Advertisement
engineering with least math: Advanced Engineering Mathematics K. A. Stroud, Dexter J. Booth, 2011 A worldwide bestseller renowned for its effective self-instructional pedagogy. |
engineering with least math: Calculus for Engineering Students Jesus Martin Vaquero, Michael Carr, Araceli Quieruga-Dios, Daniela Richtarikova, 2020-08-10 Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications. - Organized around project-based rather than traditional homework-based learning - Reviews basic mathematics and theory while also introducing applications - Employs uniform chapter sections that encourage the comparison and contrast of different areas of engineering |
engineering with least math: Essential Math Skills for Engineers Clayton R. Paul, 2011-09-20 Just the math skills you need to excel in the study or practice of engineering Good math skills are indispensable for all engineers regardless of their specialty, yet only a relatively small portion of the math that engineering students study in college mathematics courses is used on a frequent basis in the study or practice of engineering. That's why Essential Math Skills for Engineers focuses on only these few critically essential math skills that students need in order to advance in their engineering studies and excel in engineering practice. Essential Math Skills for Engineers features concise, easy-to-follow explanations that quickly bring readers up to speed on all the essential core math skills used in the daily study and practice of engineering. These fundamental and essential skills are logically grouped into categories that make them easy to learn while also promoting their long-term retention. Among the key areas covered are: Algebra, geometry, trigonometry, complex arithmetic, and differential and integral calculus Simultaneous, linear, algebraic equations Linear, constant-coefficient, ordinary differential equations Linear, constant-coefficient, difference equations Linear, constant-coefficient, partial differential equations Fourier series and Fourier transform Laplace transform Mathematics of vectors With the thorough understanding of essential math skills gained from this text, readers will have mastered a key component of the knowledge needed to become successful students of engineering. In addition, this text is highly recommended for practicing engineers who want to refresh their math skills in order to tackle problems in engineering with confidence. |
engineering with least math: Mathematics for Electrical Engineering and Computing Mary P Attenborough, 2003-06-30 Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering |
engineering with least math: The College Solution Lynn O'Shaughnessy, 2008-06-06 “The College Solution helps readers look beyond over-hyped admission rankings to discover schools that offer a quality education at affordable prices. Taking the guesswork out of saving and finding money for college, this is a practical and insightful must-have guide for every parent!” —Jaye J. Fenderson, Seventeen’s College Columnist and Author, Seventeen’s Guide to Getting into College “This book is a must read in an era of rising tuition and falling admission rates. O’Shaughnessy offers good advice with blessed clarity and brevity.” —Jay Mathews, Washington Post Education Writer and Columnist “I would recommend any parent of a college-bound student read The College Solution.” —Kal Chany, Author, The Princeton Review’s Paying for College Without Going Broke “The College Solution goes beyond other guidebooks in providing an abundance of information about how to afford college, in addition to how to approach the selection process by putting the student first.” —Martha “Marty” O’Connell, Executive Director, Colleges That Change Lives “Lynn O’Shaughnessy always focuses on what’s in the consumer’s best interest, telling families how to save money and avoid making costly mistakes.” —Mark Kantrowitz, Publisher, FinAid.org and Author, FastWeb College Gold “An antidote to the hype and hysteria about getting in and paying for college! O’Shaughnessy has produced an excellent overview that demystifies the college planning process for students and families.” —Barmak Nassirian, American Association of Collegiate Registrars and Admissions Officers For millions of families, the college planning experience has become extremely stressful. And, unless your child is an elite student in the academic top 1%, most books on the subject won’t help you. Now, however, there’s a college guide for everyone. In The College Solution, top personal finance journalist Lynn O’Shaughnessy presents an easy-to-use roadmap to finding the right college program (not just the most hyped) and dramatically reducing the cost of college, too. Forget the rankings! Discover what really matters: the quality and value of the programs your child wants and deserves. O’Shaughnessy uncovers “industry secrets” on how colleges actually parcel out financial aid—and how even “average” students can maximize their share. Learn how to send your kids to expensive private schools for virtually the cost of an in-state public college...and how promising students can pay significantly less than the “sticker price” even at the best state universities. No other book offers this much practical guidance on choosing a college...and no other book will save you as much money! • Secrets your school’s guidance counselor doesn’t know yet The surprising ways colleges have changed how they do business • Get every dime of financial aid that’s out there for you Be a “fly on the wall” inside the college financial aid office • U.S. News & World Report: clueless about your child Beyond one-size-fits-all rankings: finding the right program for your teenager • The best bargains in higher education Overlooked academic choices that just might be perfect for you |
