Advertisement
artificial intelligence in biology: Artificial Intelligence and Molecular Biology Lawrence Hunter, 1993 These original contributions provide a current sampling of AI approaches to problems of biological significance; they are the first to treat the computational needs of the biology community hand-in-hand with appropriate advances in artificial intelligence. The enormous amount of data generated by the Human Genome Project and other large-scale biological research has created a rich and challenging domain for research in artificial intelligence. These original contributions provide a current sampling of AI approaches to problems of biological significance; they are the first to treat the computational needs of the biology community hand-in-hand with appropriate advances in artificial intelligence. Focusing on novel technologies and approaches, rather than on proven applications, they cover genetic sequence analysis, protein structure representation and prediction, automated data analysis aids, and simulation of biological systems. A brief introductory primer on molecular biology and Al gives computer scientists sufficient background to understand much of the biology discussed in the book. Lawrence Hunter is Director of the Machine Learning Project at the National Library of Medicine, National Institutes of Health. |
artificial intelligence in biology: Artificial Intelligence for Biology and Agriculture S. Panigrahi, K.C. Ting, 2012-12-06 This volume contains a total of thirteen papers covering a variety of AI topics ranging from computer vision and robotics to intelligent modeling, neural networks and fuzzy logic. There are two general articles on robotics and fuzzy logic. The article on robotics focuses on the application of robotics technology in plant production. The second article on fuzzy logic provides a general overview of the basics of fuzzy logic and a typical agricultural application of fuzzy logic. The article `End effectors for tomato harvesting' enhances further the robotic research as applied to tomato harvesting. The application of computer vision techniques for different biological/agricultural applications, for example, length determination of cheese threads, recognition of plankton images and morphological identification of cotton fibers, depicts the complexity and heterogeneities of the problems and their solutions. The development of a real-time orange grading system in the article `Video grading of oranges in real-time' further reports the capability of computer vision technology to meet the demand of high quality food products. The integration of neural network technology with computer vision and fuzzy logic for defect detection in eggs and identification of lettuce growth shows the power of hybridization of AI technologies to solve agricultural problems. Additional papers also focus on automated modeling of physiological processes during postharvest distribution of agricultural products, the applications of neural networks, fusion of AI technologies and three dimensional computer vision technologies for different problems ranging from botanical identification and cell migration analysis to food microstructure evaluation. |
artificial intelligence in biology: Using Artificial Intelligence in Chemistry and Biology Hugh Cartwright, 2008-05-05 Possessing great potential power for gathering and managing data in chemistry, biology, and other sciences, Artificial Intelligence (AI) methods are prompting increased exploration into the most effective areas for implementation. A comprehensive resource documenting the current state-of-the-science and future directions of the field is required to |
artificial intelligence in biology: Adaptation in Natural and Artificial Systems John H. Holland, 1992-04-29 Genetic algorithms are playing an increasingly important role in studies of complex adaptive systems, ranging from adaptive agents in economic theory to the use of machine learning techniques in the design of complex devices such as aircraft turbines and integrated circuits. Adaptation in Natural and Artificial Systems is the book that initiated this field of study, presenting the theoretical foundations and exploring applications. In its most familiar form, adaptation is a biological process, whereby organisms evolve by rearranging genetic material to survive in environments confronting them. In this now classic work, Holland presents a mathematical model that allows for the nonlinearity of such complex interactions. He demonstrates the model's universality by applying it to economics, physiological psychology, game theory, and artificial intelligence and then outlines the way in which this approach modifies the traditional views of mathematical genetics. Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways. Along the way he accounts for major effects of coadaptation and coevolution: the emergence of building blocks, or schemata, that are recombined and passed on to succeeding generations to provide, innovations and improvements. |
