Advertisement
artificial intelligence financial industry: Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance El Bachir Boukherouaa, Mr. Ghiath Shabsigh, Khaled AlAjmi, Jose Deodoro, Aquiles Farias, Ebru S Iskender, Mr. Alin T Mirestean, Rangachary Ravikumar, 2021-10-22 This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight. |
artificial intelligence financial industry: Artificial Intelligence in Banking Introbooks, 2020-04-07 In these highly competitive times and with so many technological advancements, it is impossible for any industry to remain isolated and untouched by innovations. In this era of digital economy, the banking sector cannot exist and operate without the various digital tools offered by the ever new innovations happening in the field of Artificial Intelligence (AI) and its sub-set technologies. New technologies have enabled incredible progression in the finance industry. Artificial Intelligence (AI) and Machine Learning (ML) have provided the investors and customers with more innovative tools, new types of financial products and a new potential for growth.According to Cathy Bessant (the Chief Operations and Technology Officer, Bank of America), AI is not just a technology discussion. It is also a discussion about data and how it is used and protected. She says, In a world focused on using AI in new ways, we're focused on using it wisely and responsibly. |
artificial intelligence financial industry: Blockchain, Artificial Intelligence and Financial Services Sean Stein Smith, 2019-11-15 Blockchain technology and artificial intelligence (AI) have the potential to transform how the accounting and financial services industries engage with the business, stakeholder and consumer communities. Presenting a blend of technical analysis with current and future applications, this book provides professionals with an action plan to embrace and move forward with these new technologies in financial and accounting organizations. It is written in a conversational style that is unbiased and objective, replacing jargon and technical details with real world case examples. |
artificial intelligence financial industry: Artificial Intelligence in Banking IntroBooks Team, In these highly competitive times and with so many technological advancements, it is impossible for any industry to remain isolated and untouched by innovations. In this era of digital economy, the banking sector cannot exist and operate without the various digital tools offered by the ever new innovations happening in the field of Artificial Intelligence (AI) and its sub-set technologies. New technologies have enabled incredible progression in the finance industry. Artificial Intelligence (AI) and Machine Learning (ML) have provided investors and customers with more innovative tools, new types of financial products, and a new potential for growth. According to Cathy Bessant (the Chief Operations and Technology Officer, Bank of America), AI is not just a technology discussion. It is also a discussion about data and how it is used and protected. She says, “In a world focused on using AI in new ways, we’re focused on using it wisely and responsibly.” |
artificial intelligence financial industry: The AI Book Ivana Bartoletti, Anne Leslie, Shân M. Millie, 2020-06-29 Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important |
artificial intelligence financial industry: Artificial Intelligence in Finance Yves Hilpisch, 2020-10-14 The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about |
artificial intelligence financial industry: AI and the Future of Banking Tony Boobier, 2020-04-09 An industry-specific guide to the applications of Advanced Analytics and AI to the banking industry Artificial Intelligence (AI) technologies help organisations to get smarter and more effective over time – ultimately responding to, learning from and interacting with human voices. It is predicted that by 2025, half of all businesses will be using these intelligent, self-learning systems. Across its entire breadth and depth, the banking industry is at the forefront of investigating Advanced Analytics and AI technology for use in a broad range of applications, such as customer analytics and providing wealth advice for clients. AI and the Future of Banking provides new and established banking industry professionals with the essential information on the implications of data and analytics on their roles, responsibilities and personal career development. Unlike existing books on the subject which tend to be overly technical and complex, this accessible, reader-friendly guide is designed to be easily understood by any banking professional with limited or no IT background. Chapters focus on practical guidance on the use of analytics to improve operational effectiveness, customer retention and finance and risk management. Theory and published case studies are clearly explained, whilst considerations such as operating costs, regulation and market saturation are discussed in real-world context. Written by a recognised expert in AI and Advanced Analytics, this book: Explores the numerous applications for Advanced Analytics and AI in various areas of banking and finance Offers advice on the most effective ways to integrate AI into existing bank ecosystems Suggests alternative and complementary visions for the future of banking, addressing issues like branch transformation, new models of universal banking and ‘debranding’ Explains the concept of ‘Open Banking,’ which securely shares information without needing to reveal passwords Addresses the development of leadership relative to AI adoption in the banking industry AI and the Future of Banking is an informative and up-to-date resource for bank executives and managers, new entrants to the banking industry, financial technology and financial services practitioners and students in postgraduate finance and banking courses. |