engineering with least math: Engineering Mathematics with Examples and Applications Xin-She Yang, 2016-12-29 Engineering Mathematics with Examples and Applications provides a compact and concise primer in the field, starting with the foundations, and then gradually developing to the advanced level of mathematics that is necessary for all engineering disciplines. Therefore, this book's aim is to help undergraduates rapidly develop the fundamental knowledge of engineering mathematics. The book can also be used by graduates to review and refresh their mathematical skills. Step-by-step worked examples will help the students gain more insights and build sufficient confidence in engineering mathematics and problem-solving. The main approach and style of this book is informal, theorem-free, and practical. By using an informal and theorem-free approach, all fundamental mathematics topics required for engineering are covered, and readers can gain such basic knowledge of all important topics without worrying about rigorous (often boring) proofs. Certain rigorous proof and derivatives are presented in an informal way by direct, straightforward mathematical operations and calculations, giving students the same level of fundamental knowledge without any tedious steps. In addition, this practical approach provides over 100 worked examples so that students can see how each step of mathematical problems can be derived without any gap or jump in steps. Thus, readers can build their understanding and mathematical confidence gradually and in a step-by-step manner. - Covers fundamental engineering topics that are presented at the right level, without worry of rigorous proofs - Includes step-by-step worked examples (of which 100+ feature in the work) - Provides an emphasis on numerical methods, such as root-finding algorithms, numerical integration, and numerical methods of differential equations - Balances theory and practice to aid in practical problem-solving in various contexts and applications |
engineering with least math: Advanced Mathematics for Engineering Students Brent J. Lewis, E. Nihan Onder, Andrew Prudil, 2021-05-20 Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author's university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a toolbox for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). - Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer - The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) - Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations) |
engineering with least math: Handbook of Mathematics for Engineers and Scientists Andrei D. Polyanin, Alexander V. Manzhirov, 2006-11-27 Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations. |
engineering with least math: Mathematical Methods for Physics and Engineering Mattias Blennow, 2018-01-03 Suitable for advanced undergraduate and graduate students, this new textbook contains an introduction to the mathematical concepts used in physics and engineering. The entire book is unique in that it draws upon applications from physics, rather than mathematical examples, to ensure students are fully equipped with the tools they need. This approach prepares the reader for advanced topics, such as quantum mechanics and general relativity, while offering examples, problems, and insights into classical physics. The book is also distinctive in the coverage it devotes to modelling, and to oft-neglected topics such as Green's functions. |
engineering with least math: Mathematics Applied to Engineering Mangey Ram, J. Paulo Davim, 2017-05-22 Mathematics Applied in Engineering presents a wide array of applied mathematical techniques for an equally wide range of engineering applications, covering areas such as acoustics, system engineering, optimization, mechanical engineering, and reliability engineering. Mathematics acts as a foundation for new advances, as engineering evolves and develops. This book will be of great interest to postgraduate and senior undergraduate students, and researchers, in engineering and mathematics, as well as to engineers, policy makers, and scientists involved in the application of mathematics in engineering. - Covers many mathematical techniques for robotics, computer science, mechanical engineering, HCI and machinability - Describes different algorithms - Explains different modeling techniques and simulations |
engineering with least math: A Mind for Numbers Barbara A. Oakley, 2014-07-31 Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. In her book, she offers you the tools needed to get a better grasp of that intimidating but inescapable field. |
engineering with least math: Space Mathematics Bernice Kastner, 2013-10-17 Created by NASA for high school students interested in space science, this collection of worked problems covers a broad range of subjects, including mathematical aspects of NASA missions, computation and measurement, algebra, geometry, probability and statistics, exponential and logarithmic functions, trigonometry, matrix algebra, conic sections, and calculus. In addition to enhancing mathematical knowledge and skills, these problems promote an appreciation of aerospace technology and offer valuable insights into the practical uses of secondary school mathematics by professional scientists and engineers. Geared toward high school students and teachers, this volume also serves as a fine review for undergraduate science and engineering majors. Numerous figures illuminate the text, and an appendix explores the advanced topic of gravitational forces and the conic section trajectories. |