artificial intelligence in biology: Artificial Intelligence , 2019-07-31 Artificial intelligence (AI) is taking on an increasingly important role in our society today. In the early days, machines fulfilled only manual activities. Nowadays, these machines extend their capabilities to cognitive tasks as well. And now AI is poised to make a huge contribution to medical and biological applications. From medical equipment to diagnosing and predicting disease to image and video processing, among others, AI has proven to be an area with great potential. The ability of AI to make informed decisions, learn and perceive the environment, and predict certain behavior, among its many other skills, makes this application of paramount importance in today's world. This book discusses and examines AI applications in medicine and biology as well as challenges and opportunities in this fascinating area. |
artificial intelligence in biology: Bio-Inspired Artificial Intelligence Dario Floreano, Claudio Mattiussi, 2023-04-04 A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading. |
artificial intelligence in biology: Artificial Intelligence in Medicine David Riaño, Szymon Wilk, Annette ten Teije, 2019-06-19 This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning. |
artificial intelligence in biology: Synthetic Biology Madan L. Nagpal, Oana-Maria Boldura, Cornel Balta, Shymaa Enany, 2020-02-12 Synthetic biology gives us a new hope because it combines various disciplines, such as genetics, chemistry, biology, molecular sciences, and other disciplines, and gives rise to a novel interdisciplinary science. We can foresee the creation of the new world of vegetation, animals, and humans with the interdisciplinary system of biological sciences. These articles are contributed by renowned experts in their fields. The field of synthetic biology is growing exponentially and opening up new avenues in multidisciplinary approaches by bringing together theoretical and applied aspects of science. |
artificial intelligence in biology: The Biological Mind Alan Jasanoff, 2018-03-13 A pioneering neuroscientist argues that we are more than our brains To many, the brain is the seat of personal identity and autonomy. But the way we talk about the brain is often rooted more in mystical conceptions of the soul than in scientific fact. This blinds us to the physical realities of mental function. We ignore bodily influences on our psychology, from chemicals in the blood to bacteria in the gut, and overlook the ways that the environment affects our behavior, via factors varying from subconscious sights and sounds to the weather. As a result, we alternately overestimate our capacity for free will or equate brains to inorganic machines like computers. But a brain is neither a soul nor an electrical network: it is a bodily organ, and it cannot be separated from its surroundings. Our selves aren't just inside our heads -- they're spread throughout our bodies and beyond. Only once we come to terms with this can we grasp the true nature of our humanity. |
artificial intelligence in biology: Advancing Artificial Intelligence through Biological Process Applications Porto Pazos, Ana B., Pazos Sierra, Alejandro, Bu¤o Buceta, Washington, 2008-07-31 As science continues to advance, researchers are continually gaining new insights into the way living beings behave and function, and into the composition of the smallest molecules. Most of these biological processes have been imitated by many scientific disciplines with the purpose of trying to solve different problems, one of which is artificial intelligence. Advancing Artificial Intelligence through Biological Process Applications presents recent advances in the study of certain biological processes related to information processing that are applied to artificial intelligence. Describing the benefits of recently discovered and existing techniques to adaptive artificial intelligence and biology, this book will be a highly valued addition to libraries in the neuroscience, molecular biology, and behavioral science spheres. |
artificial intelligence in biology: Intelligence and Evolutionary Biology Harry J. Jerison, Irene Jerison, 2013-06-29 In evolutionary biology, intelligence must be defined in terms of traits that are subject to the major forces of organic evolution. Accordingly, this volume is concerned with the substantive questions that are relevant to the evolutionary problem. Comparisons of learning abilities are highlighted by a detailed report on similarities between honeybees and higher vertebrates. Several chapters are concerned with the evolution of cerebral lateralization and the control of language, and recent analyses of the evolution of encephalization and neocorticalization, including a review of effects of domestication on brain size are presented. The relationship between brain size and intelligence is debated vigorously. Most unusual, however, is the persistent concern with analytic and philosophical issues that arise in the study of this topic, from the applications of new developments on artificial intelligence as a source of cognitive theory, to the recognition of the evolutionary process itself as a theory of knowledge in evolutionary epistemology. |
