Advertisement
entry level data science salary: Fifty Challenging Problems in Probability with Solutions Frederick Mosteller, 2012-04-26 Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions. |
entry level data science salary: Foundations of Data Science Avrim Blum, John Hopcroft, Ravindran Kannan, 2020-01-23 This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data. |
entry level data science salary: The Great Cloud Migration Michael C. Daconta, 2013 - Learn how to migrate your applications to the cloud! - Learn how to overcome your senior management's concerns about Cloud Security and Interoperability! - Learn how to explain cloud computing, big data and linked data to your organization! - Learn how to develop a robust Cloud Implementation Strategy! - Learn how a Technical Cloud Broker can ease your migration to the cloud! This book will answer the key questions that every organization is asking about emerging technologies like Cloud Computing, Big Data and Linked Data. Written by a seasoned expert and author/co-author of 11 other technical books, this book deftly guides you with real-world experience, case studies, illustrative diagrams and in-depth analysis. * How do you migrate your software applications to the cloud? This book is your definitive guide to migrating applications to the cloud! It explains all the options, tradeoffs, challenges and obstacles to the migration. It provides a migration lifecycle and process you can follow to migrate each application. It provides in-depth case studies: an Infrastructure-as-a-Service case study and a Platform-as-a-Service case study. It covers the difference between application migration and data migration to the cloud and walks you through how to do both well. It covers migration to all the major cloud providers to include Amazon Web Services (AWS), Google AppEngine and Microsoft Azure. * How do you develop a sound implementation strategy for the migration to the cloud? This book leverages Mr. Daconta's 25 years of leadership experience, from the Military to Corporate Executive teams to the Office of the CIO in the Department of Homeland Security, to guide you through the development of a practical and sound implementation strategy. The book's Triple-A Strategy: Assessment, Architecture then Action is must reading for every project lead and IT manager! * This book covers twenty migration scenarios! Application and data migration to the cloud |
entry level data science salary: Data Scientists at Work Sebastian Gutierrez, 2014-12-12 Data Scientists at Work is a collection of interviews with sixteen of the world's most influential and innovative data scientists from across the spectrum of this hot new profession. Data scientist is the sexiest job in the 21st century, according to the Harvard Business Review. By 2018, the United States will experience a shortage of 190,000 skilled data scientists, according to a McKinsey report. Through incisive in-depth interviews, this book mines the what, how, and why of the practice of data science from the stories, ideas, shop talk, and forecasts of its preeminent practitioners across diverse industries: social network (Yann LeCun, Facebook); professional network (Daniel Tunkelang, LinkedIn); venture capital (Roger Ehrenberg, IA Ventures); enterprise cloud computing and neuroscience (Eric Jonas, formerly Salesforce.com); newspaper and media (Chris Wiggins, The New York Times); streaming television (Caitlin Smallwood, Netflix); music forecast (Victor Hu, Next Big Sound); strategic intelligence (Amy Heineike, Quid); environmental big data (André Karpištšenko, Planet OS); geospatial marketing intelligence (Jonathan Lenaghan, PlaceIQ); advertising (Claudia Perlich, Dstillery); fashion e-commerce (Anna Smith, Rent the Runway); specialty retail (Erin Shellman, Nordstrom); email marketing (John Foreman, MailChimp); predictive sales intelligence (Kira Radinsky, SalesPredict); and humanitarian nonprofit (Jake Porway, DataKind). The book features a stimulating foreword by Google's Director of Research, Peter Norvig. Each of these data scientists shares how he or she tailors the torrent-taming techniques of big data, data visualization, search, and statistics to specific jobs by dint of ingenuity, imagination, patience, and passion. Data Scientists at Work parts the curtain on the interviewees’ earliest data projects, how they became data scientists, their discoveries and surprises in working with data, their thoughts on the past, present, and future of the profession, their experiences of team collaboration within their organizations, and the insights they have gained as they get their hands dirty refining mountains of raw data into objects of commercial, scientific, and educational value for their organizations and clients. |
entry level data science salary: Big Data Bernard Marr, 2015-01-09 Convert the promise of big data into real world results There is so much buzz around big data. We all need to know what it is and how it works - that much is obvious. But is a basic understanding of the theory enough to hold your own in strategy meetings? Probably. But what will set you apart from the rest is actually knowing how to USE big data to get solid, real-world business results - and putting that in place to improve performance. Big Data will give you a clear understanding, blueprint, and step-by-step approach to building your own big data strategy. This is a well-needed practical introduction to actually putting the topic into practice. Illustrated with numerous real-world examples from a cross section of companies and organisations, Big Data will take you through the five steps of the SMART model: Start with Strategy, Measure Metrics and Data, Apply Analytics, Report Results, Transform. Discusses how companies need to clearly define what it is they need to know Outlines how companies can collect relevant data and measure the metrics that will help them answer their most important business questions Addresses how the results of big data analytics can be visualised and communicated to ensure key decisions-makers understand them Includes many high-profile case studies from the author's work with some of the world's best known brands |