engineering with least math: Engineering Mathematics-II A. Ganeshi, 2009 About the Book: This book Engineering Mathematics-II is designed as a self-contained, comprehensive classroom text for the second semester B.E. Classes of Visveswaraiah Technological University as per the Revised new Syllabus. The topics included are Differential Calculus, Integral Calculus and Vector Integration, Differential Equations and Laplace Transforms. The book is written in a simple way and is accompanied with explanatory figures. All this make the students enjoy the subject while they learn. Inclusion of selected exercises and problems make the book educational in nature. It shou. |
engineering with least math: Advanced Engineering Mathematics Dennis Zill, Warren S. Wright, Michael R. Cullen, 2011 Accompanying CD-ROM contains ... a chapter on engineering statistics and probability / by N. Bali, M. Goyal, and C. Watkins.--CD-ROM label. |
engineering with least math: A Concise Handbook of Mathematics, Physics, and Engineering Sciences Andrei D. Polyanin, Alexei Chernoutsan, 2010-10-18 A Concise Handbook of Mathematics, Physics, and Engineering Sciences takes a practical approach to the basic notions, formulas, equations, problems, theorems, methods, and laws that most frequently occur in scientific and engineering applications and university education. The authors pay special attention to issues that many engineers and students |
engineering with least math: Mathematics for Mechanical Engineers Frank Kreith, William F. Ames, George Cain, Y. L. Tong, W. Glenn Steele, Hugh W. Coleman, Richard L. Kautz, Dan M. Frangopol, Paul Norton, 1999-12-06 Mathematics for Mechanical Engineers gives mechanical engineers convenient access to the essential problem solving tools that they use each day. It covers applications employed in many different facets of mechanical engineering, from basic through advanced, to ensure that you will easily find answers you need in this handy guide. For the engineer venturing out of familiar territory, the chapters cover fundamentals like physical constants, derivatives, integrals, Fourier transforms, Bessel functions, and Legendre functions. For the experts, it includes thorough sections on the more advanced topics of partial differential equations, approximation methods, and numerical methods, often used in applications. The guide reviews statistics for analyzing engineering data and making inferences, so professionals can extract useful information even with the presence of randomness and uncertainty. The convenient Mathematics for Mechanical Engineers is an indispensable summary of mathematics processes needed by engineers. |
engineering with least math: Functions, Spaces, and Expansions Ole Christensen, 2010-05-27 This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required. |
engineering with least math: Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty National Research Council, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Policy and Global Affairs, Committee on Women in Science, Engineering, and Medicine, Committee on Gender Differences in Careers of Science, Engineering, and Mathematics Faculty, 2010-06-18 Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty presents new and surprising findings about career differences between female and male full-time, tenure-track, and tenured faculty in science, engineering, and mathematics at the nation's top research universities. Much of this congressionally mandated book is based on two unique surveys of faculty and departments at major U.S. research universities in six fields: biology, chemistry, civil engineering, electrical engineering, mathematics, and physics. A departmental survey collected information on departmental policies, recent tenure and promotion cases, and recent hires in almost 500 departments. A faculty survey gathered information from a stratified, random sample of about 1,800 faculty on demographic characteristics, employment experiences, the allocation of institutional resources such as laboratory space, professional activities, and scholarly productivity. This book paints a timely picture of the status of female faculty at top universities, clarifies whether male and female faculty have similar opportunities to advance and succeed in academia, challenges some commonly held views, and poses several questions still in need of answers. This book will be of special interest to university administrators and faculty, graduate students, policy makers, professional and academic societies, federal funding agencies, and others concerned with the vitality of the U.S. research base and economy. |
engineering with least math: Fundamental Math and Physics for Scientists and Engineers David Yevick, Hannah Yevick, 2014-11-21 Provides a concise overview of the core undergraduate physics and applied mathematics curriculum for students and practitioners of science and engineering Fundamental Math and Physics for Scientists and Engineers summarizes college and university level physics together with the mathematics frequently encountered in engineering and physics calculations. The presentation provides straightforward, coherent explanations of underlying concepts emphasizing essential formulas, derivations, examples, and computer programs. Content that should be thoroughly mastered and memorized is clearly identified while unnecessary technical details are omitted. Fundamental Math and Physics for Scientists and Engineers is an ideal resource for undergraduate science and engineering students and practitioners, students reviewing for the GRE and graduate-level comprehensive exams, and general readers seeking to improve their comprehension of undergraduate physics. Covers topics frequently encountered in undergraduate physics, in particular those appearing in the Physics GRE subject examination Reviews relevant areas of undergraduate applied mathematics, with an overview chapter on scientific programming Provides simple, concise explanations and illustrations of underlying concepts Succinct yet comprehensive, Fundamental Math and Physics for Scientists and Engineers constitutes a reference for science and engineering students, practitioners and non-practitioners alike. |
