Advertisement
analytics in higher education: The Analytics Revolution in Higher Education Jonathan S. Gagliardi, Amelia Parnell, Julia Carpenter-Hubin, 2023-07-03 Co-published with and In this era of “Big Data,” institutions of higher education are challenged to make the most of the information they have to improve student learning outcomes, close equity gaps, keep costs down, and address the economic needs of the communities they serve at the local, regional, and national levels. This book helps readers understand and respond to this “analytics revolution,” examining the evolving dynamics of the institutional research (IR) function, and the many audiences that institutional researchers need to serve.Internally, there is a growing need among senior leaders, administrators, faculty, advisors, and staff for decision analytics that help craft better resource strategies and bring greater efficiencies and return-on-investment for students and families. Externally, state legislators, the federal government, and philanthropies demand more forecasting and more evidence than ever before. These demands require new and creative responses, as they are added to previous demands, rather than replacing them, nor do they come with additional resources to produce the analysis to make data into actionable improvements. Thus the IR function must become that of teacher, ensuring that data and analyses are accurate, timely, accessible, and compelling, whether produced by an IR office or some other source. Despite formidable challenges, IR functions have begun to leverage big data and unlock the power of predictive tools and techniques, contributing to improved student outcomes. |
analytics in higher education: Big Data and Learning Analytics in Higher Education Ben Kei Daniel, 2016-08-27 This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns. |
analytics in higher education: Adoption of Data Analytics in Higher Education Learning and Teaching Dirk Ifenthaler, David Gibson, 2020-08-10 The book aims to advance global knowledge and practice in applying data science to transform higher education learning and teaching to improve personalization, access and effectiveness of education for all. Currently, higher education institutions and involved stakeholders can derive multiple benefits from educational data mining and learning analytics by using different data analytics strategies to produce summative, real-time, and predictive or prescriptive insights and recommendations. Educational data mining refers to the process of extracting useful information out of a large collection of complex educational datasets while learning analytics emphasizes insights and responses to real-time learning processes based on educational information from digital learning environments, administrative systems, and social platforms. This volume provides insight into the emerging paradigms, frameworks, methods and processes of managing change to better facilitate organizational transformation toward implementation of educational data mining and learning analytics. It features current research exploring the (a) theoretical foundation and empirical evidence of the adoption of learning analytics, (b) technological infrastructure and staff capabilities required, as well as (c) case studies that describe current practices and experiences in the use of data analytics in higher education. |
analytics in higher education: Big Data on Campus Karen L. Webber, Henry Y. Zheng, 2020-11-03 Webber, Henry Y. Zheng, Ying Zhou |
analytics in higher education: Learning Analytics in Higher Education John Zilvinskis, Victor Borden, 2017-09-28 Gain an overview of learning analytics technologies in higher education, including broad considerations and the barriers to introducing them. This volume features the work of practitioners who led some of the most notable implementations, like: the Open Learning Initiative now at Stanford University, faculty-led projects at the University of Michigan, including ECoach and SLAM, the University of Maryland, Baltimore Countys Check My Activity and Indiana Universitys FLAGS early warning system and e-course advising initiatives. Readers will glean from these experiences, as well as from a national project in Australia on innovative approaches for enhancing student experience, an informed description of the role of feedback within these technologies, and a thorough discussion of ethical and social justice issues related to the use of learning analytics, and why higher education institutions should approach such initiatives cautiously, intentionally, and collaboratively. This is the 179th volume of the Jossey-Bass quarterly report series New Directions for Higher Education. Addressed to presidents, vice presidents, deans, and other higher education decision makers on all kinds of campuses, it provides timely information and authoritative advice about major issues and administrative problems confronting every institution. |
analytics in higher education: You Are a Data Person Amelia Parnell, 2023-07-03 Internal and external pressure continues to mount for college professionals to provide evidence of successful activities, programs, and services, which means that, going forward, nearly every campus professional will need to approach their work with a data-informed perspective.But you find yourself thinking “I am not a data person”.Yes, you are. Or can be with the help of Amelia Parnell.You Are a Data Person provides context for the levels at which you are currently comfortable using data, helps you identify both the areas where you should strengthen your knowledge and where you can use this knowledge in your particular university role.For example, the rising cost to deliver high-quality programs and services to students has pushed many institutions to reallocate resources to find efficiencies. Also, more institutions are intentionally connecting classroom and cocurricular learning experiences which, in some instances, requires an increased gathering of evidence that students have acquired certain skills and competencies. In addition to programs, services, and pedagogy, professionals are constantly monitoring the rates at which students are entering, remaining enrolled in, and leaving the institution, as those movements impact the institution’s financial position.From teaching professors to student affairs personnel and beyond, Parnell offers tangible examples of how professionals can make data contributions at their current and future knowledge level, and will even inspire readers to take the initiative to engage in data projects.The book includes a set of self-assessment questions and a companion set of action steps and available resources to help readers accept their identity as a data person. It also includes an annotated list of at least 20 indicators that any higher education professional can examine without sophisticated data analyses. |