entry level data science salary: Data Science Jobs Ann Rajaram, 2019-05-20 Land a high-paying $$$ DataScience job in 90 days or less! This book is the perfect guide for you, if you fall into any of these categories: * Looking to start a career in data science, but unsure where to start. * Tired of applying to dozens of jobs without getting a positive response and/or final job offer .* You recently completed a masters degree or bootcamp and need to quickly find a job. * Are you an experienced tech professional, but looking to pivot into analytics to boost your salary potential. The book will teach you proven successful strategies on: * Winning Profiles Turbocharge your resume and LinkedIn profile and start receiving interview calls from hiring managers. Let JOBS CHASE YOU, instead of the other way around! * LinkedIn - A dedicated chapter on LinkedIn that teaches you some creative (and SECRET) ways to leverage the site and identify high-paying jobs with low competition. * Niche sites - A full list of niche job boards that other candidates have overlooked. These sites have high-$ jobs but lesser competition than the popular job search sites. Upwork - Contrary to popular opinion, Upwork can help you make $$$ in data science jobs. Learn proven techniques to help you bag contracts and start earning, as quickly as next week. * 100+ interview questions asked in real-life data scientist interviews. * Other learner resources and much more...Unlike most job search books that are written by recruiters or professors, this book is written by a senior data science professional, who rose quickly from analyst to managerial roles. She has attended interviews of her own, and knows clearly the frustrations (and at times, hopelessness) of the job search process. Author is a seasoned analytics professional who has worked in Top Firms like NASDAQ, BlackRock, etc. The systems in this book have successfully helped dozens of job seekers and will work effectively for you too! Read on to launch your dream career! Note, this book is deliberately kept short and precise, so you can quickly read through and start applying these principles, instead of sifting through 500 pages of fluff. |
entry level data science salary: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning. |
entry level data science salary: Modern Data Science with R Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton, 2021-03-31 From a review of the first edition: Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice. |
entry level data science salary: The Data Science Design Manual Steven S. Skiena, 2017-07-01 This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com) |
entry level data science salary: Business Intelligence Demystified Anoop Kumar V K, 2021-09-25 Clear your doubts about Business Intelligence and start your new journey KEY FEATURES ● Includes successful methods and innovative ideas to achieve success with BI. ● Vendor-neutral, unbiased, and based on experience. ● Highlights practical challenges in BI journeys. ● Covers financial aspects along with technical aspects. ● Showcases multiple BI organization models and the structure of BI teams. DESCRIPTION The book demystifies misconceptions and misinformation about BI. It provides clarity to almost everything related to BI in a simplified and unbiased way. It covers topics right from the definition of BI, terms used in the BI definition, coinage of BI, details of the different main uses of BI, processes that support the main uses, side benefits, and the level of importance of BI, various types of BI based on various parameters, main phases in the BI journey and the challenges faced in each of the phases in the BI journey. It clarifies myths about self-service BI and real-time BI. The book covers the structure of a typical internal BI team, BI organizational models, and the main roles in BI. It also clarifies the doubts around roles in BI. It explores the different components that add to the cost of BI and explains how to calculate the total cost of the ownership of BI and ROI for BI. It covers several ideas, including unconventional ideas to achieve BI success and also learn about IBI. It explains the different types of BI architectures, commonly used technologies, tools, and concepts in BI and provides clarity about the boundary of BI w.r.t technologies, tools, and concepts. The book helps you lay a very strong foundation and provides the right perspective about BI. It enables you to start or restart your journey with BI. WHAT YOU WILL LEARN ● Builds a strong conceptual foundation in BI. ● Gives the right perspective and clarity on BI uses, challenges, and architectures. ● Enables you to make the right decisions on the BI structure, organization model, and budget. ● Explains which type of BI solution is required for your business. ● Applies successful BI ideas. WHO THIS BOOK IS FOR This book is a must-read for business managers, BI aspirants, CxOs, and all those who want to drive the business value with data-driven insights. TABLE OF CONTENTS 1. What is Business Intelligence? 2. Why do Businesses need BI? 3. Types of Business Intelligence 4. Challenges in Business Intelligence 5. Roles in Business Intelligence 6. Financials of Business Intelligence 7. Ideas for Success with BI 8. Introduction to IBI 9. BI Architectures 10. Demystify Tech, Tools, and Concepts in BI |