artificial intelligence in biology: Artificial Intelligence John Haugeland, 1989-01-06 Machines who think—how utterly preposterous, huff beleaguered humanists, defending their dwindling turf. Artificial Intelligence—it's here and about to surpass our own, crow techno-visionaries, proclaiming dominion. It's so simple and obvious, each side maintains, only a fanatic could disagree. Deciding where the truth lies between these two extremes is the main purpose of John Haugeland's marvelously lucid and witty book on what artificial intelligence is all about. Although presented entirely in non-technical terms, it neither oversimplifies the science nor evades the fundamental philosophical issues. Far from ducking the really hard questions, it takes them on, one by one. Artificial intelligence, Haugeland notes, is based on a very good idea, which might well be right, and just as well might not. That idea, the idea that human thinking and machine computing are radically the same, provides the central theme for his illuminating and provocative book about this exciting new field. After a brief but revealing digression in intellectual history, Haugeland systematically tackles such basic questions as: What is a computer really? How can a physical object mean anything? What are the options for computational organization? and What structures have been proposed and tried as actual scientific models for intelligence? In a concluding chapter he takes up several outstanding problems and puzzles—including intelligence in action, imagery, feelings and personality—and their enigmatic prospects for solution. |
artificial intelligence in biology: A New Biology for the 21st Century National Research Council, Division on Earth and Life Studies, Board on Life Sciences, Committee on a New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology Revolution, 2009-11-20 Now more than ever, biology has the potential to contribute practical solutions to many of the major challenges confronting the United States and the world. A New Biology for the 21st Century recommends that a New Biology approach-one that depends on greater integration within biology, and closer collaboration with physical, computational, and earth scientists, mathematicians and engineers-be used to find solutions to four key societal needs: sustainable food production, ecosystem restoration, optimized biofuel production, and improvement in human health. The approach calls for a coordinated effort to leverage resources across the federal, private, and academic sectors to help meet challenges and improve the return on life science research in general. |
artificial intelligence in biology: Machine Learning in Chemistry Hugh M. Cartwright, 2020-07-15 Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field. |
artificial intelligence in biology: Kernel Methods in Computational Biology Bernhard Schölkopf, Koji Tsuda, Jean-Philippe Vert, 2004 A detailed overview of current research in kernel methods and their application to computational biology. |
artificial intelligence in biology: Biomedical Data Mining for Information Retrieval Sujata Dash, Subhendu Kumar Pani, S. Balamurugan, Ajith Abraham, 2021-08-24 BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics. |
artificial intelligence in biology: The Singularity Is Near Ray Kurzweil, 2005-09-22 NEW YORK TIMES BESTSELLER • Celebrated futurist Ray Kurzweil, hailed by Bill Gates as “the best person I know at predicting the future of artificial intelligence,” presents an “elaborate, smart, and persuasive” (The Boston Globe) view of the future course of human development. “Artfully envisions a breathtakingly better world.”—Los Angeles Times “Startling in scope and bravado.”—Janet Maslin, The New York Times “An important book.”—The Philadelphia Inquirer At the onset of the twenty-first century, humanity stands on the verge of the most transforming and thrilling period in its history. It will be an era in which the very nature of what it means to be human will be both enriched and challenged as our species breaks the shackles of its genetic legacy and achieves inconceivable heights of intelligence, material progress, and longevity. While the social and philosophical ramifications of these changes will be profound, and the threats they pose considerable, The Singularity Is Near presents a radical and optimistic view of the coming age that is both a dramatic culmination of centuries of technological ingenuity and a genuinely inspiring vision of our ultimate destiny. |
artificial intelligence in biology: Machine Learning in Bioinformatics Yanqing Zhang, Jagath C. Rajapakse, 2009-02-23 An introduction to machine learning methods and their applications to problems in bioinformatics Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more. Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels. |
artificial intelligence in biology: Deep Learning for the Life Sciences Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, 2019-04-10 Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working |