analytics in higher education: Learning Analytics in Higher Education Jaime Lester, Carrie Klein, Aditya Johri, Huzefa Rangwala, 2018-08-06 Learning Analytics in Higher Education provides a foundational understanding of how learning analytics is defined, what barriers and opportunities exist, and how it can be used to improve practice, including strategic planning, course development, teaching pedagogy, and student assessment. Well-known contributors provide empirical, theoretical, and practical perspectives on the current use and future potential of learning analytics for student learning and data-driven decision-making, ways to effectively evaluate and research learning analytics, integration of learning analytics into practice, organizational barriers and opportunities for harnessing Big Data to create and support use of these tools, and ethical considerations related to privacy and consent. Designed to give readers a practical and theoretical foundation in learning analytics and how data can support student success in higher education, this book is a valuable resource for scholars and administrators. |
analytics in higher education: Learning Analytics in Higher Education Jaime Lester, Carrie Klein, Huzefa Rangwala, Aditya Johri, 2017-12-21 Learning analytics (or educational big data) tools are increasingly being deployed on campuses to improve student performance, retention and completion, especially when those metrics are tied to funding. Providing personalized, real-time, actionable feedback through mining and analysis of large data sets, learning analytics can illuminate trends and predict future outcomes. While promising, there is limited and mixed empirical evidence related to its efficacy to improve student retention and completion. Further, learning analytics tools are used by a variety of people on campus, and as such, its use in practice may not align with institutional intent. This monograph delves into the research, literature, and issues associated with learning analytics implementation, adoption, and use by individuals within higher education institutions. With it, readers will gain a greater understanding of the potential and challenges related to implementing, adopting, and integrating these systems on their campuses and within their classrooms and advising sessions. This is the fifth issue of the 43rd volume of the Jossey-Bass series ASHE Higher Education Report. Each monograph is the definitive analysis of a tough higher education issue, based on thorough research of pertinent literature and institutional experiences. Topics are identified by a national survey. Noted practitioners and scholars are then commissioned to write the reports, with experts providing critical reviews of each manuscript before publication. |
analytics in higher education: How Colleges Use Data Jonathan S. Gagliardi, 2022-12-20 What does a culture of evidence really look like in higher education? The use of big data and the rapid acceleration of storage and analytics tools have led to a revolution of data use in higher education. Institutions have moved from relying largely on historical trends and descriptive data to the more widespread adoption of predictive and prescriptive analytics. Despite this rapid evolution of data technology and analytics tools, universities and colleges still face a number of obstacles in their data use. In How Colleges Use Data, Jonathan S. Gagliardi presents college and university leaders with an important resource to help cultivate, implement, and sustain a culture of evidence through the ethical and responsible use and adoption of data and analytics. Gagliardi provides a broad context for data use among colleges, including key concepts and use cases related to data and analytics. He also addresses the different dimensions of data use and highlights the promise and perils of the widespread adoption of data and analytics, in addition to important elements of implementing and scaling a culture of evidence. Demystifying data and analytics, the book helps faculty and administrators understand important topics, including: • How to define institutional aspirations using data • Equity and student success • Strategic finance and resource optimization • Academic quality and integrity • Data governance and utility • Implicit and explicit bias in data • Implementation and planning • How data will be used in the future How Colleges Use Data helps college and university leaders understand what a culture of evidence in higher education truly looks like. |
analytics in higher education: Perspectives on ICT4D and Socio-Economic Growth Opportunities in Developing Countries Ndayizigamiye, Patrick, Barlow-Jones, Glenda, Brink, Roelien, Bvuma, Stella, Minty, Rehana, Mhlongo, Siyabonga, 2020-10-09 Technology has been hailed as one of the catalysts toward economic and human development. In the current economic era of the Fourth Industrial Revolution, information acquisition, transformation, and dissemination processes are posed to be the key enablers of development. However, in the context of developing countries, there is a need for more evidence on the impact that ICT has on addressing developmental issues. Such evidence is needed to make a case for investments in ICT-led interventions to improve people’s lives in developing countries. Perspectives on ICT4D and Socio-Economic Growth Opportunities in Developing Countries is a collection of innovative research on current trends that portray the ICT and development nexus (ICT4D) from economic and human development perspectives within developing countries. While highlighting topics including mobile money, poverty alleviation, and consumer behavior, this book is ideally designed for economists, government officials, policymakers, ICT specialists, business professionals, researchers, academicians, students, and entrepreneurs. |
analytics in higher education: Advancing the Power of Learning Analytics and Big Data in Education Azevedo, Ana, Azevedo, José Manuel, Onohuome Uhomoibhi, James, Ossiannilsson, Ebba, 2021-03-19 The term learning analytics is used in the context of the use of analytics in e-learning environments. Learning analytics is used to improve quality. It uses data about students and their activities to provide better understanding and to improve student learning. The use of learning management systems, where the activity of the students can be easily accessed, potentiated the use of learning analytics to understand their route during the learning process, help students be aware of their progress, and detect situations where students can give up the course before its completion, which is a growing problem in e-learning environments. Advancing the Power of Learning Analytics and Big Data in Education provides insights concerning the use of learning analytics, the role and impact of analytics on education, and how learning analytics are designed, employed, and assessed. The chapters will discuss factors affecting learning analytics such as human factors, geographical factors, technological factors, and ethical and legal factors. This book is ideal for teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in the use of big data and learning analytics for improved student success and educational environments. |