entry level data science salary: The Quants Scott Patterson, 2011-01-25 With the immediacy of today’s NASDAQ close and the timeless power of a Greek tragedy, The Quants is at once a masterpiece of explanatory journalism, a gripping tale of ambition and hubris, and an ominous warning about Wall Street’s future. In March of 2006, four of the world’s richest men sipped champagne in an opulent New York hotel. They were preparing to compete in a poker tournament with million-dollar stakes, but those numbers meant nothing to them. They were accustomed to risking billions. On that night, these four men and their cohorts were the new kings of Wall Street. Muller, Griffin, Asness, and Weinstein were among the best and brightest of a new breed, the quants. Over the prior twenty years, this species of math whiz--technocrats who make billions not with gut calls or fundamental analysis but with formulas and high-speed computers--had usurped the testosterone-fueled, kill-or-be-killed risk-takers who’d long been the alpha males the world’s largest casino. The quants helped create a digitized money-trading machine that could shift billions around the globe with the click of a mouse. Few realized, though, that in creating this unprecedented machine, men like Muller, Griffin, Asness and Weinstein had sowed the seeds for history’s greatest financial disaster. Drawing on unprecedented access to these four number-crunching titans, The Quants tells the inside story of what they thought and felt in the days and weeks when they helplessly watched much of their net worth vaporize--and wondered just how their mind-bending formulas and genius-level IQ’s had led them so wrong, so fast. |
entry level data science salary: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together |
entry level data science salary: Data Mining and Predictive Analytics Daniel T. Larose, 2015-02-19 Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives. |
entry level data science salary: Data Science Jobs Ann Rajaram, Want a high-paying $$$ career in the exciting field of DataScience? This is the ONLY book that will help you land a lucrative Analytics job in 90 days or less! This book is the perfect guide for you, if you fall into any of these categories: * You recently completed a masters degree (or online course or bootcamp) and want to get hired quickly as a Data Scientist, Data Analyst, Data Engineer, Machine learning engineer or BI developer. * Looking to start a career in data science, but unsure where to start. * You are an experienced tech professional, but looking to pivot into analytics to boost your salary potential. * Tired of applying to dozens of jobs without getting a positive response and/or final job offer . * F1 visa, STEM OPT/ CPT students will also find this book helpful to land a job in this lucrative field. The book will teach you proven successful strategies on: * Winning Profiles Turbocharge your resume and LinkedIn profile and start receiving interview calls from hiring managers. Let JOBS CHASE YOU, instead of the other way around! * LinkedIn - A dedicated chapter on LinkedIn that teaches you some creative (and SECRET) ways to leverage the site and identify high-paying jobs with low competition. * Niche sites - A full list of niche job boards that other candidates have overlooked. These sites have high-$ jobs but lesser competition than the popular job search sites. Upwork - Contrary to popular opinion, Upwork can help you make $$$ in data science jobs. Learn proven techniques to help you bag contracts and start earning, as quickly as next week. * 100+ interview questions asked in real-life data scientist interviews. * Other learner resources and much more... Author is a practicing analytics professional who has worked in Fortune500 Firms like NASDAQ , BlackRock, etc. Unlike most job search books that are written by recruiters or professors, this book is written by a senior professional, who rose quickly from analyst to managerial roles. She has attended interviews of her own, and knows clearly the frustrations (and at times, hopelessness) of the job search process. The systems in this book have successfully helped dozens of job seekers and will work effectively for you too! Read on to launch your dream career! Note, this book is deliberately kept short and precise, so you can quickly read through and start applying these principles, instead of sifting through 500 pages of fluff. This book includes: Data Science interview questions and answers; Help preparing for Machine Learning Interviews; Top 25 Interview Questions for Data Analyst/Scientist roles; An in-depth overview of Data Science Interview Process; How to ace your interview even if you are an Entry level Data Analyst / Data Scientist; Data Science Interview questions for freshers; How and Where to look for jobs; and much more! |
entry level data science salary: Visualize This Nathan Yau, 2011-06-13 Practical data design tips from a data visualization expert of the modern age Data doesn't decrease; it is ever-increasing and can be overwhelming to organize in a way that makes sense to its intended audience. Wouldn't it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships. Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing. |
entry level data science salary: The Official CompTIA Security+ Self-Paced Study Guide (Exam SY0-601) CompTIA, 2020-11-12 CompTIA Security+ Study Guide (Exam SY0-601) |