artificial intelligence financial industry: Artificial Intelligence in Financial Services and Banking Industry Dr. V.V.L.N. Sastry, 2020-03-20 In the last couple of years, the finance and banking sectors have increasingly deployed and implemented Artificial Intelligence (AI) technologies. AI and machine learning are being rapidly adopted for a range of applications for front-end and back end processes to both business and financial management operations. Thus, it is quite significant to consider the financial stability repercussions of such uses. Since AI is relatively new, the data on the usage is largely unavailable, any analysis may be necessarily considered Preliminary1 . Some of the current and potential use cases of AI and machine learning in the finance sector include the following. Institutions use AI and machine learning methods to optimize scarce capital, back-test models, and analyze the market impact of trading large positions. Financial institutions and vendors use AI and machine learning techniques to evaluate credit quality for market and price insurance contracts, and to automate client interaction. Brokers, hedge funds, and other firms are using AI and machine learning to find pointers for higher (and uncorrelated) returns to optimize trading execution. Private and public sector institutions use these technologies for data quality assessment, surveillance, regulatory compliance, and fraud detection. This book seeks to map the use of AI in current state of affairs in the banking and financial sector. By doing so, it explores: The present uses of AI in banking and finance and its narrative across the globe. |
artificial intelligence financial industry: Handbook of Research on Innovative Management Using AI in Industry 5.0 Garg, Vikas, Goel, Richa, 2021-11-19 There is no industry left where artificial intelligence is not used in some capacity. The application of this technology has already stretched across a multitude of domains including law and policy; it will soon permeate areas beyond anyone’s imagination. Technology giants such as Google, Apple, and Facebook are already investing their money, effort, and time toward integrating artificial intelligence. As this technology continues to develop and expand, it is critical for everyone to understand the various applications of artificial intelligence and its full potential. The Handbook of Research on Innovative Management Using AI in Industry 5.0 uncovers new and innovative features of artificial intelligence and how it can help in raising economic efficiency at both micro and macro levels and provides a deeper understanding of the relevant aspects of artificial intelligence impacting efficacy for better output. Covering topics such as consumer behavior, information technology, and personalized banking, it is an ideal resource for researchers, academicians, policymakers, business professionals, companies, and students. |
artificial intelligence financial industry: Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) Cheng Few Lee, John C Lee, 2020-07-30 This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience. |
artificial intelligence financial industry: The Future of Finance Henri Arslanian, Fabrice Fischer, 2019-07-15 This book, written jointly by an engineer and artificial intelligence expert along with a lawyer and banker, is a glimpse on what the future of the financial services will look like and the impact it will have on society. The first half of the book provides a detailed yet easy to understand educational and technical overview of FinTech, artificial intelligence and cryptocurrencies including the existing industry pain points and the new technological enablers. The second half provides a practical, concise and engaging overview of their latest trends and their impact on the future of the financial services industry including numerous use cases and practical examples. The book is a must read for any professional currently working in finance, any student studying the topic or anyone curious on how the future of finance will look like. |
artificial intelligence financial industry: Artificial Intelligence in Finance Nydia Remolina, Aurelio Gurrea-Martinez, 2023-01-20 This book provides a comprehensive analysis of the primary challenges, opportunities and regulatory developments associated with the use of artificial intelligence (AI) in the financial sector. It will show that, while AI has the potential to promote a more inclusive and competitive financial system, the increasing use of AI may bring certain risks and regulatory challenges that need to be addressed by regulators and policymakers. |
artificial intelligence financial industry: Artificial Intelligence, Fintech, and Financial Inclusion Rajat Gera, Djamchid Assadi, Marzena Starnawska, 2023-12-28 This book covers big data, machine learning, and artificial intelligence-related technologies and how these technologies can enable the design, development, and delivery of customer-focused financial services to both corporate and retail customers, as well as how to extend the benefits to the financially excluded sections of society. Artificial Intelligence, Fintech, and Financial Inclusion describes the applications of big data and its tools such as artificial intelligence and machine learning in products and services, marketing, risk management, and business operations. It also discusses the nature, sources, forms, and tools of big data and its potential applications in many industries for competitive advantage. The primary audience for the book includes practitioners, researchers, experts, graduate students, engineers, business leaders, and analysts researching contemporary issues in the area. |