analytics in higher education: Learning Analytics: Fundaments, Applications, and Trends Alejandro Peña-Ayala, 2017-02-17 This book provides a conceptual and empirical perspective on learning analytics, its goal being to disseminate the core concepts, research, and outcomes of this emergent field. Divided into nine chapters, it offers reviews oriented on selected topics, recent advances, and innovative applications. It presents the broad learning analytics landscape and in-depth studies on higher education, adaptive assessment, teaching and learning. In addition, it discusses valuable approaches to coping with personalization and huge data, as well as conceptual topics and specialized applications that have shaped the current state of the art. By identifying fundamentals, highlighting applications, and pointing out current trends, the book offers an essential overview of learning analytics to enhance learning achievement in diverse educational settings. As such, it represents a valuable resource for researchers, practitioners, and students interested in updating their knowledge and finding inspirations for their future work. |
analytics in higher education: Utilizing Learning Analytics to Support Study Success Dirk Ifenthaler, Dana-Kristin Mah, Jane Yin-Kim Yau, 2019-01-17 Students often enter higher education academically unprepared and with unrealistic perceptions and expectations of university life, which are critical factors that influence students’ decisions to leave their institutions prior to degree completion. Advances in educational technology and the current availability of vast amounts of educational data make it possible to represent how students interact with higher education resources, as well as provide insights into students’ learning behavior and processes. This volume offers new research in such learning analytics and demonstrates how they support students at institutions of higher education by offering personalized and adaptive support of their learning journey. It focuses on four major areas of discussion: · Theoretical perspectives linking learning analytics and study success. · Technological innovations for supporting student learning. · Issues and challenges for implementing learning analytics at higher education institutions. · Case studies showcasing successfully implemented learning analytics strategies at higher education institutions. Utilizing Learning Analytics to Support Study Success ably exemplifies how educational data and innovative digital technologies contribute to successful learning and teaching scenarios and provides critical insight to researchers, graduate students, teachers, and administrators in the general areas of education, educational psychology, academic and organizational development, and instructional technology. |
analytics in higher education: Higher Education Policy Analysis Using Quantitative Techniques Marvin Titus, 2021-05-14 This textbook introduces graduate students in education and policy research to data and statistical methods in state-level higher education policy analysis. It also serves as a methodological guide to students, practitioners, and researchers who want a clear approach to conducting higher education policy analysis that involves the use of institutional- and state-level secondary data and quantitative methods ranging from descriptive to advanced statistical techniques. This book is unique in that it introduces readers to various types of data sources and quantitative methods utilized in policy research and in that it demonstrates how results of statistical analyses should be presented to higher education policy makers. It helps to bridge the gap between researchers, policy makers, and practitioners both within education policy and between other fields. Coverage includes identifying pertinent data sources, the creation and management of customized data sets, teaching beginning and advanced statistical methods and analyses, and the presentation of analyses for different audiences (including higher education policy makers). |
analytics in higher education: Research Anthology on Big Data Analytics, Architectures, and Applications Information Resources Management Association, 2022 Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians. |
analytics in higher education: Building a Smarter University Jason E. Lane, 2014-09-30 The Big Data movement and the renewed focus on data analytics are transforming everything from healthcare delivery systems to the way cities deliver services to residents. Now is the time to examine how this Big Data could help build smarter universities. While much of the cutting-edge research that is being done with Big Data is happening at colleges and universities, higher education has yet to turn the digital mirror on itself to advance the academic enterprise. Institutions can use the huge amounts of data being generated to improve the student learning experience, enhance research initiatives, support effective community outreach, and develop campus infrastructure. This volume focuses on three primary themes related to creating a smarter university: refining the operations and management of higher education institutions, cultivating the education pipeline, and educating the next generation of data scientists. Through an analysis of these issues, the contributors address how universities can foster innovation and ingenuity in the academy. They also provide scholarly and practical insights in order to frame these topics for an international discussion. |
analytics in higher education: Learning Analytics Explained Niall Sclater, 2017-02-17 Learning Analytics Explained draws extensively from case studies and interviews with experts in order to discuss emerging applications of the new field of learning analytics. Educational institutions increasingly collect data on students and their learning experiences, a practice that helps enhance courses, identify learners who require support, and provide a more personalized learning experience. There is, however, a corresponding need for guidance on how to carry out institutional projects, intervene effectively with students, and assess legal and ethical issues. This book provides that guidance while also covering the evolving technical architectures, standards, and products within the field. |
analytics in higher education: Data Mining and Learning Analytics Samira ElAtia, Donald Ipperciel, Osmar R. Zaïane, 2016-09-20 Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research. |
analytics in higher education: Learning Analytics in the Classroom Jason Lodge, Jared Horvath, Linda Corrin, 2018-10-03 Learning Analytics in the Classroom presents a coherent framework for the effective translation of learning analytics research for educational practice to its practical application in different education domains. Highlighting the real potential of learning analytics as a way to better understand and enhance student learning and with each chapter including specific discussion about what the research means in the classroom, this book provides educators and researchers alike with the tools and frameworks to effectively make sense of and use data and analytics in their everyday practice. This volume is split into five sections, all of which relate to the key themes in understanding learning analytics through the lens of the classroom: broad theoretical perspectives understanding learning through analytics the relationship between learning design and learning analytics analytics in the classroom and the impact it can and will have on education implementing analytics and the challenges involved. Bridging the gap between research, theory and practice, Learning Analytics in the Classroom is both a practical tool and an instructive guide for educators, and a valuable addition to researchers' bookshelves. A team of world-leading researchers and expert editors have compiled a state-of-the-art compendium on this fascinating subject and this will be a critical resource for the evolution of this field into the future. |