entry level data science salary: Principles of Financial Engineering Robert Kosowski, Salih N. Neftci, 2014-11-26 Principles of Financial Engineering, Third Edition, is a highly acclaimed text on the fast-paced and complex subject of financial engineering. This updated edition describes the engineering elements of financial engineering instead of the mathematics underlying it. It shows how to use financial tools to accomplish a goal rather than describing the tools themselves. It lays emphasis on the engineering aspects of derivatives (how to create them) rather than their pricing (how they act) in relation to other instruments, the financial markets, and financial market practices. This volume explains ways to create financial tools and how the tools work together to achieve specific goals. Applications are illustrated using real-world examples. It presents three new chapters on financial engineering in topics ranging from commodity markets to financial engineering applications in hedge fund strategies, correlation swaps, structural models of default, capital structure arbitrage, contingent convertibles, and how to incorporate counterparty risk into derivatives pricing. Poised midway between intuition, actual events, and financial mathematics, this book can be used to solve problems in risk management, taxation, regulation, and above all, pricing. A solutions manual enhances the text by presenting additional cases and solutions to exercises. This latest edition of Principles of Financial Engineering is ideal for financial engineers, quantitative analysts in banks and investment houses, and other financial industry professionals. It is also highly recommended to graduate students in financial engineering and financial mathematics programs. - The Third Edition presents three new chapters on financial engineering in commodity markets, financial engineering applications in hedge fund strategies, correlation swaps, structural models of default, capital structure arbitrage, contingent convertibles and how to incorporate counterparty risk into derivatives pricing, among other topics - Additions, clarifications, and illustrations throughout the volume show these instruments at work instead of explaining how they should act - The solutions manual enhances the text by presenting additional cases and solutions to exercises |
entry level data science salary: Fundamentals of Machine Learning for Predictive Data Analytics, second edition John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, 2020-10-20 The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning. |
entry level data science salary: Getting a Big Data Job For Dummies Jason Williamson, 2014-12-10 Hone your analytic talents and become part of the next big thing Getting a Big Data Job For Dummies is the ultimate guide to landing a position in one of the fastest-growing fields in the modern economy. Learn exactly what big data means, why it's so important across all industries, and how you can obtain one of the most sought-after skill sets of the decade. This book walks you through the process of identifying your ideal big data job, shaping the perfect resume, and nailing the interview, all in one easy-to-read guide. Companies from all industries, including finance, technology, medicine, and defense, are harnessing massive amounts of data to reap a competitive advantage. The demand for big data professionals is growing every year, and experts forecast an estimated 1.9 million additional U.S. jobs in big data by 2015. Whether your niche is developing the technology, handling the data, or analyzing the results, turning your attention to a career in big data can lead to a more secure, more lucrative career path. Getting a Big Data Job For Dummies provides an overview of the big data career arc, and then shows you how to get your foot in the door with topics like: The education you need to succeed The range of big data career path options An overview of major big data employers A plan to develop your job-landing strategy Your analytic inclinations may be your ticket to long-lasting success. In a highly competitive job market, developing your data skills can create a situation where you pick your employer rather than the other way around. If you're ready to get in on the ground floor of the next big thing, Getting a Big Data Job For Dummies will teach you everything you need to know to get started today. |
entry level data science salary: Closing the Analytics Talent Gap Jennifer Priestley, Robert McGrath, 2021-05-04 How can we recruit out of your program? We have a project – how do we reach out to your students? If we do research together who owns it? We have employees who need to upskill in analytics – can you help me with that? How much does all of this cost? Managers and executives are increasingly asking university professors such questions as they deal with a critical shortage of skilled data analysts. At the same time, academics are asking such questions as: How can I bring a real analytical project in the classroom? How can I get real data to help my students develop the skills necessary to be a data scientist? Is what I am teaching in the classroom aligned with the demands of the market for analytical talent? After spending several years answering almost daily e-mails and telephone calls from business managers asking for staffing help and aiding fellow academics with their analytics teaching needs, Dr. Jennifer Priestley of Kennesaw State University and Dr. Robert McGrath of the University of New Hampshire wrote Closing the Analytics Talent Gap: An Executive’s Guide to Working with Universities. The book builds a bridge between university analytics programs and business organizations. It promotes a dialog that enables executives to learn how universities can help them find strategically important personnel and universities to learn how they can develop and educate this personnel. Organizations are facing previously unforeseen challenges related to the translation of massive amounts of data – structured and unstructured, static and in-motion, voice, text, and image – into information to solve current challenges and anticipate new ones. The advent of analytics and data science also presents universities with unforeseen challenges of providing learning through application. This book helps both organizations with finding data natives and universities with educating students to develop the facility to work in a multi-faceted and complex data environment. . |