artificial intelligence in biology: Advances in Artificial Intelligence, Computation, and Data Science Tuan D. Pham, Hong Yan, Muhammad W. Ashraf, Folke Sjöberg, 2021-07-12 Artificial intelligence (AI) has become pervasive in most areas of research and applications. While computation can significantly reduce mental efforts for complex problem solving, effective computer algorithms allow continuous improvement of AI tools to handle complexity—in both time and memory requirements—for machine learning in large datasets. Meanwhile, data science is an evolving scientific discipline that strives to overcome the hindrance of traditional skills that are too limited to enable scientific discovery when leveraging research outcomes. Solutions to many problems in medicine and life science, which cannot be answered by these conventional approaches, are urgently needed for society. This edited book attempts to report recent advances in the complementary domains of AI, computation, and data science with applications in medicine and life science. The benefits to the reader are manifold as researchers from similar or different fields can be aware of advanced developments and novel applications that can be useful for either immediate implementations or future scientific pursuit. Features: Considers recent advances in AI, computation, and data science for solving complex problems in medicine, physiology, biology, chemistry, and biochemistry Provides recent developments in three evolving key areas and their complementary combinations: AI, computation, and data science Reports on applications in medicine and physiology, including cancer, neuroscience, and digital pathology Examines applications in life science, including systems biology, biochemistry, and even food technology This unique book, representing research from a team of international contributors, has not only real utility in academia for those in the medical and life sciences communities, but also a much wider readership from industry, science, and other areas of technology and education. |
artificial intelligence in biology: Artificial Intelligence in Drug Design Alexander Heifetz, 2022-11-05 This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers. |
artificial intelligence in biology: Intelligent Bioinformatics Edward Keedwell, Ajit Narayanan, 2005-12-13 Bioinformatics is contributing to some of the most important advances in medicine and biology. At the forefront of this exciting new subject are techniques known as artificial intelligence which are inspired by the way in which nature solves the problems it faces. This book provides a unique insight into the complex problems of bioinformatics and the innovative solutions which make up ‘intelligent bioinformatics’. Intelligent Bioinformatics requires only rudimentary knowledge of biology, bioinformatics or computer science and is aimed at interested readers regardless of discipline. Three introductory chapters on biology, bioinformatics and the complexities of search and optimisation equip the reader with the necessary knowledge to proceed through the remaining eight chapters, each of which is dedicated to an intelligent technique in bioinformatics. The book also contains many links to software and information available on the internet, in academic journals and beyond, making it an indispensable reference for the 'intelligent bioinformatician'. Intelligent Bioinformatics will appeal to all postgraduate students and researchers in bioinformatics and genomics as well as to computer scientists interested in these disciplines, and all natural scientists with large data sets to analyse. |
artificial intelligence in biology: Evolutionary Computation in Bioinformatics Gary B. Fogel, David W. Corne, 2002-09-27 Bioinformatics has never been as popular as it is today. The genomics revolution is generating so much data in such rapid succession that it has become difficult for biologists to decipher. In particular, there are many problems in biology that are too large to solve with standard methods. Researchers in evolutionary computation (EC) have turned their attention to these problems. They understand the power of EC to rapidly search very large and complex spaces and return reasonable solutions. While these researchers are increasingly interested in problems from the biological sciences, EC and its problem-solving capabilities are generally not yet understood or applied in the biology community.This book offers a definitive resource to bridge the computer science and biology communities. Gary Fogel and David Corne, well-known representatives of these fields, introduce biology and bioinformatics to computer scientists, and evolutionary computation to biologists and computer scientists unfamiliar with these techniques. The fourteen chapters that follow are written by leading computer scientists and biologists who examine successful applications of evolutionary computation to various problems in the biological sciences.* Describes applications of EC to bioinformatics in a wide variety of areas including DNA sequencing, protein folding, gene and protein classification, drug targeting, drug design, data mining of biological databases, and biodata visualization.* Offers industrial and academic researchers in computer science, biology, and bioinformatics an important resource for applying evolutionary computation.* Includes a detailed appendix of biological data resources. |