analytics in higher education: Online Learning Analytics Jay Liebowitz, 2021-12-13 In our increasingly digitally enabled education world, analytics used ethically, strategically, and with care holds the potential to help more and more diverse students be more successful on higher education journeys than ever before. Jay Liebowitz and a cadre of the fields best ‘good trouble’ makers in this space help shine a light on the possibilities, potential challenges, and the power of learning together in this work. —Mark David Milliron, Ph.D., Senior Vice President and Executive Dean of the Teachers College, Western Governors University Due to the COVID-19 pandemic and its aftereffects, we have begun to enter the new normal of education. Instead of online learning being an added feature of K–12 schools and universities worldwide, it will be incorporated as an essential feature in education. There are many questions and concerns from parents, students, teachers, professors, administrators, staff, accrediting bodies, and others regarding the quality of virtual learning and its impact on student learning outcomes. Online Learning Analytics is conceived on trying to answer the questions of those who may be skeptical about online learning. Through better understanding and applying learning analytics, we can assess how successful learning and student/faculty engagement, as examples, can contribute towards producing the educational outcomes needed to advance student learning for future generations. Learning analytics has proven to be successful in many areas, such as the impact of using learning analytics in asynchronous online discussions in higher education. To prepare for a future where online learning plays a major role, this book examines: Data insights for improving curriculum design, teaching practice, and learning Scaling up learning analytics in an evidence-informed way The role of trust in online learning. Online learning faces very real philosophical and operational challenges. This book addresses areas of concern about the future of education and learning. It also energizes the field of learning analytics by presenting research on a range of topics that is broad and recognizes the humanness and depth of educating and learning. |
analytics in higher education: OECD Digital Education Outlook 2021 Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots OECD, 2021-06-08 How might digital technology and notably smart technologies based on artificial intelligence (AI), learning analytics, robotics, and others transform education? This book explores such question. It focuses on how smart technologies currently change education in the classroom and the management of educational organisations and systems. |
analytics in higher education: Teaching Data Analytics Susan Vowels, Katherine Leaming Goldberg, 2019-06-17 The need for analytics skills is a source of the burgeoning growth in the number of analytics and decision science programs in higher education developed to feed the need for capable employees in this area. The very size and continuing growth of this need means that there is still space for new program development. Schools wishing to pursue business analytics programs intentionally assess the maturity level of their programs and take steps to close the gap. Teaching Data Analytics: Pedagogy and Program Design is a reference for faculty and administrators seeking direction about adding or enhancing analytics offerings at their institutions. It provides guidance by examining best practices from the perspectives of faculty and practitioners. By emphasizing the connection of data analytics to organizational success, it reviews the position of analytics and decision science programs in higher education, and to review the critical connection between this area of study and career opportunities. The book features: A variety of perspectives ranging from the scholarly theoretical to the practitioner applied An in-depth look into a wide breadth of skills from closely technology-focused to robustly soft human connection skills Resources for existing faculty to acquire and maintain additional analytics-relevant skills that can enrich their current course offerings. Acknowledging the dichotomy between data analytics and data science, this book emphasizes data analytics rather than data science, although the book does touch upon the data science realm. Starting with industry perspectives, the book covers the applied world of data analytics, covering necessary skills and applications, as well as developing compelling visualizations. It then dives into pedagogical and program design approaches in data analytics education and concludes with ideas for program design tactics. This reference is a launching point for discussions about how to connect industry’s need for skilled data analysts to higher education’s need to design a rigorous curriculum that promotes student critical thinking, communication, and ethical skills. It also provides insight into adding new elements to existing data analytics courses and for taking the next step in adding data analytics offerings, whether it be incorporating additional analytics assignments into existing courses, offering one course designed for undergraduates, or an integrated program designed for graduate students. |
analytics in higher education: Innovative Learning Analytics for Evaluating Instruction Theodore W. Frick, Rodney D. Myers, Cesur Dagli, Andrew F. Barrett, 2021-07-19 Innovative Learning Analytics for Evaluating Instruction covers the application of a forward-thinking research methodology that uses big data to evaluate the effectiveness of online instruction. Analysis of Patterns in Time (APT) is a practical analytic approach that finds meaningful patterns in massive data sets, capturing temporal maps of students’ learning journeys by combining qualitative and quantitative methods. Offering conceptual and research overviews, design principles, historical examples, and more, this book demonstrates how APT can yield strong, easily generalizable empirical evidence through big data; help students succeed in their learning journeys; and document the extraordinary effectiveness of First Principles of Instruction. It is an ideal resource for faculty and professionals in instructional design, learning engineering, online learning, program evaluation, and research methods. |