entry level data science salary: The Pig Book Citizens Against Government Waste, 2013-09-17 The federal government wastes your tax dollars worse than a drunken sailor on shore leave. The 1984 Grace Commission uncovered that the Department of Defense spent $640 for a toilet seat and $436 for a hammer. Twenty years later things weren't much better. In 2004, Congress spent a record-breaking $22.9 billion dollars of your money on 10,656 of their pork-barrel projects. The war on terror has a lot to do with the record $413 billion in deficit spending, but it's also the result of pork over the last 18 years the likes of: - $50 million for an indoor rain forest in Iowa - $102 million to study screwworms which were long ago eradicated from American soil - $273,000 to combat goth culture in Missouri - $2.2 million to renovate the North Pole (Lucky for Santa!) - $50,000 for a tattoo removal program in California - $1 million for ornamental fish research Funny in some instances and jaw-droppingly stupid and wasteful in others, The Pig Book proves one thing about Capitol Hill: pork is king! |
entry level data science salary: The Postdoctoral Experience Revisited , 2014 |
entry level data science salary: Artificial Intelligence and the Future of Defense Stephan De Spiegeleire, Matthijs Maas, Tim Sweijs, 2017-05-17 Artificial intelligence (AI) is on everybody’s minds these days. Most of the world’s leading companies are making massive investments in it. Governments are scrambling to catch up. Every single one of us who uses Google Search or any of the new digital assistants on our smartphones has witnessed first-hand how quickly these developments now go. Many analysts foresee truly disruptive changes in education, employment, health, knowledge generation, mobility, etc. But what will AI mean for defense and security? In a new study HCSS offers a unique perspective on this question. Most studies to date quickly jump from AI to autonomous (mostly weapon) systems. They anticipate future armed forces that mostly resemble today’s armed forces, engaging in fairly similar types of activities with a still primarily industrial-kinetic capability bundle that would increasingly be AI-augmented. The authors of this study argue that AI may have a far more transformational impact on defense and security whereby new incarnations of ‘armed force’ start doing different things in novel ways. The report sketches a much broader option space within which defense and security organizations (DSOs) may wish to invest in successive generations of AI technologies. It suggests that some of the most promising investment opportunities to start generating the sustainable security effects that our polities, societies and economies expect may lie in in the realms of prevention and resilience. Also in those areas any large-scale application of AI will have to result from a preliminary open-minded (on all sides) public debate on its legal, ethical and privacy implications. The authors submit, however, that such a debate would be more fruitful than the current heated discussions about ‘killer drones’ or robots. Finally, the study suggests that the advent of artificial super-intelligence (i.e. AI that is superior across the board to human intelligence), which many experts now put firmly within the longer-term planning horizons of our DSOs, presents us with unprecedented risks but also opportunities that we have to start to explore. The report contains an overview of the role that ‘intelligence’ - the computational part of the ability to achieve goals in the world - has played in defense and security throughout human history; a primer on AI (what it is, where it comes from and where it stands today - in both civilian and military contexts); a discussion of the broad option space for DSOs it opens up; 12 illustrative use cases across that option space; and a set of recommendations for - especially - small- and medium sized defense and security organizations. |
entry level data science salary: How Data Science Is Transforming Health Care Tim O'Reilly, Mike Loukides, Julie Steele, Colin Hill, 2012-08-24 In the early days of the 20th century, department store magnate JohnWanamaker famously said, I know that half of my advertising doesn'twork. The problem is that I don't know which half. That remainedbasically true until Google transformed advertising with AdSense basedon new uses of data and analysis. The same might be said about healthcare and it's poised to go through a similar transformation as newtools, techniques, and data sources come on line. Soon we'll makepolicy and resource decisions based on much better understanding ofwhat leads to the best outcomes, and we'll make medical decisionsbased on a patient's specific biology. The result will be betterhealth at less cost. This paper explores how data analysis will help us structure thebusiness of health care more effectively around outcomes, and how itwill transform the practice of medicine by personalizing for eachspecific patient. |