artificial intelligence in biology: Artificial Intelligence in Bioinformatics Mario Cannataro, Pietro Hiram Guzzi, Giuseppe Agapito, Chiara Zucco, Marianna Milano, 2022-05-12 Artificial Intelligence in Bioinformatics: From Omics Analysis to Deep Learning and Network Mining reviews the main applications of the topic, from omics analysis to deep learning and network mining. The book includes a rigorous introduction on bioinformatics, also reviewing how methods are incorporated in tasks and processes. In addition, it presents methods and theory, including content for emergent fields such as Sentiment Analysis and Network Alignment. Other sections survey how Artificial Intelligence is exploited in bioinformatics applications, including sequence analysis, structure analysis, functional analysis, protein classification, omics analysis, biomarker discovery, integrative bioinformatics, protein interaction analysis, metabolic networks analysis, and much more. - Bridges the gap between computer science and bioinformatics, combining an introduction to Artificial Intelligence methods with a systematic review of its applications in the life sciences - Brings readers up-to-speed on current trends and methods in a dynamic and growing field - Provides academic teachers with a complete resource, covering fundamental concepts as well as applications |
artificial intelligence in biology: Artificial Intelligence in Drug Discovery Nathan Brown, 2020-11-04 Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia. |
artificial intelligence in biology: OMICS Debmalya Barh, Vasudeo Zambare, Vasco Azevedo, 2013-03-26 With the advent of new technologies and acquired knowledge, the number of fields in omics and their applications in diverse areas are rapidly increasing in the postgenomics era. Such emerging fields—including pharmacogenomics, toxicogenomics, regulomics, spliceomics, metagenomics, and environomics—present budding solutions to combat global challenges in biomedicine, agriculture, and the environment. OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences provides valuable insights into the applications of modern omics technologies to real-world problems in the life sciences. Filling a gap in the literature, it offers a broad, multidisciplinary view of current and emerging applications of omics in a single volume. Written by highly experienced active researchers, each chapter describes a particular area of omics and the associated technologies and applications. Topics covered include: Proteomics, epigenomics, and pharmacogenomics Toxicogenomics and the assessment of environmental pollutants Applications of plant metabolomics Nutrigenomics and its therapeutic applications Microalgal omics and omics approaches in biofuel production Next-generation sequencing and omics technology for transgenic plant analysis Omics approaches in crop improvement Engineering dark-operative chlorophyll synthesis Computational regulomics Omics techniques for the analysis of RNA splicing New fields, including metagenomics, glycomics, and miRNA Breast cancer biomarkers for early detection Environomics strategies for environmental sustainability This timely book explores a wide range of omics application areas in the biomedical, agricultural, and environmental sciences. Throughout, it highlights working solutions as well as open problems and future challenges. Demonstrating the diversity of omics, it introduces readers to state-of-the-art developments and trends in omics-driven research. |
artificial intelligence in biology: PlantOmics: The Omics of Plant Science Debmalya Barh, Muhammad Sarwar Khan, Eric Davies, 2015-03-18 PlantOmics: The Omics of Plant Science provides a comprehensive account of the latest trends and developments of omics technologies or approaches and their applications in plant science. Thirty chapters written by 90 experts from 15 countries are included in this state-of-the-art book. Each chapter describes one topic/omics such as: omics in model plants, spectroscopy for plants, next generation sequencing, functional genomics, cyto-metagenomics, epigenomics, miRNAomics, proteomics, metabolomics, glycomics, lipidomics, secretomics, phenomics, cytomics, physiomics, signalomics, thiolomics, organelle omics, micro morphomics, microbiomics, cryobionomics, nanotechnology, pharmacogenomics, and computational systems biology for plants. It provides up to date information, technologies, and their applications that can be adopted and applied easily for deeper understanding plant biology and therefore will be helpful in developing the strategy for generating cost-effective superior plants for various purposes. In the last chapter, the editors have proposed several new areas in plant omics that may be explored in order to develop an integrated meta-omics strategy to ensure the world and earth’s health and related issues. This book will be a valuable resource to students and researchers in the field of cutting-edge plant omics. |
artificial intelligence in biology: Artificial Life Steven Levy, 1993 This book looks at artificial life science - A-Life, an important new area of scientific research involving the disciplines of microbiology, evolutionary theory, physics, chemistry and computer science. In the 1940s a mathematician named John von Neumann, a man with a claim to being the father of the modern computer, invented a hypothetical mathematical entity called a cellular automaton. His aim was to construct a machine that could reproduce itself. In the years since, with the development of hugely more sophisticated and complex computers, von Neumann's insights have gradually led to a point where scientists have created, within the wiring of these machines, something that so closely simulates life that it may, arguably, be called life. This machine reproduces itself, mutates, evolves through generations and dies. |