analytics in higher education: Emerging Issues in Smart Learning Guang Chen, Vive Kumar, Kinshuk, Ronghuai Huang, Siu Cheung Kong, 2014-09-10 This book provides an archival forum for researchers, academics, practitioners and industry professionals interested and/or engaged in the reform of the ways of teaching and learning through advancing current learning environments towards smart learning environments. The contributions of this book are submitted to the International Conference on Smart Learning Environments (ICSLE 2014). The focus of this proceeding is on the interplay of pedagogy, technology and their fusion towards the advancement of smart learning environments. Various components of this interplay include but are not limited to: Pedagogy- learning paradigms, assessment paradigms, social factors, policy; Technology- emerging technologies, innovative uses of mature technologies, adoption, usability, standards and emerging/new technological paradigms (open educational resources, cloud computing, etc.) |
analytics in higher education: Analysing Student Feedback in Higher Education Elena Zaitseva, Beatrice Tucker, Elizabeth Santhanam, 2021-12-29 Analysing Student Feedback in Higher Education provides an in-depth analysis of ‘mining’ student feedback that goes beyond numerical measures of student satisfaction or engagement. By including authentic student voices for understanding the student experience, this book will inform strategies for quality improvement in higher education globally. With contributions, representing an international community of academics, educational developers, institutional data analysts and student-researchers, this book reflects on the role of computer-aided text analysis in gaining insight of student views. The chapters explore the applications of text-mining in different forms, these include varied institutional contexts, using a range of instruments and pursuing different institutional aims and objectives. Contributors provide insights enabled by computer-aided analysis in distilling the student voice and turning large volumes of data into useful information and knowledge to inform actions. Practical tips and core principles are explored to assist academic institutions when embarking on analysing qualitative student feedback. Written for a wide audience, Analysing Student Feedback in Higher Education provides those making informed decisions about how to approach analyses of large volumes of student narratives, with the benefit of learning from the experiences of those who already started treading this path. It enables academic developers, institutional researchers, academics, and administrators to see how bringing text mining to their institutions can help them in better understanding and using the student voice to improve practice. |
analytics in higher education: Learning Analytics Johann Ari Larusson, Brandon White, 2014-07-04 In education today, technology alone doesn't always lead to immediate success for students or institutions. In order to gauge the efficacy of educational technology, we need ways to measure the efficacy of educational practices in their own right. Through a better understanding of how learning takes place, we may work toward establishing best practices for students, educators, and institutions. These goals can be accomplished with learning analytics. Learning Analytics: From Research to Practice updates this emerging field with the latest in theories, findings, strategies, and tools from across education and technological disciplines. Guiding readers through preparation, design, and examples of implementation, this pioneering reference clarifies LA methods as not mere data collection but sophisticated, systems-based analysis with practical applicability inside the classroom and in the larger world. Case studies illustrate applications of LA throughout academic settings (e.g., intervention, advisement, technology design), and their resulting impact on pedagogy and learning. The goal is to bring greater efficiency and deeper engagement to individual students, learning communities, and educators, as chapters show diverse uses of learning analytics to: Enhance student and faculty performance. Improve student understanding of course material. Assess and attend to the needs of struggling learners. Improve accuracy in grading. Allow instructors to assess and develop their own strengths. Encourage more efficient use of resources at the institutional level. Researchers and practitioners in educational technology, IT, and the learning sciences will hail the information in Learning Analytics: From Research to Practice as a springboard to new levels of student, instructor, and institutional success. |
analytics in higher education: Radical Solutions and Learning Analytics Daniel Burgos, 2020-05-08 Learning Analytics become the key for Personalised Learning and Teaching thanks to the storage, categorisation and smart retrieval of Big Data. Thousands of user data can be tracked online via Learning Management Systems, instant messaging channels, social networks and other ways of communication. Always with the explicit authorisation from the end user, being a student, a teacher, a manager or a persona in a different role, an instructional designer can design a way to produce a practical dashboard that helps him improve that very user’s performance, interaction, motivation or just grading. This book provides a thorough approach on how education, as such, from teaching to learning through management, is improved by a smart analysis of available data, making visible and useful behaviours, predictions and patterns that are hinder to the regular eye without the process of massive data. |
analytics in higher education: Assessing Student Learning Linda Suskie, 2010-07-30 The first edition of Assessing Student Learning has become the standard reference for college faculty and administrators who are charged with the task of assessing student learning within their institutions. The second edition of this landmark book offers the same practical guidance and is designed to meet ever-increasing demands for improvement and accountability. This edition includes expanded coverage of vital assessment topics such as promoting an assessment culture, characteristics of good assessment, audiences for assessment, organizing and coordinating assessment, assessing attitudes and values, setting benchmarks and standards, and using results to inform and improve teaching, learning, planning, and decision making. |
analytics in higher education: Learning Analytics John R Mattox II, Mark Van Buren, Jean Martin, 2016-09-03 Faced with organizations that are more dispersed, a workforce that is more diverse and the pressure to reduce costs, CEOs and CFOs are increasingly asking what the return on investment is from training and development programmes. Learning Analytics provides a framework for understanding how to work with learning analytics at an advanced level. It focuses on the questions that training evaluation is intended to answer: is training effective and how can it be improved? It discusses the field of learning analytics, outlining how and why analytics can be useful, and takes the reader through examples of approaches to answering these questions and looks at the valuable role that technology has to play. Even where technological solutions are employed, the HR or learning and development practitioner needs to understand what questions they should be asking of their data to ensure alignment between training and business needs. Learning Analytics enables both senior L&D and HR professionals as well as CEOs and CFOs to see the transformational power that effective analytics has for building a learning organization, and the impacts that this has on performance, talent management, and competitive advantage. It helps learning and development professionals to make the business case for their activities, demonstrating what is truly adding value and where budgets should be spent, and to deliver a credible service to their business by providing metrics based on which sound business decisions can be made. |