entry level data science salary: Data Science Interviews Exposed Jane You, Yanping Huang, Iris Wang, Feng Cao (Computer scientist), Ian Gao, 2015 The era has come when data science is changing the world and everyone's life. Data Science Interviews Exposed is the first book in the industry that covers everything you need to know to prepare for a data science career: from job market overview to job roles description, from resume preparation to soft skill development, and most importantly, the real interview questions and detailed answers. We hope this book can help the candidates in the data science job market, as well as those who need guidance to begin a data science career.--Back cover. |
entry level data science salary: Data Science Careers, Training, and Hiring Renata Rawlings-Goss, 2019-08-02 This book is an information packed overview of how to structure a data science career, a data science degree program, and how to hire a data science team, including resources and insights from the authors experience with national and international large-scale data projects as well as industry, academic and government partnerships, education, and workforce. Outlined here are tips and insights into navigating the data ecosystem as it currently stands, including career skills, current training programs, as well as practical hiring help and resources. Also, threaded through the book is the outline of a data ecosystem, as it could ultimately emerge, and how career seekers, training programs, and hiring managers can steer their careers, degree programs, and organizations to align with the broader future of data science. Instead of riding the current wave, the author ultimately seeks to help professionals, programs, and organizations alike prepare a sustainable plan for growth in this ever-changing world of data. The book is divided into three sections, the first “Building Data Careers”, is from the perspective of a potential career seeker interested in a career in data, the second “Building Data Programs” is from the perspective of a newly forming data science degree or training program, and the third “Building Data Talent and Workforce” is from the perspective of a Data and Analytics Hiring Manager. Each is a detailed introduction to the topic with practical steps and professional recommendations. The reason for presenting the book from different points of view is that, in the fast-paced data landscape, it is helpful to each group to more thoroughly understand the desires and challenges of the other. It will, for example, help the career seekers to understand best practices for hiring managers to better position themselves for jobs. It will be invaluable for data training programs to gain the perspective of career seekers, who they want to help and attract as students. Also, hiring managers will not only need data talent to hire, but workforce pipelines that can only come from partnerships with universities, data training programs, and educational experts. The interplay gives a broader perspective from which to build. |
entry level data science salary: Silicon Valley for Foreigners Reinaldo Normand, 2017-06-03 Written by a San Francisco based, foreign born entrepreneur, this book offers a unique perspective to decode the business etiquette and cultural traits of the Silicon Valley ecosystem. Recommended for entrepreneurs, executives, students and investors living outside the San Francisco Bay Area and interested in startups and innovation. |
entry level data science salary: Social Work Salaries Ralph Gibney Hurlin, 1926 |
entry level data science salary: Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies Murugan, Thangavel, E., Nirmala, 2023-09-21 Disruptive innovations are now propelling Industry 4.0 (I4.0) and presenting new opportunities for value generation in all major industry segments. I4.0 technologies' innovations in cybersecurity and data science provide smart apps and services with accurate real-time monitoring and control. Through enhanced access to real-time information, it also aims to increase overall effectiveness, lower costs, and increase the efficiency of people, processes, and technology. The Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies discusses the technological foundations of cybersecurity and data science within the scope of the I4.0 landscape and details the existing cybersecurity and data science innovations with I4.0 applications, as well as state-of-the-art solutions with regard to both academic research and practical implementations. Covering key topics such as data science, blockchain, and artificial intelligence, this premier reference source is ideal for industry professionals, computer scientists, scholars, researchers, academicians, practitioners, instructors, and students. |
entry level data science salary: Usa University Guide Marlene Bell, 2017-09-01 According to the Institute of International Education, American higher education continues to be highly valued throughout the world. US campuses offer unparalleled opportunities for creativity, flexibility and cultural exchange. Students from all over the world contribute substantially to their host campuses and to the US economy With more than 4,000 colleges and universities, the United States has one of the finest systems of higher education in the world. US higher education is unparalleled in its vitality, quality, and diversity, which help propel its leading role in the fields of business, engineering, science and education. In this book , you will find your perfect program with our university guide – covering general information, entry requirement, top 10 university, specialization, best direction to get a job easily in the future and many more... |