artificial intelligence financial industry: Hands-On Artificial Intelligence for Banking Jeffrey Ng, Subhash Shah, 2020-07-10 Delve into the world of real-world financial applications using deep learning, artificial intelligence, and production-grade data feeds and technology with Python Key FeaturesUnderstand how to obtain financial data via Quandl or internal systemsAutomate commercial banking using artificial intelligence and Python programsImplement various artificial intelligence models to make personal banking easyBook Description Remodeling your outlook on banking begins with keeping up to date with the latest and most effective approaches, such as artificial intelligence (AI). Hands-On Artificial Intelligence for Banking is a practical guide that will help you advance in your career in the banking domain. The book will demonstrate AI implementation to make your banking services smoother, more cost-efficient, and accessible to clients, focusing on both the client- and server-side uses of AI. You’ll begin by understanding the importance of artificial intelligence, while also gaining insights into the recent AI revolution in the banking industry. Next, you’ll get hands-on machine learning experience, exploring how to use time series analysis and reinforcement learning to automate client procurements and banking and finance decisions. After this, you’ll progress to learning about mechanizing capital market decisions, using automated portfolio management systems and predicting the future of investment banking. In addition to this, you’ll explore concepts such as building personal wealth advisors and mass customization of client lifetime wealth. Finally, you’ll get to grips with some real-world AI considerations in the field of banking. By the end of this book, you’ll be equipped with the skills you need to navigate the finance domain by leveraging the power of AI. What you will learnAutomate commercial bank pricing with reinforcement learningPerform technical analysis using convolutional layers in KerasUse natural language processing (NLP) for predicting market responses and visualizing them using graph databasesDeploy a robot advisor to manage your personal finances via Open Bank APISense market needs using sentiment analysis for algorithmic marketingExplore AI adoption in banking using practical examplesUnderstand how to obtain financial data from commercial, open, and internal sourcesWho this book is for This is one of the most useful artificial intelligence books for machine learning engineers, data engineers, and data scientists working in the finance industry who are looking to implement AI in their business applications. The book will also help entrepreneurs, venture capitalists, investment bankers, and wealth managers who want to understand the importance of AI in finance and banking and how it can help them solve different problems related to these domains. Prior experience in the financial markets or banking domain, and working knowledge of the Python programming language are a must. |
artificial intelligence financial industry: Fintech with Artificial Intelligence, Big Data, and Blockchain Paul Moon Sub Choi, Seth H. Huang, 2021-03-08 This book introduces readers to recent advancements in financial technologies. The contents cover some of the state-of-the-art fields in financial technology, practice, and research associated with artificial intelligence, big data, and blockchain—all of which are transforming the nature of how products and services are designed and delivered, making less adaptable institutions fast become obsolete. The book provides the fundamental framework, research insights, and empirical evidence in the efficacy of these new technologies, employing practical and academic approaches to help professionals and academics reach innovative solutions and grow competitive strengths. |
artificial intelligence financial industry: Artificial Intelligence for Finance Executives Alexis Besse, 2021-03-20 We often hear that AI is revolutionising the financial sector, like no other technology has done before. This book looks beyond these clichés and explores all aspects of this transformation at a deep level. It spells out a vision for the future and answers many questions that are routinely ignored. What do we mean by Artificial Intelligence in finance? How do we move past the myths and misconceptions to reveal the key driving forces? What are the industry trends that align with this transformation? Is it the explosion of digital touchpoints in retail, the reduced risk taking by investment banks, or the ascent of passive funds in asset management? How do we develop concrete use cases from idea generation to production? How do we engineer systems to make accurate predictions, offer recommendations to clients, or analyse unstructured news data? How do we build a successful data-driven organisation? What are the key pitfalls to avoid? Is it about culture, data governance, or management vision? What are the risks specific to developing AI technologies? Can we humans understand and explain what the machines produce for us? Can we trust their predictions or actions? What is the role of alternative data in all this? How can we put it to use for augmented insight? What are the problems that AI is well equipped to solve? Is it all about neural networks and deep learning, as we regularly hear in the popular press? How do we understand human language, a task so important to the financial analyst? The book is packed with concrete examples from the various disciplines of finance. Interested readers will also develop a deep understanding of AI algorithms - presented in plain English - and learn how to solve the most challenging problems. But first and foremost, it is a practical book that equips finance executives with everything they need to understand this transformation and to become agents of change themselves. |