engineering with least math: Advanced Engineering Mathematics Merle C. Potter, Jack L. Lessing, Edward F. Aboufadel, 2019-06-14 This book is designed to serve as a core text for courses in advanced engineering mathematics required by many engineering departments. The style of presentation is such that the student, with a minimum of assistance, can follow the step-by-step derivations. Liberal use of examples and homework problems aid the student in the study of the topics presented. Ordinary differential equations, including a number of physical applications, are reviewed in Chapter One. The use of series methods are presented in Chapter Two, Subsequent chapters present Laplace transforms, matrix theory and applications, vector analysis, Fourier series and transforms, partial differential equations, numerical methods using finite differences, complex variables, and wavelets. The material is presented so that four or five subjects can be covered in a single course, depending on the topics chosen and the completeness of coverage. Incorporated in this textbook is the use of certain computer software packages. Short tutorials on Maple, demonstrating how problems in engineering mathematics can be solved with a computer algebra system, are included in most sections of the text. Problems have been identified at the end of sections to be solved specifically with Maple, and there are computer laboratory activities, which are more difficult problems designed for Maple. In addition, MATLAB and Excel have been included in the solution of problems in several of the chapters. There is a solutions manual available for those who select the text for their course. This text can be used in two semesters of engineering mathematics. The many helpful features make the text relatively easy to use in the classroom. |
engineering with least math: What is Mathematics? Richard Courant, Herbert Robbins, 1996 The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but not real understanding or greater intellectual independence. The new edition of this classic work seeks to address this problem. Its goal is to put the meaning back into mathematics. Lucid . . . easily understandable.--Albert Einstein. 301 linecuts. |
engineering with least math: Mathematics for Engineers and Technologists Huw Fox, William Bolton, 2002-07-18 This book is carefully designed to be used on a wide range of introductory courses at first degree and HND level in the U.K., with content matched to a variety of first year degree modules from IEng and other BSc Engineering and Technology courses. Lecturers will find the breadth of material covered gears the book towards a flexible style of use, which can be tailored to their syllabus, and used along side the other IIE Core Textbooks to bring first year students up to speed on the mathematics they require for their engineering degree.*Features real-world examples, case studies, assignments and knowledge-check questions throughout*Introduces key mathematical methods in practical engineering contexts *Bridges the gap between theory and practice |
engineering with least math: Mathematical Methods for Physics and Engineering Kenneth Franklin Riley, Michael Paul Hobson, Stephen John Bence, 1997 |
engineering with least math: Applied Mathematics In Hydraulic Engineering: An Introduction To Nonlinear Differential Equations Kazumasa Mizumura, 2011-05-26 Applied Mathematics in Hydraulic Engineering is an excellent teaching guide and reference to treating nonlinear mathematical problems in hydraulic, hydrologic and coastal engineering. Undergraduates studying civil and coastal engineering, as well as analysis and differential equations, are started off applying calculus to the treatment of nonlinear partial differential equations, before given the chance to practice real-life problems related to the fields. This textbook is not only a good source of teaching materials for teachers or instructors, but is also useful as a comprehensive resource of mathematical tools to researchers. |
engineering with least math: Science and Mathematics for Engineering John Bird, 2019-10-08 A practical introduction to the engineering science and mathematics required for engineering study and practice. Science and Mathematics for Engineering is an introductory textbook that assumes no prior background in engineering. This new edition covers the fundamental scientific knowledge that all trainee engineers must acquire in order to pass their examinations and has been brought fully in line with the compulsory science and mathematics units in the new engineering course specifications. A new chapter covers present and future ways of generating electricity, an important topic. John Bird focuses upon engineering examples, enabling students to develop a sound understanding of engineering systems in terms of the basic laws and principles. This book includes over 580 worked examples, 1300 further problems, 425 multiple choice questions (with answers), and contains sections covering the mathematics that students will require within their engineering studies, mechanical applications, electrical applications and engineering systems. This book is supported by a companion website of materials that can be found at www.routledge/cw/bird. This resource includes fully worked solutions of all the further problems for students to access, and the full solutions and marking schemes for the revision tests found within the book for instructor use. In addition, all 447 illustrations will be available for downloading by lecturers. |