entry level data science salary: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace. |
entry level data science salary: The New Rules of Work Alexandra Cavoulacos, Kathryn Minshew, 2017 In this definitive guide to the ever-changing modern workplace, Kathryn Minshew and Alexandra Cavoulacos, the co-founders of popular career website TheMuse.com, show how to play the game by the New Rules. The Muse is known for sharp, relevant, and get-to-the-point advice on how to figure out exactly what your values and your skills are and how they best play out in the marketplace. Now Kathryn and Alex have gathered all of that advice and more in The New Rules of Work. Through quick exercises and structured tips, the authors will guide you as you sort through your countless options; communicate who you are and why you are valuable; and stand out from the crowd. The New Rules of Work shows how to choose a perfect career path, land the best job, and wake up feeling excited to go to work every day-- whether you are starting out in your career, looking to move ahead, navigating a mid-career shift, or anywhere in between-- |
entry level data science salary: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021 |
entry level data science salary: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results |
entry level data science salary: Virtual Machines James Edward Smith, Ravi Nair, 2005-06-03 In this text, Smith and Nair take a new approach by examining virtual machines as a unified discipline and pulling together cross-cutting technologies. Topics include instruction set emulation, dynamic program translation and optimization, high level virtual machines (including Java and CLI), and system virtual machines for both single-user systems and servers. |
entry level data science salary: LISS 2023 Daqing Gong, |
entry level data science salary: Big Data Is Not a Monolith Cassidy R. Sugimoto, Hamid R. Ekbia, Michael Mattioli, 2016-10-21 Perspectives on the varied challenges posed by big data for health, science, law, commerce, and politics. Big data is ubiquitous but heterogeneous. Big data can be used to tally clicks and traffic on web pages, find patterns in stock trades, track consumer preferences, identify linguistic correlations in large corpuses of texts. This book examines big data not as an undifferentiated whole but contextually, investigating the varied challenges posed by big data for health, science, law, commerce, and politics. Taken together, the chapters reveal a complex set of problems, practices, and policies. The advent of big data methodologies has challenged the theory-driven approach to scientific knowledge in favor of a data-driven one. Social media platforms and self-tracking tools change the way we see ourselves and others. The collection of data by corporations and government threatens privacy while promoting transparency. Meanwhile, politicians, policy makers, and ethicists are ill-prepared to deal with big data's ramifications. The contributors look at big data's effect on individuals as it exerts social control through monitoring, mining, and manipulation; big data and society, examining both its empowering and its constraining effects; big data and science, considering issues of data governance, provenance, reuse, and trust; and big data and organizations, discussing data responsibility, “data harm,” and decision making. Contributors Ryan Abbott, Cristina Alaimo, Kent R. Anderson, Mark Andrejevic, Diane E. Bailey, Mike Bailey, Mark Burdon, Fred H. Cate, Jorge L. Contreras, Simon DeDeo, Hamid R. Ekbia, Allison Goodwell, Jannis Kallinikos, Inna Kouper, M. Lynne Markus, Michael Mattioli, Paul Ohm, Scott Peppet, Beth Plale, Jason Portenoy, Julie Rennecker, Katie Shilton, Dan Sholler, Cassidy R. Sugimoto, Isuru Suriarachchi, Jevin D. West |
entry level data science salary: Introduction to Data Science in Biostatistics Thomas W. MacFarland, |
entry level data science salary: The Science of Intelligent Achievement Isaiah Hankel, 2018-02-05 Smart strategies for pragmatic, science-based growth and sustainable achievement. The Science of Intelligent Achievement teaches you the scientific process of finding success through your most valuable assets: · Selective focus – how selective are you with who and what you let into your life? · Creative ownership – how dependent are you on others for your happiness and success? · Pragmatic growth – how consistently and practically are you growing daily? First, this book will show you how to develop your focus by being very selective with where you spend your mental energy. If you've failed to reach an important goal because you were distracted, misinformed, or overcommitted, then you know the role focus and selectivity play in achievement. Second, you will learn how to stop allowing your happiness and success to be dependent on other people and instead, start taking ownership over your life through creative work. Finally, you will learn the art of changing your life through pragmatic decisions and actions. Self-improvement is not the result of dramatic changes. Instead, science has shown that personal and professional change is initiated and sustained by consistent, practical changes. To grow, you must leverage the power of micro-decisions, personality responsibility, and mini-habits. Your own biology will not let you improve your life in any other way. What do you currently value? What are working to attain? Have you been taught to value your job title or your relationship with some other person above all else? Have