artificial intelligence in biology: Statistical Modeling and Machine Learning for Molecular Biology Alan Moses, 2017-01-06 • Assumes no background in statistics or computers • Covers most major types of molecular biological data • Covers the statistical and machine learning concepts of most practical utility (P-values, clustering, regression, regularization and classification) • Intended for graduate students beginning careers in molecular biology, systems biology, bioengineering and genetics |
artificial intelligence in biology: Artificial Intelligence Methods and Tools for Systems Biology W. Dubitzky, Francisco Azuaje, 2006-08-02 This book provides simultaneously a design blueprint, user guide, research agenda, and communication platform for current and future developments in artificial intelligence (AI) approaches to systems biology. It places an emphasis on the molecular dimension of life phenomena and in one chapter on anatomical and functional modeling of the brain. As design blueprint, the book is intended for scientists and other professionals tasked with developing and using AI technologies in the context of life sciences research. As a user guide, this volume addresses the requirements of researchers to gain a basic understanding of key AI methodologies for life sciences research. Its emphasis is not on an intricate mathematical treatment of the presented AI methodologies. Instead, it aims at providing the users with a clear understanding and practical know-how of the methods. As a research agenda, the book is intended for computer and life science students, teachers, researchers, and managers who want to understand the state of the art of the presented methodologies and the areas in which gaps in our knowledge demand further research and development. Our aim was to maintain the readability and accessibility of a textbook throughout the chapters, rather than compiling a mere reference manual. The book is also intended as a communication platform seeking to bride the cultural and technological gap among key systems biology disciplines. To support this function, contributors have adopted a terminology and approach that appeal to audiences from different backgrounds. |
artificial intelligence in biology: The Processes of Life Lawrence E. Hunter, 2012-01-13 A brief and accessible introduction to molecular biology for students and professionals who want to understand this rapidly expanding field. Recent research in molecular biology has produced a remarkably detailed understanding of how living things operate. Becoming conversant with the intricacies of molecular biology and its extensive technical vocabulary can be a challenge, though, as introductory materials often seem more like a barrier than an invitation to the study of life. This text offers a concise and accessible introduction to molecular biology, requiring no previous background in science, aimed at students and professionals in fields ranging from engineering to journalism—anyone who wants to get a foothold in this rapidly expanding field. It will be particularly useful for computer scientists exploring computational biology. A reader who has mastered the information in The Processes of Life is ready to move on to more complex material in almost any area of contemporary biology. |
artificial intelligence in biology: Artificial Intelligence Bioinformatics: Development and Application of Tools for Omics and Inter-Omics Studies Angelo Facchiano, Dominik Heider, Davide Chicco, 2020-06-18 |
artificial intelligence in biology: Artificial Neural Networks in Medicine and Biology H. Malmgren, Magnus Borga, 2000-04-12 This volume comprises a selection of papers presented at ANNIMAB-1, the first conference to focus specifically on the topics of ANNs in medicine and biology. It covers three main areas: The medical applications of ANNs, such as in diagnosis and outcome prediction, medical image analysis, and medical signal processing; The uses of ANNs in biology outside clinical medicine, such as in data analysis, in molecular biology, and in simulations of biological systems; The theoretical aspects of ANNs, examining recent developments in learning algorithms and the possible role of ANNs in the medical decision process. Summarising the state-of-the-art and analysing the relationship between ANN techniques and other available methods, it also points to possible future biological and medical uses of ANNs. Essential reading for all neural network theorists, it will also be of interest to biologists and physicians with an interest in modelling and advanced statistical techniques. |
artificial intelligence in biology: Data Analytics in Bioinformatics Rabinarayan Satpathy, Tanupriya Choudhury, Suneeta Satpathy, Sachi Nandan Mohanty, Xiaobo Zhang, 2021-01-20 Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more. |
artificial intelligence in biology: Artificial Intelligence in Healthcare Adam Bohr, Kaveh Memarzadeh, 2020-06-21 Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data |