engineering with least math: Engineering Mathematics Through Applications Kuldeep Singh, 2019-12-13 This popular, world-wide selling textbook teaches engineering mathematics in a step-by-step fashion and uniquely through engineering examples and exercises which apply the techniques right from their introduction. This contextual use of mathematics is highly motivating, as with every topic and each new page students see the importance and relevance of mathematics in engineering. The examples are taken from mechanics, aerodynamics, electronics, engineering, fluid dynamics and other areas. While being general and accessible for all students, they also highlight how mathematics works in any individual's engineering discipline. The material is often praised for its careful pace, and the author pauses to ask questions to keep students reflecting. Proof of mathematical results is kept to a minimum. Instead the book develops learning by investigating results, observing patterns, visualizing graphs and answering questions using technology. This textbook is ideal for first year undergraduates and those on pre-degree courses in Engineering (all disciplines) and Science. New to this Edition: - Fully revised and improved on the basis of student feedback - New sections - More examples, more exam questions - Vignettes and photos of key mathematicians |
engineering with least math: Math Refresher for Scientists and Engineers John R. Fanchi, 2006-06-12 Expanded coverage of essential math, including integral equations, calculus of variations, tensor analysis, and special integrals Math Refresher for Scientists and Engineers, Third Edition is specifically designed as a self-study guide to help busy professionals and students in science and engineering quickly refresh and improve the math skills needed to perform their jobs and advance their careers. The book focuses on practical applications and exercises that readers are likely to face in their professional environments. All the basic math skills needed to manage contemporary technology problems are addressed and presented in a clear, lucid style that readers familiar with previous editions have come to appreciate and value. The book begins with basic concepts in college algebra and trigonometry, and then moves on to explore more advanced concepts in calculus, linear algebra (including matrices), differential equations, probability, and statistics. This Third Edition has been greatly expanded to reflect the needs of today's professionals. New material includes: * A chapter on integral equations * A chapter on calculus of variations * A chapter on tensor analysis * A section on time series * A section on partial fractions * Many new exercises and solutions Collectively, the chapters teach most of the basic math skills needed by scientists and engineers. The wide range of topics covered in one title is unique. All chapters provide a review of important principles and methods. Examples, exercises, and applications are used liberally throughout to engage the readers and assist them in applying their new math skills to actual problems. Solutions to exercises are provided in an appendix. Whether to brush up on professional skills or prepare for exams, readers will find this self-study guide enables them to quickly master the math they need. It can additionally be used as a textbook for advanced-level undergraduates in physics and engineering. |
engineering with least math: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
engineering with least math: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together |
engineering with least math: Hardcore Programming for Mechanical Engineers Angel Sola Orbaiceta, 2021-06-22 Hardcore Programming for Mechanical Engineers is for intermediate programmers who want to write good applications that solve tough engineering problems – from scratch. This book will teach you how to solve engineering problems with Python. The “hardcore” approach means that you will learn to get the correct results by coding everything from scratch. Forget relying on third-party software – there are no shortcuts on the path to proficiency. Instead, using familiar concepts from linear algebra, geometry and physics, you’ll write your own libraries, draw your own primitives, and build your own applications. Author Angel Sola covers core programming techniques mechanical engineers need to know, with a focus on high-quality code and automated unit testing for error-free implementations. After basic primers on Python and using the command line, you’ll quickly develop a geometry toolbox, filling it with lines and shapes for diagramming problems. As your understanding grows chapter-by-chapter, you’ll create vector graphics and animations for dynamic simulations; you’ll code algorithms that can do complex numerical computations; and you’ll put all of this knowledge together to build a complete structural analysis application that solves a 2D truss problem – similar to the software projects conducted by real-world mechanical engineers. You'll learn: • How to use geometric primitives, like points and polygons, and implement matrices • Best practices for clean code, including unit testing, encapsulation, and expressive names • Processes for drawing images to the screen and creating animations inside Tkinter’s Canvas widget • How to write programs that read from a file, parse the data, and produce vector images • Numerical methods for solving large systems of linear equations, like the Cholesky decomposition algorithm |