analytics in higher education: Learning Analytics in Education David Niemi, Roy D. Pea, Bror Saxberg, Richard E. Clark, 2018-08-01 This book provides a comprehensive introduction by an extraordinary range of experts to the recent and rapidly developing field of learning analytics. Some of the finest current thinkers about ways to interpret and benefit from the increasing amount of evidence from learners’ experiences have taken time to explain their methods, describe examples, and point out new underpinnings for the field. Together, they show how this new field has the potential to dramatically increase learner success through deeper understanding of the academic, social-emotional, motivational, identity and meta-cognitive context each learner uniquely brings. Learning analytics is much more than “analyzing learning data”—it is about deeply understanding what learning activities work well, for whom, and when. Learning Analytics in Education provides an essential framework, as well as guidance and examples, for a wide range of professionals interested in the future of learning. If you are already involved in learning analytics, or otherwise trying to use an increasing density of evidence to understand learners’ progress, these leading thinkers in the field may give you new insights. If you are engaged in teaching at any level, or training future teachers/faculty for this new, increasingly technology-enhanced learning world, and want some sense of the potential opportunities (and pitfalls) of what technology can bring to your teaching and students, these forward-thinking leaders can spark your imagination. If you are involved in research around uses of technology, improving learning measurements, better ways to use evidence to improve learning, or in more deeply understanding human learning itself, you will find additional ideas and insights from some of the best thinkers in the field here. If you are involved in making administrative or policy decisions about learning, you will find new ideas (and dilemmas) coming your way from inevitable changes in how we design and deliver instruction, how we measure the outcomes, and how we provide feedback to students, teachers, developers, administrators, and policy-makers. For all these players, the trick will be to get the most out of all the new developments to efficiently and effectively improve learning performance, without getting distracted by “shiny” technologies that are disconnected from how human learning and development actually work. |
analytics in higher education: Cultivating a Data Culture in Higher Education Kristina Powers, Angela E. Henderson, 2018 Higher education institutions have experienced a sharp increase in demand for accountability. To meet the growing demand by legislators, accreditors, consumers, taxpayers, and parents for evidence of successful outcomes, this important book provides higher education leaders and practitioners with actionable strategies for developing a comprehensive data culture throughout the entire institution. Exploring key considerations necessary for the development of an effective data culture in colleges and universities, this volume brings together diverse voices and perspectives, including institutional researchers, senior academic leaders, and faculty. Each chapter focuses on a critical element of managing or influencing a data culture, approaches for breaking through common challenges, and concludes with practical, research-based implementation strategies. Collectively, these strategies form a comprehensive list of recommendations for developing a data culture and becoming a change agent within your higher education institution. |
analytics in higher education: Fostering Communication and Learning With Underutilized Technologies in Higher Education Ali, Mohammed Banu, Wood-Harper, Trevor, 2020-09-04 Higher education is undergoing radical changes with the arrival of emerging technology that can facilitate better teaching and learning experiences. However, with a lack of technical awareness, technophobia, and security and trust issues, there are several barriers to the uptake of emerging technologies. As a result, many of these new technologies have been overlooked or underutilized. In the information systems and higher education domains, there exists a need to explore underutilized technologies in higher education that can foster communication and learning. Fostering Communication and Learning With Underutilized Technologies in Higher Education is a critical reference source that provides contemporary theories in the area of technology-driven communication and learning in higher education. The book offers new knowledge about educational technologies and explores such themes as artificial intelligence, digital learning platforms, gamification tools, and interactive exhibits. The target audience includes researchers, academicians, practitioners, and students who are working or have a keen interest in information systems, learning technologies, and technology-led teaching and learning. Moreover, the book provides an understanding and support to higher education practitioners, faculty, educational board members, technology vendors and firms, and the Ministry of Education. |
analytics in higher education: Smart Sensors at the IoT Frontier Hiroto Yasuura, Chong-Min Kyung, Yongpan Liu, Youn-Long Lin, 2017-05-29 This book describes technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, to big data domains and they showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms. |
analytics in higher education: Digital Innovations for Customer Engagement, Management, and Organizational Improvement Sandhu, Kamaljeet, 2020-06-12 Over the past several years, digital technologies have reestablished the ways in which corporations operate. On one hand, technology has allowed companies to build a stronger knowledge of its customer base, contributing to better consumer engagement strategies. On the other hand, these technologies have also integrated into the management and daily operations of companies, resulting in increased performance and organizational improvement. Remaining up to date with the implementation of these cutting-edge technologies is key to a company’s continued success. Digital Innovations for Customer Engagement, Management, and Organizational Improvement is an essential reference source that discusses and strategizes the latest technologies and innovations and their integration, implementation, and use in businesses, as well as lifelong learning strategies in a digital environment. Featuring research on topics such as consumer engagement, e-commerce, and learning management systems, this book is ideally designed for managers, business executives, marketers, consumer analysts, IT consultants, industry professionals, academicians, researchers, and students. |