artificial intelligence financial industry: Artificial Intelligence and Islamic Finance Adel M. Sarea, Ahmed H. Elsayed, Saeed A. Bin-Nashwan, 2021-12-31 This book provides a systematic overview of the current trends in research relating to the use of artificial intelligence in Islamic financial institutions (IFIs), across all organization of Islamic cooperation (OIC) countries. Artificial Intelligence and Islamic Finance discusses current and potential applications of artificial intelligence (AI) for risk management in Islamic finance. It covers various techniques of risk management, encompassing asset and liability management risk, credit, market, operational, liquidity risk, as well as regulatory and Shariah risk compliance within the financial industry. The authors highlight AI’s ability to combat financial crime such as monitoring trader recklessness, anti-fraud and anti-money laundering, and assert that the capacity of machine learning (ML) to examine large amounts of data allows for greater granular and profound analyses across a variety of Islamic financial products and services. The book concludes with practical limitations around data management policies, transparency, and lack of necessary skill sets within financial institutions. By adopting new methodological approaches steeped in an Islamic economic framework (e.g., analysing FinTech in the context of Shariah principles and Islamic values), it devises practical solutions and generates insightful knowledge, helping readers to understand and explore the role of technological enablers in the Islamic finance industry, such as RegTech and artificial intelligence, in providing better and Shariah-compliant services to customers through digital platforms. The book will attract a wide readership spanning Shariah scholars, academicians, and researchers as well as Islamic financial practitioners and policy makers. |
artificial intelligence financial industry: Applications of Artificial Intelligence in Business and Finance 5.0 Richa Goel, Vikas Garg, Michela Floris, 2024-12-06 This new book provides a valuable overview of how artificial intelligence (AI) applications are transforming global businesses and financial organizations, looking at the newest artificial intelligence-based solutions for e-commerce, corporate management, finance, banking and trading, and more. Chapters look at using AI and machine learning techniques to forecast and assess financial risks such as liquidity risk, volatility risk, and credit risk. The book also describes the use of natural language processing and text mining paired with machine learning models to assist in guiding sophisticated investors and corporate managers in financial decision making. Other topics include cryptocurrency in emerging markets; the role of artificial intelligence in making a positive impact on sustainable development; the use of fintech for micro, small and medium enterprises; the role of AI i financial education; the application of artificial intelligence in cyber security; and more. |
artificial intelligence financial industry: Artificial Intelligence in the Gulf Elie Azar, Anthony N. Haddad, 2021-06-23 This book presents the first broad reflection on the challenges, opportunities, and implications of Artificial Intelligence (AI) in the Gulf Cooperation Council (GCC). Unique results and insights are derived through case studies from diverse disciplines, including engineering, economics, data science, policy-making, governance, and humanscience. Particularly related to these ‘softer’ disciplines, we make some unexplored yet topical contributions to the literature, with a focus on the GCC (but by no means limited to it), including AI and implications for women, Islamic schools of thought on AI, and the power of AI to help deliver wellbeing and happiness in cities and urban spaces. Finally, the readers are provided with a synthesis of ideas, lessons learned, and a path forward based on the diverse content of the chapters. The book caters to the educated non specialist with interest in AI, targeting a wide audience including professionals, academics, government officials, policymakers, entrepreneurs, and non-governmental organizations. |
artificial intelligence financial industry: Operations Management Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres, Erik Bonaldi, 2021-03-03 Global competition has caused fundamental changes in the competitive environment of the manufacturing and service industries. Firms should develop strategic objectives that, upon achievement, result in a competitive advantage in the market place. The forces of globalization on one hand and rapidly growing marketing opportunities overseas, especially in emerging economies on the other, have led to the expansion of operations on a global scale. The book aims to cover the main topics characterizing operations management including both strategic issues and practical applications. A global environmental business including both manufacturing and services is analyzed. The book contains original research and application chapters from different perspectives. It is enriched through the analyses of case studies. |
artificial intelligence financial industry: The Economics of Artificial Intelligence Ajay Agrawal, Joshua Gans, Avi Goldfarb, Catherine Tucker, 2024-03-05 A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system. |
artificial intelligence financial industry: The AI Book Ivana Bartoletti, Anne Leslie, Shân M. Millie, 2020-06-04 Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important |
artificial intelligence financial industry: Applications of Artificial Intelligence in Business and Finance Vikas Garg, Shalini Aggarwal, Pooja Tiwari, Prasenjit Chatterjee, 2021-12-23 As transactions and other business functions move online and grow more popular every year, the finance and banking industries face increasingly complex data management and identity theft and fraud issues. AI can bring many financial and business functions to the next level, as systems using deep learning technologies are able to analyze patterns and spot suspicious behavior and potential fraud. In this volume, the focus is on the application of artificial intelligence in finance, business, and related areas. The book presents a selection of chapters presenting cutting-edge research on current business practices in finance and management. Topics cover the use of AI in e-commerce systems, financial services, fraud prevention, identifying loan-eligible customers, online business, Facebook social commerce, insurance industry, online marketing, and more. |