engineering with least math: Advanced Engineering Mathematics Michael Greenberg, 2013-09-20 Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering. This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement. |
engineering with least math: Understanding the Educational and Career Pathways of Engineers National Academy of Engineering, Committee on Understanding the Engineering Education-Workforce Continuum, 2019-01-26 Engineering skills and knowledge are foundational to technological innovation and development that drive long-term economic growth and help solve societal challenges. Therefore, to ensure national competitiveness and quality of life it is important to understand and to continuously adapt and improve the educational and career pathways of engineers in the United States. To gather this understanding it is necessary to study the people with the engineering skills and knowledge as well as the evolving system of institutions, policies, markets, people, and other resources that together prepare, deploy, and replenish the nation's engineering workforce. This report explores the characteristics and career choices of engineering graduates, particularly those with a BS or MS degree, who constitute the vast majority of degreed engineers, as well as the characteristics of those with non-engineering degrees who are employed as engineers in the United States. It provides insight into their educational and career pathways and related decision making, the forces that influence their decisions, and the implications for major elements of engineering education-to-workforce pathways. |
engineering with least math: Engineering Mathematics K. A. Stroud, 2001 A groundbreaking and comprehensive reference that's been a bestseller since 1970, this new edition provides a broad mathematical survey and covers a full range of topics from the very basic to the advanced. For the first time, a personal tutor CD-ROM is included. |
engineering with least math: Topics in Algebra I. N. Herstein, 1991-01-16 New edition includes extensive revisions of the material on finite groups and Galois Theory. New problems added throughout. |
engineering with least math: Mathematical Methods in Engineering and Physics Gary N. Felder, Kenny M. Felder, 2015-04-13 This text is intended for the undergraduate course in math methods, with an audience of physics and engineering majors. As a required course in most departments, the text relies heavily on explained examples, real-world applications and student engagement. Supporting the use of active learning, a strong focus is placed upon physical motivation combined with a versatile coverage of topics that can be used as a reference after students complete the course. Each chapter begins with an overview that includes a list of prerequisite knowledge, a list of skills that will be covered in the chapter, and an outline of the sections. Next comes the motivating exercise, which steps the students through a real-world physical problem that requires the techniques taught in each chapter. |
engineering with least math: Mathematics for Computer Programmers Christine Benedyk Kay, 1984 Number systems I. Sets. Integer and real number sets. Format arithmetic. Algorithms. Solving problems using input. process, and output. Algorithms. Flowcharts. Algebraic applications for programming. Language of algebra. Algebraic expressions of not equal. Exponents. Equations. Advanced algebra concepts. Quadratic equations. Linear equations. Linear programming. Functions. Sequence and subscripted variables. Matrices. Binary systems. Number base concepts. Binary, octal, and hexadecimal numbers. Computer codes. Boolean algebra concepts. Mathematical logic. Boolean algebra and computer logic. |
engineering with least math: Mathematical Techniques Dominic William Jordan, Peter Smith, 1997 All students of engineering, science, and mathematics take courses on mathematical techniques or `methods', and large numbers of these students are insecure in their mathematical grounding. This book offers a course in mathematical methods for students in the first stages of a science or engineering degree. Its particular intention is to cover the range of topics typically required, while providing for students whose mathematical background is minimal. The topics covered are: * Analytic geometry, vector algebra, vector fields (div and curl), differentiation, and integration. * Complex numbers, matrix operations, and linear systems of equations. * Differential equations and first-order linear systems, functions of more than one variable, double integrals, and line integrals. * Laplace transforms and Fourier series and Fourier transforms. * Probability and statistics. The earlier part of this list consists largely of what is thought pre-university material. However, many science students have not studied mathematics to this level, and among those that have the content is frequently only patchily understood. Mathematical Techniques begins at an elementary level but proceeds to give more advanced material with a minimum of manipulative complication. Most of the concepts can be explained using quite simple examples, and to aid understanding a large number of fully worked examples is included. As far as is possible chapter topics are dealt with in a self-contained way so that a student only needing to master certain techniques can omit others without trouble. The widely illustrated text also includes simple numerical processes which lead to examples and projects for computation, and a large number of exercises (with answers) is included to reinforce understanding. |