artificial intelligence in biology: Regenesis George M Church, Edward Regis, 2014-04-08 A Harvard biologist and master inventor explores how new biotechnologies will enable us to bring species back from the dead, unlock vast supplies of renewable energy, and extend human life. In Regenesis, George Church and science writer Ed Regis explore the possibilities of the emerging field of synthetic biology. Synthetic biology, in which living organisms are selectively altered by modifying substantial portions of their genomes, allows for the creation of entirely new species of organisms. These technologies-far from the out-of-control nightmare depicted in science fiction-have the power to improve human and animal health, increase our intelligence, enhance our memory, and even extend our life span. A breathtaking look at the potential of this world-changing technology, Regenesis is nothing less than a guide to the future of life. |
artificial intelligence in biology: A Critical Reflection on Automated Science Marta Bertolaso, Fabio Sterpetti, 2020-02-05 This book provides a critical reflection on automated science and addresses the question whether the computational tools we developed in last decades are changing the way we humans do science. More concretely: Can machines replace scientists in crucial aspects of scientific practice? The contributors to this book re-think and refine some of the main concepts by which science is understood, drawing a fascinating picture of the developments we expect over the next decades of human-machine co-evolution. The volume covers examples from various fields and areas, such as molecular biology, climate modeling, clinical medicine, and artificial intelligence. The explosion of technological tools and drivers for scientific research calls for a renewed understanding of the human character of science. This book aims precisely to contribute to such a renewed understanding of science. |
artificial intelligence in biology: The Genesis Machine Amy Webb, Andrew Hessel, 2022-02-15 Named one of The New Yorker's BEST BOOKS OF 2022 SO FAR The next frontier in technology is inside our own bodies. Synthetic biology will revolutionize how we define family, how we identify disease and treat aging, where we make our homes, and how we nourish ourselves. This fast-growing field—which uses computers to modify or rewrite genetic code—has created revolutionary, groundbreaking solutions such as the mRNA COVID vaccines, IVF, and lab-grown hamburger that tastes like the real thing. It gives us options to deal with existential threats: climate change, food insecurity, and access to fuel. But there are significant risks. Who should decide how to engineer living organisms? Whether engineered organisms should be planted, farmed, and released into the wild? Should there be limits to human enhancements? What cyber-biological risks are looming? Could a future biological war, using engineered organisms, cause a mass extinction event? Amy Webb and Andrew Hessel’s riveting examination of synthetic biology and the bioeconomy provide the background for thinking through the upcoming risks and moral dilemmas posed by redesigning life, as well as the vast opportunities waiting for us on the horizon. |
artificial intelligence in biology: Analysis of Biological Data Sanghamitra Bandyopadhyay, 2007 Bioinformatics, a field devoted to the interpretation and analysis of biological data using computational techniques, has evolved tremendously in recent years due to the explosive growth of biological information generated by the scientific community. Soft computing is a consortium of methodologies that work synergistically and provides, in one form or another, flexible information processing capabilities for handling real-life ambiguous situations. Several research articles dealing with the application of soft computing tools to bioinformatics have been published in the recent past; however, they are scattered in different journals, conference proceedings and technical reports, thus causing inconvenience to readers, students and researchers. This book, unique in its nature, is aimed at providing a treatise in a unified framework, with both theoretical and experimental results, describing the basic principles of soft computing and demonstrating the various ways in which they can be used for analyzing biological data in an efficient manner. Interesting research articles from eminent scientists around the world are brought together in a systematic way such that the reader will be able to understand the issues and challenges in this domain, the existing ways of tackling them, recent trends, and future directions. This book is the first of its kind to bring together two important research areas, soft computing and bioinformatics, in order to demonstrate how the tools and techniques in the former can be used for efficiently solving several problems in the latter. Sample Chapter(s). Chapter 1: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (160 KB). Contents: Overview: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (H Tang & S Kim); An Introduction to Soft Computing (A Konar & S Das); Biological Sequence and Structure Analysis: Reconstructing Phylogenies with Memetic Algorithms and Branch-and-Bound (J E Gallardo et al.); Classification of RNA Sequences with Support Vector Machines (J T L Wang & X Wu); Beyond String Algorithms: Protein Sequence Analysis Using Wavelet Transforms (A Krishnan & K-B Li); Filtering Protein Surface Motifs Using Negative Instances of Active Sites Candidates (N L Shrestha & T Ohkawa); Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction (G Pollastri et al.); In Silico Design of Ligands Using Properties of Target Active Sites (S