artificial intelligence financial industry: Competing in the Age of AI Marco Iansiti, Karim R. Lakhani, 2020-01-07 a provocative new book — The New York Times AI-centric organizations exhibit a new operating architecture, redefining how they create, capture, share, and deliver value. Now with a new preface that explores how the coronavirus crisis compelled organizations such as Massachusetts General Hospital, Verizon, and IKEA to transform themselves with remarkable speed, Marco Iansiti and Karim R. Lakhani show how reinventing the firm around data, analytics, and AI removes traditional constraints on scale, scope, and learning that have restricted business growth for hundreds of years. From Airbnb to Ant Financial, Microsoft to Amazon, research shows how AI-driven processes are vastly more scalable than traditional processes, allow massive scope increase, enabling companies to straddle industry boundaries, and create powerful opportunities for learning—to drive ever more accurate, complex, and sophisticated predictions. When traditional operating constraints are removed, strategy becomes a whole new game, one whose rules and likely outcomes this book will make clear. Iansiti and Lakhani: Present a framework for rethinking business and operating models Explain how collisions between AI-driven/digital and traditional/analog firms are reshaping competition, altering the structure of our economy, and forcing traditional companies to rearchitect their operating models Explain the opportunities and risks created by digital firms Describe the new challenges and responsibilities for the leaders of both digital and traditional firms Packed with examples—including many from the most powerful and innovative global, AI-driven competitors—and based on research in hundreds of firms across many sectors, this is your essential guide for rethinking how your firm competes and operates in the era of AI. |
artificial intelligence financial industry: Machine Learning for Finance Saurav Singla, 2021-01-05 Understand the essentials of Machine Learning and its impact in financial sector KEY FEATURESÊ _Explore the spectrum of machine learning and its usage. _Understand the NLP and Computer Vision and their use cases. _Understand the Neural Network, CNN, RNN and their applications. _ÊUnderstand the Reinforcement Learning and their applications. _Learn the rising application of Machine Learning in the Finance sector. Ê_Exposure to data mining, data visualization and data analytics. DESCRIPTION The fields of machining adapting, profound learning, and computerized reasoning are quickly extending and are probably going to keep on doing as such for a long time to come. There are many main impetuses for this, as quickly caught in this review. Now and again, the advancement has been emotional, opening new ways to deal with long-standing innovation challenges, for example, progresses in PC vision and picture investigation.Ê Ê The book demonstrates how to solve some of the most common issues in the financial industry.Ê The book addresses real-life problems faced by practitioners on a daily basis. The book explains how machine learning works on structured data, text, and images. You will cover the exploration of Nave Bayes, Normal Distribution, Clustering with Gaussian process, advanced neural network, sequence modeling, and reinforcement learning. Later chapters will discuss machine learning use cases in the finance sector and the implications of deep learning. The book ends with traditional machine learning algorithms. Ê Machine Learning has become very important in the finance industry, which is mostly used for better risk management and risk analysis. Better analysis leads to better decisions which lead to an increase in profit for financial institutions. Machine Learning to empower fintech to make massive profits by optimizing processes, maximizing efficiency, and increasing profitability. WHAT WILL YOU LEARN _ Ê Ê Ê You will grasp the most relevant techniques of Machine Learning for everyday use. _ Ê Ê Ê You will be confident in building and implementing ML algorithms. _ Ê Ê Ê Familiarize the adoption of Machine Learning for your business need. _ Ê Ê Ê Discover more advanced concepts applied in banking and other sectors today. _ Ê Ê Ê Build mastery skillset in designing smart AI applications including NLP, Computer Vision and Deep Learning. WHO THIS BOOK IS FORÊ Data Scientist, Machine Learning Engineers and Individuals who want to adopt machine learning in the financial domain. Practitioners are working in banks, asset management, hedge funds or working the first time in the finance domain. Individuals who want to learn about applications of machine learning in finance or individuals entering the fintech domain. TABLE OF CONTENTS 1.Introduction 2.Naive Bayes, Normal Distribution and Automatic Clustering Processes 3.Machine Learning for Data Structuring 4.Parsing Data Using NLP 5.Computer Vision 6.Neural Network, GBM and Gradient Descent 7.Sequence Modeling 8.Reinforcement Learning For Financial Markets 9.Finance Use Cases 10.Impact of Machine Learning on Fintech 11.Machine Learning in Finance 12.eKYC and Anti-Fraud Policy 13.Uses of Data Mining and Data Visualization 14.Advantages and Disadvantages of Machine Learning 15.Applications of Machine Learning in Other Industries 16.Ethical considerations in Artificial Intelligence 17.Artificial Intelligence in Banking 18.Common Machine Learning Algorithms 19.Frequently Asked Questions |
artificial intelligence financial industry: Artificial Intelligence and Machine Learning in Business Management Sandeep Kumar Panda, Vaibhav Mishra, R. Balamurali, Ahmed A. Elngar, 2021-11-04 Artificial Intelligence and Machine Learning in Business Management The focus of this book is to introduce artificial intelligence (AI) and machine learning (ML) technologies into the context of business management. The book gives insights into the implementation and impact of AI and ML to business leaders, managers, technology developers, and implementers. With the maturing use of AI or ML in the field of business intelligence, this book examines several projects with innovative uses of AI beyond data organization and access. It follows the Predictive Modeling Toolkit for providing new insight on how to use improved AI tools in the field of business. It explores cultural heritage values and risk assessments for mitigation and conservation and discusses on-shore and off-shore technological capabilities with spatial tools for addressing marketing and retail strategies, and insurance and healthcare systems. Taking a multidisciplinary approach for using AI, this book provides a single comprehensive reference resource for undergraduate, graduate, business professionals, and related disciplines. |