engineering with least math: Advanced Engineering Mathematics Erwin Kreyszig, 2019-01-03 |
engineering with least math: The Cauchy-Schwarz Master Class J. Michael Steele, 2004-04-26 This lively, problem-oriented text, first published in 2004, is designed to coach readers toward mastery of the most fundamental mathematical inequalities. With the Cauchy-Schwarz inequality as the initial guide, the reader is led through a sequence of fascinating problems whose solutions are presented as they might have been discovered - either by one of history's famous mathematicians or by the reader. The problems emphasize beauty and surprise, but along the way readers will find systematic coverage of the geometry of squares, convexity, the ladder of power means, majorization, Schur convexity, exponential sums, and the inequalities of Hölder, Hilbert, and Hardy. The text is accessible to anyone who knows calculus and who cares about solving problems. It is well suited to self-study, directed study, or as a supplement to courses in analysis, probability, and combinatorics. |
engineering with least math: The Pig Book Citizens Against Government Waste, 2013-09-17 The federal government wastes your tax dollars worse than a drunken sailor on shore leave. The 1984 Grace Commission uncovered that the Department of Defense spent $640 for a toilet seat and $436 for a hammer. Twenty years later things weren't much better. In 2004, Congress spent a record-breaking $22.9 billion dollars of your money on 10,656 of their pork-barrel projects. The war on terror has a lot to do with the record $413 billion in deficit spending, but it's also the result of pork over the last 18 years the likes of: - $50 million for an indoor rain forest in Iowa - $102 million to study screwworms which were long ago eradicated from American soil - $273,000 to combat goth culture in Missouri - $2.2 million to renovate the North Pole (Lucky for Santa!) - $50,000 for a tattoo removal program in California - $1 million for ornamental fish research Funny in some instances and jaw-droppingly stupid and wasteful in others, The Pig Book proves one thing about Capitol Hill: pork is king! |
Chapter 4 Curve Fitting & Correlation
4.2 Principle of Least Squares The principle of least squares is one of the most popular methods for finding the curve of best fit to a given data set . Let = be the equation of the curve to be …
Which engineering has least math - uploads.strikinglycdn.com
Although computers can solve many math problems, engineers still need a solid foundation in math and a good understanding of mathematical principles. Each university develops its own …
SCIENCE, TECHNOLOGY, ENGINEERING AND MATH:
Yet today, that position is threatened as comparatively few American students pursue expertise in the fields of science, technology, engineering and mathematics (STEM)— and by an …
Math in Engineering: Beyond the Equations - American …
Engineering students work hard to learn calculus and differential equations. These are the tools used to develop the models of physical phenomena that engineers use to solve problems.
The Importance of Calculus in Mechanical Engineering
Calculus is vital in mechanical engineering. It’s used in many different ways, such as creating new designs and understanding how materials and moving systems work. For example, engineers …
Understanding the Role of Mathematics in Engineering …
Students in engineering majors (n=17) and mathematics majors (n=13) were recruited to work independently on a design task. In this paper, we present analysis methods, data, and findings …
Essential Mathematics for Undergraduate Students in …
Often, students find it difficult to make the connection between the basic mathematics taught in the math courses and the math required as a tool for engineering courses. The purpose of this …
Engineering With Least Math - archive.ncarb.org
order to advance in their engineering studies and excel in engineering practice Essential Math Skills for Engineers features concise easy to follow explanations that quickly bring readers up …
IMPROVING SCIENCE, TECHNOLOGY, ENGINEERING, AND …
Developing high-quality skills in the fields of science, technology, engineering, and mathematics (STEM) is increasingly important for student success at all levels of education. These same …
Engineering With Least Math (Download Only)
Engineers Clayton R. Paul,2011-09-20 Just the math skills you need to excel in the study or practice of engineering Good math skills are indispensable for all engineers regardless of their …
Essential Mathematics for Engineers and Scientists
Detailed and numerous worked problems help to ensure a clear and well-paced introduction to applied mathematics. Computational challenge problems at the end of each chapter pro-vide …
Major Prep Courses for Engineering Majors - University of …
Majors that require at least two prep courses taken at UCLA be one from Chemistry and one from Physics at the time of applying: AE, ME Appicants to CE, CS, and CSE must have completed …
Engineering With Least Math (book) - archive.ncarb.org
