lives. Concise but comprehensive, the book examines the key tools, skills and techniques that can be used in engineering design and management to ensure that whole-life costs and impacts of engineering schemes are addressed at every stage of planning, implementation and disposal. The book also aims to demonstrate through real-life examples the tangible benefits that have already been achieved in many engineering projects, and to highlight how real improvements can be, and are being, made. Each chapter ends with a series of questions and exercises for the student to undertake. Sustainable Development for Engineers will be essential reading for all engineers and scientists concerned with sustainable development. In particular, it provides key reading and learning materials for undergraduate and postgraduate students reading environmental, chemical, civil or mechanical engineering, manufacturing and design, environmental science, green chemistry and environmental management.
  engineering for sustainable development: Materials and Sustainable Development Michael F. Ashby, 2015-01-19 This book, from noted materials selection authority Mike Ashby, provides a structure and framework for analyzing sustainable development and the role of materials in it. The aim is to introduce ways of exploring sustainable development to readers in a way that avoids simplistic interpretations and approaches complexity in a systematic way. There is no completely right answer to questions of sustainable development – instead, there is a thoughtful, well-researched response that recognizes concerns of stakeholders, the conflicting priorities and the economic, legal and social aspects of a technology as well as its environmental legacy. The intent is not to offer solutions to sustainability challenges but rather to improve the quality of discussion and enable informed, balanced debate. - Winner of a 2016 Most Promising New Textbook Award from the Textbook and Academic Authors Association - Describes sustainable development in increasingly detailed progression, from a broad overview to specific tools and methods - Six chapter length case studies on such topics as biopolymers, electric cars, bamboo, and lighting vividly illustrate the sustainable development process from a materials perspective - Business and economic aspects are covered in chapters on corporate sustainability and the circular materials economy - Support for course use includes online solutions manual and image bank
  engineering for sustainable development: The Role of Engineering in Sustainable Development Monica D. Ellis, 1994-01-01
  engineering for sustainable development: Sustainable Ecological Engineering Design Mohammad Dastbaz, Chris Gorse, 2016-05-19 This book focuses on the impacts of the built environment, and how to predict and measure the benefits and consequences of changes taking place to address sustainability in the development and building industries. It draws together the best treatments of these subjects from the Leeds Sustainability Institute’s inaugural International Conference on Sustainability, Ecology, Engineering, Design for Society (SEEDS). The focus of discussion is on understanding how buildings and spaces are designed and nurtured to obtain optimal outcomes in energy efficiency and environmental impacts. In addition to examining technical issues such as modeling energy performance, emphasis is placed on the health and well-being of occupants. This holistic approach addresses the interdependence of people with the built and natural environments. The book’s contents reflect the interdisciplinary and international collaboration critical to assembly of the knowledge required for positive change.
  engineering for sustainable development: Sustainable Infrastructure S. Bry Sarte, 2010-09-23 As more factors, perspectives, and metrics are incorporated into the planning and building process, the roles of engineers and designers are increasingly being fused together. Sustainable Infrastructure explores this trend with in-depth look at sustainable engineering practices in an urban design as it involves watershed master-planning, green building, optimizing water reuse, reclaiming urban spaces, green streets initiatives, and sustainable master-planning. This complete guide provides guidance on the role creative thinking and collaborative team-building play in meeting solutions needed to affect a sustainable transformation of the built environment.
  engineering for sustainable development: Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering Thendiyath Roshni, Pijush Samui, Dieu Tien Bui, Dookie Kim, Rahman Khatibi, 2022-03-22 Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering illustrates the concepts of risk, reliability analysis, its estimation, and the decisions leading to sustainable development in the field of civil and environmental engineering. The book provides key ideas on risks in performance failure and structural failures of all processes involved in civil and environmental systems, evaluates reliability, and discusses the implications of measurable indicators of sustainability in important aspects of multitude of civil engineering projects. It will help practitioners become familiar with tolerances in design parameters, uncertainties in the environment, and applications in civil and environmental systems. Furthermore, the book emphasizes the importance of risks involved in design and planning stages and covers reliability techniques to discover and remove the potential failures to achieve a sustainable development. - Contains relevant theory and practice related to risk, reliability and sustainability in the field of civil and environment engineering - Gives firsthand experience of new tools to integrate existing artificial intelligence models with large information obtained from different sources - Provides engineering solutions that have a positive impact on sustainability
The effect of age on mapping auditory icons to visual icons for ...
Oct 1, 1996 · This research explored the abilities of subjects in grade 1 (6–7 years old) and grade 3 (8–9 years old) to identify auditory icons that are commonly introduced in software applications …