you been convinced that the most valuable things in life are your paycheck, the number of people who say 'hello' to you at the office, and the number of people who say 'I need you' at home? Or, have you become so passive in what you value that you let anyone and anything into your life, as long as whatever you let in allows you to stay disconnected from the cold hard truth that when things really go wrong in your life, the only person who will be able to fix it and the only person will be responsible for it is you. If so…welcome to fake success. Passivity, dependence, and the sacrifice of practical thinking and personal responsibility to fuzzy, grandiose ideals and temporary feelings — these are markers of fake success. Intelligent Achievement, on the other hand, is not a moving target. It's not empty either. Instead, it's sturdy, full, and immovable. It's not something that's just handed to you. It's not something you're nudged to chase or coerced into wanting. Intelligent Achievement comes from within you. It's a collection of values that are aligned with who you are—values you have to protect and nurture. These values do not increase your dependence on other people and things. Instead, they relieve you of dependence. This kind of achievement is something that you have a part in building from the ground up—you know what's in it—you chose it, someone else didn't choose it for you. Achieving real success means you must focus, create, and grow daily. The Science of Intelligent Achievement will show you how. |
entry level data science salary: Agile Data Science Russell Jurney, 2013-10-15 Mining big data requires a deep investment in people and time. How can you be sure you’re building the right models? With this hands-on book, you’ll learn a flexible toolset and methodology for building effective analytics applications with Hadoop. Using lightweight tools such as Python, Apache Pig, and the D3.js library, your team will create an agile environment for exploring data, starting with an example application to mine your own email inboxes. You’ll learn an iterative approach that enables you to quickly change the kind of analysis you’re doing, depending on what the data is telling you. All example code in this book is available as working Heroku apps. Create analytics applications by using the agile big data development methodology Build value from your data in a series of agile sprints, using the data-value stack Gain insight by using several data structures to extract multiple features from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future, and translate predictions into action Get feedback from users after each sprint to keep your project on track |
ENTRY Definition & Meaning - Merriam-Webster
The meaning of ENTRY is the right or privilege of entering : entrée. How to use entry in a sentence.
엔트리
성장이 기대되는 유형별 신규 작품을 소개해요! 엔트리는 네이버 커넥트재단에서 운영하는 비영리 교육 플랫폼입니다. 모든 저작물은 교육 목적에 한해 출처를 밝히고 자유롭게 이용할 수 있습니다. ©NAVER Connect Foundation.
ENTRY | English meaning - Cambridge Dictionary
ENTRY definition: 1. the act of entering a place or joining a particular society or organization: 2. a door, gate…. Learn …
Entry - definition of entry by The Free Dictionary
1. a. The act or an instance of entering. b. The privilege or right of entering. 2. Sports The act of entering the water in completing a dive. 3. A means or place by which to enter. 4. a. The inclusion …
What does Entry mean? - Definitions.net
An entry is generally defined as an act or instance of putting into, going into, or joining a particular place, activity, or system. It can also refer to an item recorded in a journal, diary, ledger, …
ENTRY Definition & Meaning - Merriam-Webster
The meaning of ENTRY is the right or privilege of entering : entrée. How to use entry in a sentence.
엔트리
성장이 기대되는 유형별 신규 작품을 소개해요! 엔트리는 네이버 커넥트재단에서 운영하는 비영리 교육 플랫폼입니다. 모든 저작물은 교육 목적에 한해 출처를 밝히고 자유롭게 이용할 수 있습니다. …
ENTRY | English meaning - Cambridge Dictionary
ENTRY definition: 1. the act of entering a place or joining a particular society or organization: 2. a door, gate…. Learn more.
Entry - definition of entry by The Free Dictionary
1. a. The act or an instance of entering. b. The privilege or right of entering. 2. Sports The act of entering the water in completing a dive. 3. A means or place by which to enter. 4. a. The …
What does Entry mean? - Definitions.net
An entry is generally defined as an act or instance of putting into, going into, or joining a particular place, activity, or system. It can also refer to an item recorded in a journal, diary, ledger, or …
entry - Wiktionary, the free dictionary
May 7, 2025 · The exhibition or depositing of a ship's papers at the customhouse, to procure licence to land goods; or the giving an account of a ship's cargo to the officer of the customs, …
entry - WordReference.com Dictionary of English
en•try /ˈɛntri/ n., pl. -tries. entrance:[countable] the country's entry into the war. [countable] a place of entrance, esp. an entrance hall. access:[uncountable] She has entry to the highest people …
Entry - Definition, Meaning & Synonyms | Vocabulary.com
Entry has loads of meanings, most of them concerning going inside someplace and the way you happen to get inside. It can also refer to written records (as in a diary or ledger) or a …
343 Synonyms & Antonyms for ENTRY | Thesaurus.com
Find 343 different ways to say ENTRY, along with antonyms, related words, and example sentences at Thesaurus.com.
ENTRY Definition & Meaning | Dictionary.com
What is an entry? An entry is a place where you enter, especially a hall, passage, or vestibule, as in The entry to the movie theater was full of people excited to see the new superhero movie.