By accessing Engineering With Least Math versions, you eliminate the need to spend money on physical copies. This not only saves you money but also reduces the environmental impact …
Engineering With Least Math Full PDF
skills that students need in order to advance in their engineering studies and excel in engineering practice Essential Math Skills for Engineers features concise easy to follow explanations that …
Engineering With Least Math (2024) - ncarb.swapps.dev
order to advance in their engineering studies and excel in engineering practice Essential Math Skills for Engineers features concise easy to follow explanations that quickly bring readers up …
Engineering With Least Math (2024) - archive.ncarb.org
Within the pages of "Engineering With Least Math," a mesmerizing literary creation penned with a celebrated wordsmith, readers embark on an enlightening odyssey, unraveling the intricate …
Engineering With Least Math (book) - archive.ncarb.org
order to advance in their engineering studies and excel in engineering practice Essential Math Skills for Engineers features concise easy to follow explanations that quickly bring readers up …
Chapter 4 Curve Fitting & Correlation
4.2 Principle of Least Squares The principle of least squares is one of the most popular methods for finding the curve of best fit to a given data set . Let = be the equation of the curve to be …
Which engineering has least math - uploads.strikinglycdn.com
Although computers can solve many math problems, engineers still need a solid foundation in math and a good understanding of mathematical principles. Each university develops its own …
Engineering - CJ Quines
Engineering is not a replacement for learning math. It shouldn’t be satisfying to get an answer with engineering. Engineering a problem is like taking out a loan, that you need to repay with …
Engineering With Least Math - archive.ncarb.org
students need in order to advance in their engineering studies and excel in engineering practice Essential Math Skills for Engineers features concise easy to follow explanations that quickly …
SCIENCE, TECHNOLOGY, ENGINEERING AND MATH:
Yet today, that position is threatened as comparatively few American students pursue expertise in the fields of science, technology, engineering and mathematics (STEM)— and by an …
Math in Engineering: Beyond the Equations - American …
Engineering students work hard to learn calculus and differential equations. These are the tools used to develop the models of physical phenomena that engineers use to solve problems.
The Importance of Calculus in Mechanical Engineering
Calculus is vital in mechanical engineering. It’s used in many different ways, such as creating new designs and understanding how materials and moving systems work. For example, engineers …
Understanding the Role of Mathematics in Engineering …
Students in engineering majors (n=17) and mathematics majors (n=13) were recruited to work independently on a design task. In this paper, we present analysis methods, data, and findings …
Essential Mathematics for Undergraduate Students in …
Often, students find it difficult to make the connection between the basic mathematics taught in the math courses and the math required as a tool for engineering courses. The purpose of this …
Engineering With Least Math - archive.ncarb.org
order to advance in their engineering studies and excel in engineering practice Essential Math Skills for Engineers features concise easy to follow explanations that quickly bring readers up …
IMPROVING SCIENCE, TECHNOLOGY, ENGINEERING, AND …
Developing high-quality skills in the fields of science, technology, engineering, and mathematics (STEM) is increasingly important for student success at all levels of education. These same …
Engineering With Least Math (Download Only)
Engineers Clayton R. Paul,2011-09-20 Just the math skills you need to excel in the study or practice of engineering Good math skills are indispensable for all engineers regardless of their …
Essential Mathematics for Engineers and Scientists
Detailed and numerous worked problems help to ensure a clear and well-paced introduction to applied mathematics. Computational challenge problems at the end of each chapter pro-vide …
Engineering With Least Math (Download Only)
engineering studies and excel in engineering practice Essential Math Skills for Engineers features concise easy to follow explanations that quickly bring readers up to speed on all the essential …
Major Prep Courses for Engineering Majors - University of …
Majors that require at least two prep courses taken at UCLA be one from Chemistry and one from Physics at the time of applying: AE, ME Appicants to CE, CS, and CSE must have completed …
Engineering With Least Math (book) - archive.ncarb.org
By accessing Engineering With Least Math versions, you eliminate the need to spend money on physical copies. This not only saves you money but also reduces the environmental impact …
Engineering With Least Math Full PDF
skills that students need in order to advance in their engineering studies and excel in engineering practice Essential Math Skills for Engineers features concise easy to follow explanations that …
Engineering With Least Math (2024) - ncarb.swapps.dev
order to advance in their engineering studies and excel in engineering practice Essential Math Skills for Engineers features concise easy to follow explanations that quickly bring readers up …
Engineering With Least Math (2024) - archive.ncarb.org
Within the pages of "Engineering With Least Math," a mesmerizing literary creation penned with a celebrated wordsmith, readers embark on an enlightening odyssey, unraveling the intricate …