analytics in higher education: Forecasting: principles and practice Rob J Hyndman, George Athanasopoulos, 2018-05-08 Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. |
analytics in higher education: Higher Education Research Methodology Ben Kei Daniel, Tony Harland, 2017-12-15 This book is for anyone who wishes to improve university teaching and learning through systematic inquiry. It provides advice, but also a constructive critique of research methods and, in turn, the authors also make a contribution to the theories of research methodology. Topics covered include ontology, epistemology and engagement with academic literature, as well as research design approaches and methods of data collection. There is a keen focus on quality in both the analysis and evaluation of research and new models are proposed to help the new researcher. The authors conclude by examining the challenges in getting work published and close with some words on quality of thought and action. The ideas in the book come from the authors’ extensive experience in teaching research methods courses in higher education, health and the corporate sector, as well as several empirical research projects that have helped provide a methodology for higher education. It will be of particular interest to postgraduate students, academic developers and experienced academics from a wide variety of disciplines. |
analytics in higher education: Transforming Learning with Meaningful Technologies Maren Scheffel, Julien Broisin, Viktoria Pammer-Schindler, Andri Ioannou, Jan Schneider, 2019-09-09 This book constitutes the proceedings of the 14th European Conference on Technology Enhanced Learning, EC-TEL 2019, held in Delft, The Netherlands, in September 2019. The 41 research papers and 50 demo and poster papers presented in this volume were carefully reviewed and selected from 149 submissions. The contributions reflect the debate around the role of and challenges for cutting-edge 21st century meaningful technologies and advances such as artificial intelligence and robots, augmented reality and ubiquitous computing technologies and at the same time connecting them to different pedagogical approaches, types of learning settings, and application domains that can benefit from such technologies. |
analytics in higher education: A History of American Higher Education John R. Thelin, 2019-04-02 The definitive history of American higher education—now up to date. Colleges and universities are among the most cherished—and controversial—institutions in the United States. In this updated edition of A History of American Higher Education, John R. Thelin offers welcome perspective on the triumphs and crises of this highly influential sector in American life. Exploring American higher education from its founding in the seventeenth century to its struggle to innovate and adapt in the first decades of the twenty-first century, Thelin demonstrates that the experience of going to college has been central to American life for generations of students and their families. Drawing from archival research, along with the pioneering scholarship of leading historians, Thelin raises profound questions about what colleges are—and what they should be. Covering issues of social class, race, gender, and ethnicity in each era and chapter, this new edition showcases a fresh concluding chapter that focuses on both the opportunities and problems American higher education has faced since 2010. The essay on sources has been revised to incorporate books and articles published over the past decade. The book also updates the discussion of perennial hot-button issues such as big-time sports programs, online learning, the debt crisis, the adjunct crisis, and the return of the culture wars and addresses current areas of contention, including the changing role of governing boards and the financial challenges posed by the economic downturn. Anyone studying the history of this institution in America must read Thelin's classic text, which has distinguished itself as the most wide-ranging and engaging account of the origins and evolution of America's institutions of higher learning. |
analytics in higher education: The European Higher Education Area Adrian Curaj, Liviu Matei, Remus Pricopie, Jamil Salmi, Peter Scott, 2015-10-12 Bridging the gap between higher education research and policy making was always a challenge, but the recent calls for more evidence-based policies have opened a window of unprecedented opportunity for researchers to bring more contributions to shaping the future of the European Higher Education Area (EHEA). Encouraged by the success of the 2011 first edition, Romania and Armenia have organised a 2nd edition of the Future of Higher Education – Bologna Process Researchers’ Conference (FOHE-BPRC) in November 2014, with the support of the Italian Presidency of the European Union and as part of the official EHEA agenda. Reuniting over 170 researchers from more than 30 countries, the event was a forum to debate the trends and challenges faced by higher education today and look at the future of European cooperation in higher education. The research volumes offer unique insights regarding the state of affairs of European higher education and research, as well as forward-looking policy proposals. More than 50 articles focus on essential themes in higher education: Internationalization of higher education; Financing and governance; Excellence and the diversification of missions; Teaching, learning and student engagement; Equity and the social dimension of higher education; Education, research and innovation; Quality assurance, The impacts of the Bologna Process on the EHEA and beyond and Evidence-based policies in higher education. The Bologna process was launched at a time of great optimism about the future of the European project – to which, of course, the reform of higher education across the continent has made a major contribution. Today, for the present, that optimism has faded as economic troubles have accumulated in the Euro-zone, political tensions have been increased on issues such as immigration and armed conflict has broken out in Ukraine. There is clearly a risk that, against this troubled background, the Bologna process itself may falter. There are already signs that it has been downgraded in some countries with evidence of political withdrawal. All the more reason for the voice of higher education researchers to be heard. Since the first conference they have established themselves as powerful stakeholders in the development of the EHEA, who are helping to maintain the momentum of the Bologna process. Their pivotal role has been strengthened by the second Bucharest conference. Peter Scott, Institute of Education, London (General Rapporteur of the FOHE-BPRC first edition) |
analytics in higher education: Handbook of Research on Transdisciplinary Knowledge Generation Victor X. Wang, 2019 This book examines transdisciplinary approaches to teaching, learning, and conducting research-- |
Analytics Help - Google Help
Official Google Analytics Help Center where you can find tips and tutorials on using Google Analytics and other answers to frequently asked questions.
Acessar sua conta do Google Analytics
Ajuda do Google Analytics Central de Ajuda Comunicados Google Analytics Entre em contato Começar a usar o Google Analytics Coletar e gerenciar dados Criar relatórios e analisar …
Acceder a su cuenta de Google Analytics
Help Google Analytics 4 ha sustituido a Universal Analytics Migrar a Google Analytics 4 [GA4] Soluciones habituales para los informes de Google Analytics 4 Acceder a su cuenta de …
Accedere al tuo account Google Analytics - Guida di Analytics
Google Analytics 4 ha sostituito Universal Analytics Passare a Google Analytics 4 [GA4] Soluzioni comuni per i report in Google Analytics 4 Accedere al tuo account Google Analytics [GA4] …
Access your Google Analytics account
Google Analytics 4 has replaced Universal Analytics Make the switch to Google Analytics 4 Common reporting solutions in Google Analytics 4 Access your Google Analytics account …
How Google Analytics works
How Google Analytics works Google Analytics is a platform that collects data from your websites and apps to create reports that provide insights into your business. Measuring a website To …
Accéder à votre compte Google Analytics
Aide Google Analytics Centre d'aide Annonces Google Analytics Contactez-nous Premiers pas avec Analytics Collecter et gérer les données Rapports et explorations Publicité et attribution …
Google アナリティクス アカウントにアクセスする
アナリティクスのスタートガイド データを収集、管理する レポートとデータ探索 広告とアトリビューション オーディエンスとリマーケティング アカウント、プロパティ、ユーザーを管 …
Como funciona o Google Analytics
Como funciona o Google Analytics O Google Analytics é uma plataforma que coleta dados nos seus apps e sites para criar relatórios sobre sua empresa. Medir um site Primeiro, crie uma …
Google Analytics-Startseite - Google Analytics-Hilfe
Google Analytics-Startseite Startseite Nach der Anmeldung in Analytics sehen Sie auf der Startseite eine Übersicht besonders interessanter Statistiken. In der oberen Kartenreihe sehen …
Analytics Help - Google Help
Official Google Analytics Help Center where you can find tips and tutorials on using Google Analytics and other answers to frequently asked questions.
Acessar sua conta do Google Analytics
Ajuda do Google Analytics Central de Ajuda Comunicados Google Analytics Entre em contato Começar a usar o Google Analytics Coletar e gerenciar dados Criar relatórios e analisar …
Acceder a su cuenta de Google Analytics
Help Google Analytics 4 ha sustituido a Universal Analytics Migrar a Google Analytics 4 [GA4] Soluciones habituales para los informes de Google Analytics 4 Acceder a su cuenta de …
Accedere al tuo account Google Analytics - Guida di Analytics
Google Analytics 4 ha sostituito Universal Analytics Passare a Google Analytics 4 [GA4] Soluzioni comuni per i report in Google Analytics 4 Accedere al tuo account Google Analytics [GA4] …
Access your Google Analytics account
Google Analytics 4 has replaced Universal Analytics Make the switch to Google Analytics 4 Common reporting solutions in Google Analytics 4 Access your Google Analytics account …
How Google Analytics works
How Google Analytics works Google Analytics is a platform that collects data from your websites and apps to create reports that provide insights into your business. Measuring a website To …
Accéder à votre compte Google Analytics
Aide Google Analytics Centre d'aide Annonces Google Analytics Contactez-nous Premiers pas avec Analytics Collecter et gérer les données Rapports et explorations Publicité et attribution …
Google アナリティクス アカウントにアクセスする
アナリティクスのスタートガイド データを収集、管理する レポートとデータ探索 広告とアトリビューション オーディエンスとリマーケティング アカウント、プロパティ、ユーザーを管 …
Como funciona o Google Analytics
Como funciona o Google Analytics O Google Analytics é uma plataforma que coleta dados nos seus apps e sites para criar relatórios sobre sua empresa. Medir um site Primeiro, crie uma …
Google Analytics-Startseite - Google Analytics-Hilfe
Google Analytics-Startseite Startseite Nach der Anmeldung in Analytics sehen Sie auf der Startseite eine Übersicht besonders interessanter Statistiken. In der oberen Kartenreihe sehen …