artificial intelligence financial industry: Machine Learning in Finance Matthew F. Dixon, Igor Halperin, Paul Bilokon, 2020-07-01 This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance. |
artificial intelligence financial industry: Artificial Intelligence for Risk Mitigation in the Financial Industry Ambrish Kumar Mishra, Shweta Anand, Narayan C. Debnath, Purvi Pokhariyal, Archana Patel, 2024-05-29 Artificial Intelligence for Risk Mitigation in the Financial Industry This book extensively explores the implementation of AI in the risk mitigation process and provides information for auditing, banking, and financial sectors on how to reduce risk and enhance effective reliability. The applications of the financial industry incorporate vast volumes of structured and unstructured data to gain insight into the financial and non-financial performance of companies. As a result of exponentially increasing data, auditors and management professionals need to enhance processing capabilities while maintaining the effectiveness and reliability of the risk mitigation process. The risk mitigation and audit procedures are processes involving the progression of activities to “transform inputs into output.” As AI systems continue to grow mainstream, it is difficult to imagine an aspect of risk mitigation in the financial industry that will not require AI-related assurance or AI-assisted advisory services. AI can be used as a strong tool in many ways, like the prevention of fraud, money laundering, and cybercrime, detection of risks and probability of NPAs at early stages, sound lending, etc. Audience This is an introductory book that provides insights into the advantages of risk mitigation by the adoption of AI in the financial industry. The subject is not only restricted to individuals like researchers, auditors, and management professionals, but also includes decision-making authorities like the government. This book is a valuable guide to the utilization of AI for risk mitigation and will serve as an important standalone reference for years to come. |
artificial intelligence financial industry: Banking 5.0 Bernardo Nicoletti, 2021-07-06 Bill Gates’ quote, “Banking is necessary, but banks are not,” showcases the opportunity for financial services digital transformation. The next transition from industry 4.0 to 5.0 will impact all sectors, including banking. It will combine information technology and automation, based on artificial intelligence, person-robot collaboration, and sustainability. It is time to analyze this transformation in banking deeply, so that the sector can adequately change to the ‘New Normal’ and a wholly modified banking model can be properly embedded in the business. This book presents a conceptual model of banking 5.0, detailing its implementation in processes, platforms, people, and partnerships of financial services organizations companies. The last part of the book is then dedicated to future developments. Of interest to academics, researchers, and professionals in banking, financial technology, and financial services, this book also includes business cases in financial services. |
artificial intelligence financial industry: OECD Business and Finance Outlook 2021 AI in Business and Finance OECD, 2021-09-24 The OECD Business and Finance Outlook is an annual publication that presents unique data and analysis on the trends, both positive and negative, that are shaping tomorrow’s world of business, finance and investment. |
artificial intelligence financial industry: The Essentials of Machine Learning in Finance and Accounting Mohammad Zoynul Abedin, M. Kabir Hassan, Petr Hajek, Mohammed Mohi Uddin, 2021-06-20 This book introduces machine learning in finance and illustrates how we can use computational tools in numerical finance in real-world context. These computational techniques are particularly useful in financial risk management, corporate bankruptcy prediction, stock price prediction, and portfolio management. The book also offers practical and managerial implications of financial and managerial decision support systems and how these systems capture vast amount of financial data. Business risk and uncertainty are two of the toughest challenges in the financial industry. This book will be a useful guide to the use of machine learning in forecasting, modeling, trading, risk management, economics, credit risk, and portfolio management. |
artificial intelligence financial industry: Advances in Financial Machine Learning Marcos Lopez de Prado, 2018-01-23 Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance. |
artificial intelligence financial industry: Human-in-the-Loop Machine Learning Robert Munro, Robert Monarch, 2021-07-20 Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows. |
artificial intelligence financial industry: FinTech, Artificial Intelligence and the Law Alison Lui, Nicholas Ryder, 2021-07-29 This collection critically explores the use of financial technology (FinTech) and artificial intelligence (AI) in the financial sector and discusses effective regulation and the prevention of crime. Focusing on crypto-assets, InsureTech and the digitisation of financial dispute resolution, the book examines the strategic and ethical aspects of incorporating AI into the financial sector. The volume adopts a comparative legal approach to: critically evaluate the strategic and ethical benefits and challenges of AI in the financial sector; critically analyse the role, values and challenges of FinTech in society; make recommendations on protecting vulnerable customers without restricting financial innovation; and to make recommendations on effective regulation and prevention of crime in these areas. The book will be of interest to teachers and students of banking and financial regulation related modules, researchers in computer science, corporate governance, and business and economics. It will also be a valuable resource for policy makers including government departments, law enforcement agencies, financial regulatory agencies, people employed within the financial services sector, and professional services such as law, and technology. |
artificial intelligence financial industry: Artificial Intelligence for Asset Management and Investment Al Naqvi, 2021-02-09 Make AI technology the backbone of your organization to compete in the Fintech era The rise of artificial intelligence is nothing short of a technological revolution. AI is poised to completely transform asset management and investment banking, yet its current application within the financial sector is limited and fragmented. Existing AI implementations tend to solve very narrow business issues, rather than serving as a powerful tech framework for next-generation finance. Artificial Intelligence for Asset Management and Investment provides a strategic viewpoint on how AI can be comprehensively integrated within investment finance, leading to evolved performance in compliance, management, customer service, and beyond. No other book on the market takes such a wide-ranging approach to using AI in asset management. With this guide, you’ll be able to build an asset management firm from the ground up—or revolutionize your existing firm—using artificial intelligence as the cornerstone and foundation. This is a must, because AI is quickly growing to be the single competitive factor for financial firms. With better AI comes better results. If you aren’t integrating AI in the strategic DNA of your firm, you’re at risk of being left behind. See how artificial intelligence can form the cornerstone of an integrated, strategic asset management framework Learn how to build AI into your organization to remain competitive in the world of Fintech Go beyond siloed AI implementations to reap even greater benefits Understand and overcome the governance and leadership challenges inherent in AI strategy Until now, it has been prohibitively difficult to map the high-tech world of AI onto complex and ever-changing financial markets. Artificial Intelligence for Asset Management and Investment makes this difficulty a thing of the past, providing you with a professional and accessible framework for setting up and running artificial intelligence in your financial operations. |
artificial intelligence financial industry: Machine Learning and Data Science Blueprints for Finance Hariom Tatsat, Sahil Puri, Brad Lookabaugh, 2020-10-01 Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations |
artificial intelligence financial industry: A Human's Guide to Machine Intelligence Kartik Hosanagar, 2020-03-10 A Wharton professor and tech entrepreneur examines how algorithms and artificial intelligence are starting to run every aspect of our lives, and how we can shape the way they impact us Through the technology embedded in almost every major tech platform and every web-enabled device, algorithms and the artificial intelligence that underlies them make a staggering number of everyday decisions for us, from what products we buy, to where we decide to eat, to how we consume our news, to whom we date, and how we find a job. We've even delegated life-and-death decisions to algorithms--decisions once made by doctors, pilots, and judges. In his new book, Kartik Hosanagar surveys the brave new world of algorithmic decision-making and reveals the potentially dangerous biases they can give rise to as they increasingly run our lives. He makes the compelling case that we need to arm ourselves with a better, deeper, more nuanced understanding of the phenomenon of algorithmic thinking. And he gives us a route in, pointing out that algorithms often think a lot like their creators--that is, like you and me. Hosanagar draws on his experiences designing algorithms professionally--as well as on history, computer science, and psychology--to explore how algorithms work and why they occasionally go rogue, what drives our trust in them, and the many ramifications of algorithmic decision-making. He examines episodes like Microsoft's chatbot Tay, which was designed to converse on social media like a teenage girl, but instead turned sexist and racist; the fatal accidents of self-driving cars; and even our own common, and often frustrating, experiences on services like Netflix and Amazon. A Human's Guide to Machine Intelligence is an entertaining and provocative look at one of the most important developments of our time and a practical user's guide to this first wave of practical artificial intelligence. |
artificial intelligence financial industry: Fintech and the Remaking of Financial Institutions John Hill, 2018-05-17 FinTech and the Remaking of Financial Institutions explores the transformative potential of new entrants and innovations on business models. In its survey and analysis of FinTech, the book addresses current and future states of money and banking. It provides broad contexts for understanding financial services, products, technology, regulations and social considerations. The book shows how FinTech has evolved and will drive the future of financial services, while other FinTech books concentrate on particular solutions and adopt perspectives of individual users, companies and investors. It sheds new light on disruption, innovation and opportunity by placing the financial technology revolution in larger contexts. - Presents case studies that depict the problems, solutions and opportunities associated with FinTech - Provides global coverage of FinTech ventures and regulatory guidelines - Analyzes FinTech's social aspects and its potential for spreading to new areas in banking - Sheds new light on disruption, innovation and opportunity by placing the financial technology revolution in larger contexts |
artificial intelligence financial industry: AI and the Future of Banking Tony Boobier, 2020-04-06 An industry-specific guide to the applications of Advanced Analytics and AI to the banking industry Artificial Intelligence (AI) technologies help organisations to get smarter and more effective over time – ultimately responding to, learning from and interacting with human voices. It is predicted that by 2025, half of all businesses will be using these intelligent, self-learning systems. Across its entire breadth and depth, the banking industry is at the forefront of investigating Advanced Analytics and AI technology for use in a broad range of applications, such as customer analytics and providing wealth advice for clients. AI and the Future of Banking provides new and established banking industry professionals with the essential information on the implications of data and analytics on their roles, responsibilities and personal career development. Unlike existing books on the subject which tend to be overly technical and complex, this accessible, reader-friendly guide is designed to be easily understood by any banking professional with limited or no IT background. Chapters focus on practical guidance on the use of analytics to improve operational effectiveness, customer retention and finance and risk management. Theory and published case studies are clearly explained, whilst considerations such as operating costs, regulation and market saturation are discussed in real-world context. Written by a recognised expert in AI and Advanced Analytics, this book: Explores the numerous applications for Advanced Analytics and AI in various areas of banking and finance Offers advice on the most effective ways to integrate AI into existing bank ecosystems Suggests alternative and complementary visions for the future of banking, addressing issues like branch transformation, new models of universal banking and ‘debranding’ Explains the concept of ‘Open Banking,’ which securely shares information without needing to reveal passwords Addresses the development of leadership relative to AI adoption in the banking industry AI and the Future of Banking is an informative and up-to-date resource for bank executives and managers, new entrants to the banking industry, financial technology and financial services practitioners and students in postgraduate finance and banking courses. |
artificial intelligence financial industry: AI and Financial Markets Shigeyuki Hamori, Tetsuya Takiguchi, 2020-07-01 Artificial intelligence (AI) is regarded as the science and technology for producing an intelligent machine, particularly, an intelligent computer program. Machine learning is an approach to realizing AI comprising a collection of statistical algorithms, of which deep learning is one such example. Due to the rapid development of computer technology, AI has been actively explored for a variety of academic and practical purposes in the context of financial markets. This book focuses on the broad topic of “AI and Financial Markets”, and includes novel research associated with this topic. The book includes contributions on the application of machine learning, agent-based artificial market simulation, and other related skills to the analysis of various aspects of financial markets. |
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something …
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by …
Artificial - definition of artificial by The Free Dictiona…
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is …
ARTIFICIAL definition and meaning | Collins English Dict…
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for …
ARTIFICIAL Definition & Meaning - Merriam-Webster
The meaning of ARTIFICIAL is made, produced, or done by humans especially to seem like something natural : man-made. How to use artificial in a sentence.
ARTIFICIAL | English meaning - Cambridge Dictionary
ARTIFICIAL definition: 1. made by people, often as a copy of something natural: 2. not sincere: 3. made by people, often…. Learn more.
Artificial - definition of artificial by The Free Dictionary
1. produced by man; not occurring naturally: artificial materials of great strength. 2. made in imitation of a natural product, esp as a substitute; not genuine: artificial cream. 3. pretended; …
ARTIFICIAL Definition & Meaning | Dictionary.com
Artificial is used to describe things that are made or manufactured as opposed to occurring naturally. Artificial is often used as the opposite of natural. A close synonym of artificial is …
ARTIFICIAL definition and meaning | Collins English Dictionary
Artificial objects, materials, or processes do not occur naturally and are created by human beings, for example using science or technology.
artificial adjective - Definition, pictures, pronunciation and usage ...
Definition of artificial adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Artificial - Definition, Meaning & Synonyms - Vocabulary.com
While artificial can simply mean “made by humans,” it’s often used in a negative sense, conveying the idea that an artificial product is inferior to the real thing. If you remark that your friend’s new …
artificial - Wiktionary, the free dictionary
6 days ago · artificial (comparative more artificial, superlative most artificial) Man-made; made by humans; of artifice. The flowers were artificial, and he thought them rather tacky. An artificial …
What does artificial mean? - Definitions.net
Artificial refers to something that is made or produced by human beings rather than occurring naturally or in the environment. It often implies an imitation of something natural or a real …
Artificial Intelligence Is Not Intelligent - The Atlantic
Jun 6, 2025 · The good news is that nothing about this is inevitable: According to a study released in April by the Pew Research Center, although 56 percent of “AI experts” think artificial …