Toward establishing a link between psychomotor task complexity …
Oct 1, 1996 · The objective of this research is to propose and validate a link between an existing information processing model for psychomotor tasks and a comprehensive characterization of …

Engineering | Journal | ScienceDirect.com by Elsevier
The official journal of the Chinese Academy of Engineering and Higher Education Press. Engineering is an international open-access journal that was launched by the Chinese Academy of …

Pickering stabilization of double emulsions: Basic concepts, …
Double emulsions (DEs) offer unique compartmentalized structures but are inherently unstable, prompting significant scientific and industrial efforts …

Engineering Structures | Journal | ScienceDirect.com by Elsevier
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. …

Engineering Failure Analysis | Journal - ScienceDirect
Published in Affiliation with the European Structural Integrity Society. The Engineering Failure Analysis journal provides an essential reference for analysing and preventing engineering …

Engineering Geology | Journal | ScienceDirect.com by Elsevier
Engineering Geology is an international interdisciplinary journal bridging the fields of the earth sciences and engineering, particularly geological and geotechnical engineering.The focus of the …

Engineering Applications of Artificial Intelligence | Journal ...
A journal of IFAC, the International Federation of Automatic Control Artificial Intelligence (AI) is playing a major role in the fourth industrial revolution and we are seeing a lot of evolution in …

High-Entropy Approach vs. Traditional Doping Strategy for Layered …
Jun 1, 2025 · The traditional doping strategy has emerged as an effective method for addressing challenges such as irreversible phase transitions and poor cycling s…

Food Hydrocolloids | Vol 168, December 2025 - ScienceDirect
Read the latest articles of Food Hydrocolloids at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

The effect of age on mapping auditory icons to visual icons for ...
Oct 1, 1996 · This research explored the abilities of subjects in grade 1 (6–7 years old) and grade 3 (8–9 years old) to identify auditory icons that are commonly introduced in software …

Toward establishing a link between psychomotor task complexity …
Oct 1, 1996 · The objective of this research is to propose and validate a link between an existing information processing model for psychomotor tasks and a comprehensive characterization of …

Engineering | Journal | ScienceDirect.com by Elsevier
The official journal of the Chinese Academy of Engineering and Higher Education Press. Engineering is an international open-access journal that was launched by the Chinese …

Pickering stabilization of double emulsions: Basic concepts, …
Double emulsions (DEs) offer unique compartmentalized structures but are inherently unstable, prompting significant scientific and industrial efforts …

Engineering Structures | Journal | ScienceDirect.com by Elsevier
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. …

Engineering Failure Analysis | Journal - ScienceDirect
Published in Affiliation with the European Structural Integrity Society. The Engineering Failure Analysis journal provides an essential reference for analysing and preventing engineering …

Engineering Geology | Journal | ScienceDirect.com by Elsevier
Engineering Geology is an international interdisciplinary journal bridging the fields of the earth sciences and engineering, particularly geological and geotechnical engineering.The focus of …

Engineering Applications of Artificial Intelligence | Journal ...
A journal of IFAC, the International Federation of Automatic Control Artificial Intelligence (AI) is playing a major role in the fourth industrial revolution and we are seeing a lot of evolution in …

High-Entropy Approach vs. Traditional Doping Strategy for …
Jun 1, 2025 · The traditional doping strategy has emerged as an effective method for addressing challenges such as irreversible phase transitions and poor cycling s…

Food Hydrocolloids | Vol 168, December 2025 - ScienceDirect
Read the latest articles of Food Hydrocolloids at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature