Advertisement
artificial intelligence in wealth management: Artificial Intelligence for Asset Management and Investment Al Naqvi, 2021-02-09 Make AI technology the backbone of your organization to compete in the Fintech era The rise of artificial intelligence is nothing short of a technological revolution. AI is poised to completely transform asset management and investment banking, yet its current application within the financial sector is limited and fragmented. Existing AI implementations tend to solve very narrow business issues, rather than serving as a powerful tech framework for next-generation finance. Artificial Intelligence for Asset Management and Investment provides a strategic viewpoint on how AI can be comprehensively integrated within investment finance, leading to evolved performance in compliance, management, customer service, and beyond. No other book on the market takes such a wide-ranging approach to using AI in asset management. With this guide, you’ll be able to build an asset management firm from the ground up—or revolutionize your existing firm—using artificial intelligence as the cornerstone and foundation. This is a must, because AI is quickly growing to be the single competitive factor for financial firms. With better AI comes better results. If you aren’t integrating AI in the strategic DNA of your firm, you’re at risk of being left behind. See how artificial intelligence can form the cornerstone of an integrated, strategic asset management framework Learn how to build AI into your organization to remain competitive in the world of Fintech Go beyond siloed AI implementations to reap even greater benefits Understand and overcome the governance and leadership challenges inherent in AI strategy Until now, it has been prohibitively difficult to map the high-tech world of AI onto complex and ever-changing financial markets. Artificial Intelligence for Asset Management and Investment makes this difficulty a thing of the past, providing you with a professional and accessible framework for setting up and running artificial intelligence in your financial operations. |
artificial intelligence in wealth management: Artificial Intelligence for Asset Management and Investment Al Naqvi, 2021-01-13 Make AI technology the backbone of your organization to compete in the Fintech era The rise of artificial intelligence is nothing short of a technological revolution. AI is poised to completely transform asset management and investment banking, yet its current application within the financial sector is limited and fragmented. Existing AI implementations tend to solve very narrow business issues, rather than serving as a powerful tech framework for next-generation finance. Artificial Intelligence for Asset Management and Investment provides a strategic viewpoint on how AI can be comprehensively integrated within investment finance, leading to evolved performance in compliance, management, customer service, and beyond. No other book on the market takes such a wide-ranging approach to using AI in asset management. With this guide, you’ll be able to build an asset management firm from the ground up—or revolutionize your existing firm—using artificial intelligence as the cornerstone and foundation. This is a must, because AI is quickly growing to be the single competitive factor for financial firms. With better AI comes better results. If you aren’t integrating AI in the strategic DNA of your firm, you’re at risk of being left behind. See how artificial intelligence can form the cornerstone of an integrated, strategic asset management framework Learn how to build AI into your organization to remain competitive in the world of Fintech Go beyond siloed AI implementations to reap even greater benefits Understand and overcome the governance and leadership challenges inherent in AI strategy Until now, it has been prohibitively difficult to map the high-tech world of AI onto complex and ever-changing financial markets. Artificial Intelligence for Asset Management and Investment makes this difficulty a thing of the past, providing you with a professional and accessible framework for setting up and running artificial intelligence in your financial operations. |
artificial intelligence in wealth management: The AI Book Ivana Bartoletti, Anne Leslie, Shân M. Millie, 2020-06-29 Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important |
artificial intelligence in wealth management: The WEALTHTECH Book Susanne Chishti, Thomas Puschmann, 2018-04-20 Get a handle on disruption, innovation and opportunity in investment technology The digital evolution is enabling the creation of sophisticated software solutions that make money management more accessible, affordable and eponymous. Full automation is attractive to investors at an early stage of wealth accumulation, but hybrid models are of interest to investors who control larger amounts of wealth, particularly those who have enough wealth to be able to efficiently diversify their holdings. Investors can now outperform their benchmarks more easily using the latest tech tools. The WEALTHTECH Book is the only comprehensive guide of its kind to the disruption, innovation and opportunity in technology in the investment management sector. It is an invaluable source of information for entrepreneurs, innovators, investors, insurers, analysts and consultants working in or interested in investing in this space. • Explains how the wealth management sector is being affected by competition from low-cost robo-advisors • Explores technology and start-up company disruption and how to delight customers while managing their assets • Explains how to achieve better returns using the latest fintech innovation • Includes inspirational success stories and new business models • Details overall market dynamics The WealthTech Book is essential reading for investment and fund managers, asset allocators, family offices, hedge, venture capital and private equity funds and entrepreneurs and start-ups. |
artificial intelligence in wealth management: Artificial Intelligence in Asset Management Söhnke M. Bartram, Jürgen Branke, Mehrshad Motahari, 2020-08-28 Artificial intelligence (AI) has grown in presence in asset management and has revolutionized the sector in many ways. It has improved portfolio management, trading, and risk management practices by increasing efficiency, accuracy, and compliance. In particular, AI techniques help construct portfolios based on more accurate risk and return forecasts and more complex constraints. Trading algorithms use AI to devise novel trading signals and execute trades with lower transaction costs. AI also improves risk modeling and forecasting by generating insights from new data sources. Finally, robo-advisors owe a large part of their success to AI techniques. Yet the use of AI can also create new risks and challenges, such as those resulting from model opacity, complexity, and reliance on data integrity. |
artificial intelligence in wealth management: AI Technology in Wealth Management Mahnoosh Mirghaemi, |
artificial intelligence in wealth management: Machine Learning for Asset Managers Marcos M. López de Prado, 2020-04-22 Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to learn complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects. |
artificial intelligence in wealth management: Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance El Bachir Boukherouaa, Mr. Ghiath Shabsigh, Khaled AlAjmi, Jose Deodoro, Aquiles Farias, Ebru S Iskender, Mr. Alin T Mirestean, Rangachary Ravikumar, 2021-10-22 This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight. |
artificial intelligence in wealth management: Intelligent Asset Management Frank Xing, Erik Cambria, Roy Welsch, 2020-11-26 This book presents a systematic application of recent advances in artificial intelligence (AI) to the problem of asset management. While natural language processing and text mining techniques, such as semantic representation, sentiment analysis, entity extraction, commonsense reasoning, and fact checking have been evolving for decades, finance theories have not yet fully considered and adapted to these ideas. In this unique, readable volume, the authors discuss integrating textual knowledge and market sentiment step-by-step, offering readers new insights into the most popular portfolio optimization theories: the Markowitz model and the Black-Litterman model. The authors also provide valuable visions of how AI technology-based infrastructures could cut the cost of and automate wealth management procedures. This inspiring book is a must-read for researchers and bankers interested in cutting-edge AI applications in finance. |
artificial intelligence in wealth management: Society 5.0 Aurona Gerber, Knut Hinkelmann, 2021-09-23 This book constitutes revised and selected papers from the First International Conference on Society 5.0, Society 5.0 2021, held virtually in June 2021. The 12 full papers and 3 short papers presented in this volume were thoroughly reviewed and selected from the 54 qualified submissions. The papers discuss topics on application of the fourth industrial revolution innovations (e.g. Internet of Things, Big Data, Artificial intelligence, and the sharing economy) in healthcare, mobility, infrastructure, politics, government, economy and industry. |
artificial intelligence in wealth management: Artificial Intelligence in Banking Introbooks, 2020-04-07 In these highly competitive times and with so many technological advancements, it is impossible for any industry to remain isolated and untouched by innovations. In this era of digital economy, the banking sector cannot exist and operate without the various digital tools offered by the ever new innovations happening in the field of Artificial Intelligence (AI) and its sub-set technologies. New technologies have enabled incredible progression in the finance industry. Artificial Intelligence (AI) and Machine Learning (ML) have provided the investors and customers with more innovative tools, new types of financial products and a new potential for growth.According to Cathy Bessant (the Chief Operations and Technology Officer, Bank of America), AI is not just a technology discussion. It is also a discussion about data and how it is used and protected. She says, In a world focused on using AI in new ways, we're focused on using it wisely and responsibly. |
artificial intelligence in wealth management: Operations Management Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres, Erik Bonaldi, 2021-03-03 Global competition has caused fundamental changes in the competitive environment of the manufacturing and service industries. Firms should develop strategic objectives that, upon achievement, result in a competitive advantage in the market place. The forces of globalization on one hand and rapidly growing marketing opportunities overseas, especially in emerging economies on the other, have led to the expansion of operations on a global scale. The book aims to cover the main topics characterizing operations management including both strategic issues and practical applications. A global environmental business including both manufacturing and services is analyzed. The book contains original research and application chapters from different perspectives. It is enriched through the analyses of case studies. |
artificial intelligence in wealth management: Competing in the Age of AI Marco Iansiti, Karim R. Lakhani, 2020-01-07 a provocative new book — The New York Times AI-centric organizations exhibit a new operating architecture, redefining how they create, capture, share, and deliver value. Now with a new preface that explores how the coronavirus crisis compelled organizations such as Massachusetts General Hospital, Verizon, and IKEA to transform themselves with remarkable speed, Marco Iansiti and Karim R. Lakhani show how reinventing the firm around data, analytics, and AI removes traditional constraints on scale, scope, and learning that have restricted business growth for hundreds of years. From Airbnb to Ant Financial, Microsoft to Amazon, research shows how AI-driven processes are vastly more scalable than traditional processes, allow massive scope increase, enabling companies to straddle industry boundaries, and create powerful opportunities for learning—to drive ever more accurate, complex, and sophisticated predictions. When traditional operating constraints are removed, strategy becomes a whole new game, one whose rules and likely outcomes this book will make clear. Iansiti and Lakhani: Present a framework for rethinking business and operating models Explain how collisions between AI-driven/digital and traditional/analog firms are reshaping competition, altering the structure of our economy, and forcing traditional companies to rearchitect their operating models Explain the opportunities and risks created by digital firms Describe the new challenges and responsibilities for the leaders of both digital and traditional firms Packed with examples—including many from the most powerful and innovative global, AI-driven competitors—and based on research in hundreds of firms across many sectors, this is your essential guide for rethinking how your firm competes and operates in the era of AI. |
artificial intelligence in wealth management: Hands-On Artificial Intelligence for Banking Jeffrey Ng, Subhash Shah, 2020-07-10 Delve into the world of real-world financial applications using deep learning, artificial intelligence, and production-grade data feeds and technology with Python Key FeaturesUnderstand how to obtain financial data via Quandl or internal systemsAutomate commercial banking using artificial intelligence and Python programsImplement various artificial intelligence models to make personal banking easyBook Description Remodeling your outlook on banking begins with keeping up to date with the latest and most effective approaches, such as artificial intelligence (AI). Hands-On Artificial Intelligence for Banking is a practical guide that will help you advance in your career in the banking domain. The book will demonstrate AI implementation to make your banking services smoother, more cost-efficient, and accessible to clients, focusing on both the client- and server-side uses of AI. You’ll begin by understanding the importance of artificial intelligence, while also gaining insights into the recent AI revolution in the banking industry. Next, you’ll get hands-on machine learning experience, exploring how to use time series analysis and reinforcement learning to automate client procurements and banking and finance decisions. After this, you’ll progress to learning about mechanizing capital market decisions, using automated portfolio management systems and predicting the future of investment banking. In addition to this, you’ll explore concepts such as building personal wealth advisors and mass customization of client lifetime wealth. Finally, you’ll get to grips with some real-world AI considerations in the field of banking. By the end of this book, you’ll be equipped with the skills you need to navigate the finance domain by leveraging the power of AI. What you will learnAutomate commercial bank pricing with reinforcement learningPerform technical analysis using convolutional layers in KerasUse natural language processing (NLP) for predicting market responses and visualizing them using graph databasesDeploy a robot advisor to manage your personal finances via Open Bank APISense market needs using sentiment analysis for algorithmic marketingExplore AI adoption in banking using practical examplesUnderstand how to obtain financial data from commercial, open, and internal sourcesWho this book is for This is one of the most useful artificial intelligence books for machine learning engineers, data engineers, and data scientists working in the finance industry who are looking to implement AI in their business applications. The book will also help entrepreneurs, venture capitalists, investment bankers, and wealth managers who want to understand the importance of AI in finance and banking and how it can help them solve different problems related to these domains. Prior experience in the financial markets or banking domain, and working knowledge of the Python programming language are a must. |
artificial intelligence in wealth management: Advances in Financial Machine Learning Marcos Lopez de Prado, 2018-01-23 Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance. |
artificial intelligence in wealth management: AI Technology in Wealth Management Mahnoosh Mirghaemi, Karen Wendt, 2024-11-16 This book explores AI technology in wealth management, including what it is, how it changes the wealth management and private banking landscape, its advantages, and how it democratizes wealth management. Specifically, this book investigates topics such as Hyper-personalized investment strategies Combined quantitative analysis with sentiment analysis to create prescriptive and predictive scenarios Expandable and transparent AI algorithms in wealth management Customer experience and client engagement Tailored financial content Providing a clear and concise description of how AI driven wealth management differs from traditional investing, asset management, and wealth management offering new opportunities for investing, this book is ideal for students, scholars, researchers and professionals interested in accessible wealth management applications for investing in the 21st century. |
artificial intelligence in wealth management: Fail Fast, Learn Faster Randy Bean, 2021-08-31 Explore why — now more than ever — the world is in a race to become data-driven, and how you can learn from examples of data-driven leadership in an Age of Disruption, Big Data, and AI In Fail Fast, Learn Faster: Lessons in Data-Driven Leadership in an Age of Disruption, Big Data, and AI, Fortune 1000 strategic advisor, noted author, and distinguished thought leader Randy Bean tells the story of the rise of Big Data and its business impact – its disruptive power, the cultural challenges to becoming data-driven, the importance of data ethics, and the future of data-driven AI. The book looks at the impact of Big Data during a period of explosive information growth, technology advancement, emergence of the Internet and social media, and challenges to accepted notions of data, science, and facts, and asks what it means to become data-driven. Fail Fast, Learn Faster includes discussions of: The emergence of Big Data and why organizations must become data-driven to survive Why becoming data-driven forces companies to think different about their business The state of data in the corporate world today, and the principal challenges Why companies must develop a true data culture if they expect to change Examples of companies that are demonstrating data-driven leadership and what we can learn from them Why companies must learn to fail fast and learn faster to compete in the years ahead How the Chief Data Officer has been established as a new corporate profession Written for CEOs and Corporate Board Directors, data professional and practitioners at all organizational levels, university executive programs and students entering the data profession, and general readers seeking to understand the Information Age and why data, science, and facts matter in the world in which we live, Fail Fast, Learn Faster p;is essential reading that delivers an urgent message for the business leaders of today and of the future. |
artificial intelligence in wealth management: Transformation Dynamics in FinTech Dimitrios Salampasis, Anne-Laure Mention, 2021-10 Technology-driven innovation in financial services has been attracting global attention and interest. FinTech innovation is presenting a paradigm shift in financial services affecting a wide range of products, processes and services but also sparking a broader evolutionary transformation, growth opportunities and foundational systemic and structural changes in light of technological interdependencies among market players, infrastructures and ecosystem stakeholders.Transformation Dynamics in FinTech contributes to the intellectual curiosity around the symbiotic relationship of finance and technology by focusing on the multidimensional and multidisciplinary role of open innovation within FinTech innovation, observing and communicating the latest technological, managerial, governance, policy and regulatory perspectives, trends and developments.This book is an essential reading for anyone interested in the growing and evolving development of FinTech ecosystems based on new capabilities and structures that create new dominant architectural designs, which determine competitive dynamics, products, services, processes, business models, markets, value chains, within an open and transformed financial services industry landscape. |
artificial intelligence in wealth management: Artificial Financial Intelligence in China Dawei Zhao, Wenting Zhang, 2021-10-27 This book starts from the application scenarios of artificial financial intelligence regulation, commercial banking, wealth management and payments, etc., and makes a detailed study of the main scenarios of the application of China's artificial intelligence in the financial field, and also analysis specific application cases of China.With the popularization of smart phones and the rapid development of e-commerce, mobile payment, big data and other technologies are in the ascendant in China in recent years. In particular, artificial intelligence technologies in the form of facial, speech and semantic recognition are showing preliminary advantages in the field of FinTech, and the future era of Intelligent Finance has quietly come. The Chinese government has clearly put forward China should rely on a robust cycle of domestic demand and innovation as the main driver of the economy while maintaining foreign markets and investors as a second engine of growth, science and technology innovation is the basic motivation of economic and social cycle, to implement the dual circulation strategy , it is necessary to understand the key role of scientific and technological innovation in financial innovation services, and improve financial services must be driven by science and technology. There is a natural relationship between artificial intelligence and financial services, because financial services are credit and information intermediaries, and data is the most critical for finance, while artificial intelligence has a super ability in dealing with complex data. At present, many Chinese Banks have applied artificial intelligence to their daily operations and management, such as accurate customer identification, enhanced process tracking, intelligent marketing, and product process transformation, so as to simplify financial service processes and shorten service cycles. In General, this book both pays attention to practical application and theoretical, which is a useful reference book in theoretical research and practical work, and also helps readers to understand the application of intelligent finance in China. |
artificial intelligence in wealth management: AI and the Future of Banking Tony Boobier, 2020-04-09 An industry-specific guide to the applications of Advanced Analytics and AI to the banking industry Artificial Intelligence (AI) technologies help organisations to get smarter and more effective over time – ultimately responding to, learning from and interacting with human voices. It is predicted that by 2025, half of all businesses will be using these intelligent, self-learning systems. Across its entire breadth and depth, the banking industry is at the forefront of investigating Advanced Analytics and AI technology for use in a broad range of applications, such as customer analytics and providing wealth advice for clients. AI and the Future of Banking provides new and established banking industry professionals with the essential information on the implications of data and analytics on their roles, responsibilities and personal career development. Unlike existing books on the subject which tend to be overly technical and complex, this accessible, reader-friendly guide is designed to be easily understood by any banking professional with limited or no IT background. Chapters focus on practical guidance on the use of analytics to improve operational effectiveness, customer retention and finance and risk management. Theory and published case studies are clearly explained, whilst considerations such as operating costs, regulation and market saturation are discussed in real-world context. Written by a recognised expert in AI and Advanced Analytics, this book: Explores the numerous applications for Advanced Analytics and AI in various areas of banking and finance Offers advice on the most effective ways to integrate AI into existing bank ecosystems Suggests alternative and complementary visions for the future of banking, addressing issues like branch transformation, new models of universal banking and ‘debranding’ Explains the concept of ‘Open Banking,’ which securely shares information without needing to reveal passwords Addresses the development of leadership relative to AI adoption in the banking industry AI and the Future of Banking is an informative and up-to-date resource for bank executives and managers, new entrants to the banking industry, financial technology and financial services practitioners and students in postgraduate finance and banking courses. |
artificial intelligence in wealth management: ARTIFICIAL INTELLIGENCE AND BUSINESS TRANSFORMATION IN FINANCIAL SERVICES CLARA. DURODIE, 2019 |
artificial intelligence in wealth management: AI and Financial Markets Shigeyuki Hamori, Tetsuya Takiguchi, 2020-07-01 Artificial intelligence (AI) is regarded as the science and technology for producing an intelligent machine, particularly, an intelligent computer program. Machine learning is an approach to realizing AI comprising a collection of statistical algorithms, of which deep learning is one such example. Due to the rapid development of computer technology, AI has been actively explored for a variety of academic and practical purposes in the context of financial markets. This book focuses on the broad topic of “AI and Financial Markets”, and includes novel research associated with this topic. The book includes contributions on the application of machine learning, agent-based artificial market simulation, and other related skills to the analysis of various aspects of financial markets. |
artificial intelligence in wealth management: Machine Learning for Asset Management Emmanuel Jurczenko, 2020-10-06 This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management. |
artificial intelligence in wealth management: Machine Learning in Finance Matthew F. Dixon, Igor Halperin, Paul Bilokon, 2020-07-01 This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance. |
artificial intelligence in wealth management: Beyond Fintech: Technology Applications For The Islamic Economy Hazik Mohamed, 2020-11-25 Beyond Fintech: Technology Applications for the Islamic Economy is a follow-up to the first-ever Islamic Fintech book by the author (published in 2018) that provided linkages between Islamic Finance and disruptive technologies like the blockchain. In the wake of fintech as a new trend in financial markets, the ground-breaking book stressed the relevance of Islamic finance and its implications, when enabled by fintech, towards the development of the Islamic digital economy. While the earlier work discussed the crucial innovation, structural, and institutional development for financial technologies in Islamic Finance, this new research explores the multiple applications possible in the various sectors of the economy, within and beyond finance, that can be significantly transformed. These revolutionary applications involve the integration of AI, blockchain, data analytics, and Internet-of-Things (IoT) devices for a holistic solution to tackle the bottlenecks and other issues in existing processes of traditional systems. The principles of accountability, duty, justice, and transparency are the foundation of shaping the framework in achieving good governance in all institutions — public or private, Islamic or otherwise. Technologies like AI, blockchain, and IoT devices can operationalize the transparency and accountability that is required to eradicate poverty, distribute wealth, enhance micro-, small- and large-scale initiatives for social and economic development, and thus share prosperity for a moral system that enables a more secure and sustainable economy. |
artificial intelligence in wealth management: Artificial Intelligence for Finance Executives Alexis Besse, 2021-03-20 We often hear that AI is revolutionising the financial sector, like no other technology has done before. This book looks beyond these clichés and explores all aspects of this transformation at a deep level. It spells out a vision for the future and answers many questions that are routinely ignored. What do we mean by Artificial Intelligence in finance? How do we move past the myths and misconceptions to reveal the key driving forces? What are the industry trends that align with this transformation? Is it the explosion of digital touchpoints in retail, the reduced risk taking by investment banks, or the ascent of passive funds in asset management? How do we develop concrete use cases from idea generation to production? How do we engineer systems to make accurate predictions, offer recommendations to clients, or analyse unstructured news data? How do we build a successful data-driven organisation? What are the key pitfalls to avoid? Is it about culture, data governance, or management vision? What are the risks specific to developing AI technologies? Can we humans understand and explain what the machines produce for us? Can we trust their predictions or actions? What is the role of alternative data in all this? How can we put it to use for augmented insight? What are the problems that AI is well equipped to solve? Is it all about neural networks and deep learning, as we regularly hear in the popular press? How do we understand human language, a task so important to the financial analyst? The book is packed with concrete examples from the various disciplines of finance. Interested readers will also develop a deep understanding of AI algorithms - presented in plain English - and learn how to solve the most challenging problems. But first and foremost, it is a practical book that equips finance executives with everything they need to understand this transformation and to become agents of change themselves. |
artificial intelligence in wealth management: FinTech Innovation Paolo Sironi, 2016-07-19 A survival guide for the FinTech era of banking FinTech Innovation examines the rise of financial technology and its growing impact on the global banking industry. Wealth managers are standing at the epicenter of a tectonic shift, as the balance of power between offering and demand undergoes a dramatic upheaval. Regulators are pushing toward a 'constrained offering' norm while private clients and independent advisors demand a more proactive role; practitioners need examine this banking evolution in detail to understand the mechanisms at work. This book presents analysis of the current shift and offers clear insight into what happens when established economic interests collide with social transformation. Business models are changing in profound ways, and the impact reaches further than many expect; the democratization of banking is revolutionizing the wealth management industry toward more efficient and client-centric advisory processes, and keeping pace with these changes has become a survival skill for financial advisors around the world. Social media, big data analytics and digital technology are disrupting the banking industry, which many have taken for granted as set in stone. This book shatters that assumption by illustrating the massive changes already underway, and provides thought leader insight into the changes yet to come. Examine the depth and breadth of financial technology Learn how regulations are driving changing business models Discover why investors may become the price-makers Understand the forces at work behind the rise of FinTech Information asymmetry has dominated the banking industry for centuries, keeping the bank/investor liability neatly aligned—but this is changing, and understanding and preparing for the repercussions must be a top priority for wealth managers everywhere. Financial Innovation shows you where the bar is being re-set and gives you the insight you need to keep up. |
artificial intelligence in wealth management: The Future of Finance Henri Arslanian, Fabrice Fischer, 2019-07-15 This book, written jointly by an engineer and artificial intelligence expert along with a lawyer and banker, is a glimpse on what the future of the financial services will look like and the impact it will have on society. The first half of the book provides a detailed yet easy to understand educational and technical overview of FinTech, artificial intelligence and cryptocurrencies including the existing industry pain points and the new technological enablers. The second half provides a practical, concise and engaging overview of their latest trends and their impact on the future of the financial services industry including numerous use cases and practical examples. The book is a must read for any professional currently working in finance, any student studying the topic or anyone curious on how the future of finance will look like. |
artificial intelligence in wealth management: Investment Analytics In The Dawn Of Artificial Intelligence Bernard Lee, 2019-07-24 A class of highly mathematical algorithms works with three-dimensional (3D) data known as graphs. Our research challenge focuses on applying these algorithms to solve more complex problems with financial data, which tend to be in higher dimensions (easily over 100), based on probability distributions, with time subscripts and jumps. The 3D research analogy is to train a navigation algorithm when the way-finding coordinates and obstacles such as buildings change dynamically and are expressed in higher dimensions with jumps.Our short title 'ia≠ai' symbolizes how investment analytics is not a simplistic reapplication of artificial intelligence (AI) techniques proven in engineering. This book presents best-of-class sophisticated techniques available today to solve high dimensional problems with properties that go deeper than what is required to solve customary problems in engineering today.Dr Bernard Lee is the Founder and CEO of HedgeSPA, which stands for Sophisticated Predictive Analytics for Hedge Funds and Institutions. Previously, he was a managing director in the Portfolio Management Group of BlackRock in New York City as well as a finance professor who has taught and guest-lectured at a number of top universities globally.Related Link(s) |
artificial intelligence in wealth management: Artificial Intelligence in Economics and Finance Theories Tankiso Moloi, Tshilidzi Marwala, 2020-05-07 As Artificial Intelligence (AI) seizes all aspects of human life, there is a fundamental shift in the way in which humans are thinking of and doing things. Ordinarily, humans have relied on economics and finance theories to make sense of, and predict concepts such as comparative advantage, long run economic growth, lack or distortion of information and failures, role of labour as a factor of production and the decision making process for the purpose of allocating resources among other theories. Of interest though is that literature has not attempted to utilize these advances in technology in order to modernize economic and finance theories that are fundamental in the decision making process for the purpose of allocating scarce resources among other things. With the simulated intelligence in machines, which allows machines to act like humans and to some extent even anticipate events better than humans, thanks to their ability to handle massive data sets, this book will use artificial intelligence to explain what these economic and finance theories mean in the context of the agent wanting to make a decision. The main feature of finance and economic theories is that they try to eliminate the effects of uncertainties by attempting to bring the future to the present. The fundamentals of this statement is deeply rooted in risk and risk management. In behavioural sciences, economics as a discipline has always provided a well-established foundation for understanding uncertainties and what this means for decision making. Finance and economics have done this through different models which attempt to predict the future. On its part, risk management attempts to hedge or mitigate these uncertainties in order for “the planner” to reach the favourable outcome. This book focuses on how AI is to redefine certain important economic and financial theories that are specifically used for the purpose of eliminating uncertainties so as to allow agents to make informed decisions. In effect, certain aspects of finance and economic theories cannot be understood in their entirety without the incorporation of AI. |
artificial intelligence in wealth management: Intelligent Asset Management Frank Xing, Erik Cambria, Roy Welsch, 2019-11-13 This book presents a systematic application of recent advances in artificial intelligence (AI) to the problem of asset management. While natural language processing and text mining techniques, such as semantic representation, sentiment analysis, entity extraction, commonsense reasoning, and fact checking have been evolving for decades, finance theories have not yet fully considered and adapted to these ideas. In this unique, readable volume, the authors discuss integrating textual knowledge and market sentiment step-by-step, offering readers new insights into the most popular portfolio optimization theories: the Markowitz model and the Black-Litterman model. The authors also provide valuable visions of how AI technology-based infrastructures could cut the cost of and automate wealth management procedures. This inspiring book is a must-read for researchers and bankers interested in cutting-edge AI applications in finance. |
artificial intelligence in wealth management: AI Pioneers in Investment Management Larry Cao, 2019 |
artificial intelligence in wealth management: Robo-Advisory Peter Scholz, 2020-12-28 Robo-Advisory is a field that has gained momentum over recent years, propelled by the increasing digitalization and automation of global financial markets. More and more money has been flowing into automated advisory, raising essential questions regarding the foundations, mechanics, and performance of such solutions. However, a comprehensive summary taking stock of this new solution at the intersection of finance and technology with consideration for both aspects of theory and implementation has so far been wanting. This book offers such a summary, providing unique insights into the state of Robo-Advisory. Drawing on a pool of expert authors from within the field, this edited collection aims at being the vital go-to resource for academics, students, policy-makers, and practitioners alike wishing to engage with the topic. Split into four parts, the book begins with a survey of academic literature and its key insights paired with an analysis of market developments in Robo-Advisory thus far. The second part tackles specific questions of implementation, which are complemented by practical case studies in Part III. Finally, the fourth part looks ahead to the future, addressing questions of key importance such as artificial intelligence, big data, and social networks. Thereby, this timely book conveys both a comprehensive grasp of the status-quo as well as a guiding outlook onto future trends and developments within the field. |
artificial intelligence in wealth management: Private Debt Stephen L. Nesbitt, 2019-01-14 The essential resource for navigating the growing direct loan market Private Debt: Opportunities in Corporate Direct Lending provides investors with a single, comprehensive resource for understanding this asset class amidst an environment of tremendous growth. Traditionally a niche asset class pre-crisis, corporate direct lending has become an increasingly important allocation for institutional investors—assets managed by Business Development Company structures, which represent 25% of the asset class, have experienced over 600% growth since 2008 to become a $91 billion market. Middle market direct lending has traditionally been relegated to commercial banks, but onerous Dodd-Frank regulation has opened the opportunity for private asset managers to replace banks as corporate lenders; as direct loans have thus far escaped the low rates that decimate yield, this asset class has become an increasingly attractive option for institutional and retail investors. This book dissects direct loans as a class, providing the critical background information needed in order to work effectively with these assets. Understand direct lending as an asset class, and the different types of loans available Examine the opportunities, potential risks, and historical yield Delve into various loan investment vehicles, including the Business Development Company structure Learn how to structure a direct loan portfolio, and where it fits within your total portfolio The rapid rise of direct lending left a knowledge gap surrounding these nontraditional assets, leaving many investors ill-equipped to take full advantage of ever-increasing growth. This book provides a uniquely comprehensive guide to corporate direct lending, acting as both crash course and desk reference to facilitate smart investment decision making. |
artificial intelligence in wealth management: 50 States of Gray Arun Muralidhar, 2018-05 Another retirement crisis is looming as one-third of private-sector, typically poor and unsophisticated workers, probably have little to no pension security. The fifty states have decided to enact reforms, but they are unwilling to assume any liability. Effective reform should ensure a target, guaranteed, inflation/standard-of-living-indexed retirement income through death. The book proposes a four-step reform process that articulates roles, responsibilities, and sequencing of steps to effectively address the looming retirement crisis. Current reform models potentially expose participants to costly, risky, error-prone, and illiquid alternatives, which could transfer wealth from poor citizens to rich asset managers and from short-lived poor and minority citizens to rich and majority populations. Retirement planning presents a wealth of complex challenges associated with saving, investing, and decumulation. To address these challenges, Muralidhar provides an innovative Flex MMM reform model that reflects the goals of numerous stakeholders, including, states, employers, employees, asset managers, and regulators, by showing steps the federal and state governments could take to alleviate the guesswork and insecurity involved in the retirement saving process. Muralidhar also demonstrates that the lynchpin for retirement security globally is an innovative new retirement bond (called SeLFIES ) he has jointly developed with Robert C. Merton that governments could easily issue to achieve multiple goals. |
artificial intelligence in wealth management: Artificial Intelligence Harvard Business Review, 2019 Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business. |
artificial intelligence in wealth management: Artificial Intelligence for Audit, Forensic Accounting, and Valuation Al Naqvi, 2020-08-25 Strategically integrate AI into your organization to compete in the tech era The rise of artificial intelligence is nothing short of a technological revolution. AI is poised to completely transform accounting and auditing professions, yet its current application within these areas is limited and fragmented. Existing AI implementations tend to solve very narrow business issues, rather than serving as a powerful tech framework for next-generation accounting. Artificial Intelligence for Audit, Forensic Accounting, and Valuation provides a strategic viewpoint on how AI can be comprehensively integrated within audit management, leading to better automated models, forensic accounting, and beyond. No other book on the market takes such a wide-ranging approach to using AI in audit and accounting. With this guide, you’ll be able to build an innovative, automated accounting strategy, using artificial intelligence as the cornerstone and foundation. This is a must, because AI is quickly growing to be the single competitive factor for audit and accounting firms. With better AI comes better results. If you aren’t integrating AI and automation in the strategic DNA of your business, you’re at risk of being left behind. See how artificial intelligence can form the cornerstone of integrated, automated audit and accounting services Learn how to build AI into your organization to remain competitive in the era of automation Go beyond siloed AI implementations to modernize and deliver results across the organization Understand and overcome the governance and leadership challenges inherent in AI strategy Accounting and auditing firms need a comprehensive framework for intelligent, automation-centric modernization. Artificial Intelligence for Audit, Forensic Accounting, and Valuation delivers just that—a plan to evolve legacy firms by building firmwide AI capabilities. |
artificial intelligence in wealth management: The LegalTech Book Sophia Adams Bhatti, Akber Datoo, Drago Indjic, 2020-06-01 Written by prominent thought leaders in the global FinTech investment space, The LegalTech Book aggregates diverse expertise into a single, informative volume. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: The current status of LegalTech, why now is the time for it to boom, the drivers behind it, and how it relates to FinTech, RegTech, InsurTech and WealthTech Applications of AI, machine learning and deep learning in the practice of law; e-discovery and due diligence; AI as a legal predictor LegalTech making the law accessible to all; online courts, online dispute resolution The Uberization of the law; hiring and firing through apps Lawbots; social media meets legal advice To what extent does LegalTech make lawyers redundant? Cryptocurrencies, distributed ledger technology and the law The Internet of Things, data privacy, automated contracts Cybersecurity and data Technology vs. the law; driverless cars and liability, legal rights of robots, ownership rights over works created by technology Legislators as innovators-- |
artificial intelligence in wealth management: Empirical Asset Pricing Wayne Ferson, 2019-03-12 An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals. |
artificial intelligence in wealth management: HBR Guide to Data Analytics Basics for Managers (HBR Guide Series) Harvard Business Review, 2018-03-13 Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes |
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something natural : man-made. How to use artificial in a sentence.
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by people, often…. Learn more.
Artificial - definition of artificial by The Free Dictionary
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a natural product, esp as a substitute; not genuine: artificial cream. 3. pretended; …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is often used as the opposite of natural. A close synonym of artificial is …
ARTIFICIAL definition and meaning | Collins English Dictionary
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for example using science or technology.
artificial adjective - Definition, pictures, pronunciation and usage ...
Definition of artificial adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Artificial - Definition, Meaning & Synonyms - Vocabulary.com
While artificial can simply mean “made by humans,” it’s often used in a negative sense, conveying the idea that an artificial product is inferior to the real thing. If you remark that your friend’s new …
artificial - Wiktionary, the free dictionary
6 days ago · artificial (comparative more artificial, superlative most artificial) Man-made; made by humans; of artifice. The flowers were artificial, and he thought them rather tacky. An artificial …
What does artificial mean? - Definitions.net
Artificial refers to something that is made or produced by human beings rather than occurring naturally or in the environment. It often implies an imitation of something natural or a real …
Artificial Intelligence Is Not Intelligent - The Atlantic
Jun 6, 2025 · The good news is that nothing about this is inevitable: According to a study released in April by the Pew Research Center, although 56 percent of “AI experts” think artificial …
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something natural : man-made. How to use artificial in a sentence.
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by …
Artificial - definition of artificial by The Free Dictiona…
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a natural product, esp as a substitute; not genuine: artificial cream. 3. …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is …
ARTIFICIAL definition and meaning | Collins English Dict…
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for example using science or technology.