Bandyopadhyay et al.); Gene Expression and Microarray Data Analysis: Inferring Regulations in a Genomic Network from Gene Expression Profiles (N Noman & H Iba); A Reliable Classification of Gene Clusters for Cancer Samples Using a Hybrid Multi-Objective Evolutionary Procedure (K Deb et al.); Feature Selection for Cancer Classification Using Ant Colony Optimization and Support Vector Machines (A Gupta et al.); Sophisticated Methods for Cancer Classification Using Microarray Data (S-B Cho & H-S Park); Multiobjective Evolutionary Approach to Fuzzy Clustering of Microarray Data (A Mukhopadhyay et al.). Readership: Graduate students and researchers in computer science, bioinformatics, computational and molecular biology, artificial intelligence, data mining, machine learning, electrical engineering, system science; researchers in pharmaceutical industries. |
artificial intelligence in biology: Birth of Intelligence Daeyeol Lee, 2020 As man-made machines become more powerful and smarter, will their intelligence eventually exceed our own? To accurately predict how the relationship between human and artificial intelligence will change in the future, it is essential to understand the origin and limits of human intelligence. In Birth of Intelligence, distinguished neuroscientist Daeyeol Lee tackles these pressing fundamental issues. Lee reveals how intelligence is the ability of a biological agent to solve complex decision-making problems in diverse and unpredictable environments. Furthermore, understanding how intelligent behavior emerges from interaction among multiple learning systems will provide valuable insights into the ultimate nature of human intelligence. |
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something natural : man-made. How to use artificial in a sentence.
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by people, often…. Learn more.
Artificial - definition of artificial by The Free Dictionary
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a natural product, esp as a substitute; not genuine: artificial cream. 3. pretended; …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is often used as the opposite of natural. A close synonym of artificial is …
ARTIFICIAL definition and meaning | Collins English Dictionary
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for example using science or technology.
artificial adjective - Definition, pictures, pronunciation and usage ...
Definition of artificial adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Artificial - Definition, Meaning & Synonyms - Vocabulary.com
While artificial can simply mean “made by humans,” it’s often used in a negative sense, conveying the idea that an artificial product is inferior to the real thing. If you remark that your friend’s new …
artificial - Wiktionary, the free dictionary
6 days ago · artificial (comparative more artificial, superlative most artificial) Man-made; made by humans; of artifice. The flowers were artificial, and he thought them rather tacky. An artificial …
What does artificial mean? - Definitions.net
Artificial refers to something that is made or produced by human beings rather than occurring naturally or in the environment. It often implies an imitation of something natural or a real …
Artificial Intelligence Is Not Intelligent - The Atlantic
Jun 6, 2025 · The good news is that nothing about this is inevitable: According to a study released in April by the Pew Research Center, although 56 percent of “AI experts” think artificial …
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something natural : man-made. How to use artificial in a sentence.
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by people, often…. Learn more.
Artificial - definition of artificial by The Free Dictionary
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a natural product, esp as a substitute; not genuine: artificial cream. 3. pretended; …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is often used as the opposite of natural. A close synonym of artificial is …
ARTIFICIAL definition and meaning | Collins English Dictionary
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for example using science or technology.
artificial adjective - Definition, pictures, pronunciation and usage ...
Definition of artificial adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Artificial - Definition, Meaning & Synonyms - Vocabulary.com
While artificial can simply mean “made by humans,” it’s often used in a negative sense, conveying the idea that an artificial product is inferior to the real thing. If you remark that your friend’s new …
artificial - Wiktionary, the free dictionary
6 days ago · artificial (comparative more artificial, superlative most artificial) Man-made; made by humans; of artifice. The flowers were artificial, and he thought them rather tacky. An artificial …
What does artificial mean? - Definitions.net
Artificial refers to something that is made or produced by human beings rather than occurring naturally or in the environment. It often implies an imitation of something natural or a real …
Artificial Intelligence Is Not Intelligent - The Atlantic
Jun 6, 2025 · The good news is that nothing about this is inevitable: According to a study released in April by the Pew Research Center, although 56 percent of “AI experts” think artificial …