Advertisement
azure data factory architecture diagram: Azure Modern Data Architecture Anouar BEN ZAHRA, Key Features Discover the key drivers of successful Azure architecture Practical guidance Focus on scalability and performance Expert authorship Book Description This book presents a guide to design and implement scalable, secure, and efficient data solutions in the Azure cloud environment. It provides Data Architects, developers, and IT professionals who are responsible for designing and implementing data solutions in the Azure cloud environment with the knowledge and tools needed to design and implement data solutions using the latest Azure data services. It covers a wide range of topics, including data storage, data processing, data analysis, and data integration. In this book, you will learn how to select the appropriate Azure data services, design a data processing pipeline, implement real-time data processing, and implement advanced analytics using Azure Databricks and Azure Synapse Analytics. You will also learn how to implement data security and compliance, including data encryption, access control, and auditing. Whether you are building a new data architecture from scratch or migrating an existing on premises solution to Azure, the Azure Data Architecture Guidelines are an essential resource for any organization looking to harness the power of data in the cloud. With these guidelines, you will gain a deep understanding of the principles and best practices of Azure data architecture and be equipped to build data solutions that are highly scalable, secure, and cost effective. What You Need to Use this Book? To use this book, it is recommended that readers have a basic understanding of data architecture concepts and data management principles. Some familiarity with cloud computing and Azure services is also helpful. The book is designed for data architects, data engineers, data analysts, and anyone involved in designing, implementing, and managing data solutions on the Azure cloud platform. It is also suitable for students and professionals who want to learn about Azure data architecture and its best practices. |
azure data factory architecture diagram: Azure Data and AI Architect Handbook Olivier Mertens, Breght Van Baelen, 2023-07-31 Master core data architecture design concepts and Azure Data & AI services to gain a cloud data and AI architect’s perspective to developing end-to-end solutions Purchase of the print or Kindle book includes a free PDF eBook Key Features Translate and implement conceptual architectures with the right Azure services Inject artificial intelligence into data solutions for advanced analytics Leverage cloud computing and frameworks to drive data science workloads Book DescriptionWith data’s growing importance in businesses, the need for cloud data and AI architects has never been higher. The Azure Data and AI Architect Handbook is designed to assist any data professional or academic looking to advance their cloud data platform designing skills. This book will help you understand all the individual components of an end-to-end data architecture and how to piece them together into a scalable and robust solution. You’ll begin by getting to grips with core data architecture design concepts and Azure Data & AI services, before exploring cloud landing zones and best practices for building up an enterprise-scale data platform from scratch. Next, you’ll take a deep dive into various data domains such as data engineering, business intelligence, data science, and data governance. As you advance, you’ll cover topics ranging from learning different methods of ingesting data into the cloud to designing the right data warehousing solution, managing large-scale data transformations, extracting valuable insights, and learning how to leverage cloud computing to drive advanced analytical workloads. Finally, you’ll discover how to add data governance, compliance, and security to solutions. By the end of this book, you’ll have gained the expertise needed to become a well-rounded Azure Data & AI architect.What you will learn Design scalable and cost-effective cloud data platforms on Microsoft Azure Explore architectural design patterns with various use cases Determine the right data stores and data warehouse solutions Discover best practices for data orchestration and transformation Help end users to visualize data using interactive dashboarding Leverage OpenAI and custom ML models for advanced analytics Manage security, compliance, and governance for the data estate Who this book is forThis book is for anyone looking to elevate their skill set to the level of an architect. Data engineers, data scientists, business intelligence developers, and database administrators who want to learn how to design end-to-end data solutions and get a bird’s-eye view of the entire data platform will find this book useful. Although not required, basic knowledge of databases and data engineering workloads is recommended. |
azure data factory architecture diagram: Azure Serverless Computing Cookbook Praveen Kumar Sreeram, 2020-06-19 Discover recipes for implementing solutions to real-world business problems through serverless applications Key FeaturesTest, troubleshoot, and monitor Azure functions to deliver high-quality and reliable cloud-centric applicationsUnderstand Visual Studio's integrated developer experience for Azure functionsExplore best practices for organizing and refactoring code within the Azure functionsBook Description This third edition of Azure Serverless Computing Cookbook guides you through the development of a basic back-end web API that performs simple operations, helping you understand how to persist data in Azure Storage services. You'll cover the integration of Azure Functions with other cloud services, such as notifications (SendGrid and Twilio), Cognitive Services (computer vision), and Logic Apps, to build simple workflow-based applications. With the help of this book, you'll be able to leverage Visual Studio tools to develop, build, test, and deploy Azure functions quickly. It also covers a variety of tools and methods for testing the functionality of Azure functions locally in the developer's workstation and in the cloud environment. Once you're familiar with the core features, you'll explore advanced concepts such as durable functions, starting with a hello world example, and learn about the scalable bulk upload use case, which uses durable function patterns, function chaining, and fan-out/fan-in. By the end of this Azure book, you'll have gained the knowledge and practical experience needed to be able to create and deploy Azure applications on serverless architectures efficiently. What you will learnImplement continuous integration and continuous deployment (CI/CD) of Azure functionsDevelop different event-based handlers in a serverless architectureIntegrate Azure functions with different Azure services to develop enterprise-level applicationsAccelerate your cloud application development using Azure function triggers and bindingsAutomate mundane tasks at various levels, from development to deployment and maintenanceDevelop stateful serverless applications and self-healing jobs using durable functions Who this book is for If you are a cloud developer or architect who wants to build cloud-native systems and deploy serverless applications with Azure functions, this book is for you. Prior experience with Microsoft Azure core services will help you to make the most out of this book. |
azure data factory architecture diagram: Data Engineering on Azure Vlad Riscutia, 2021-08-17 Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data |
azure data factory architecture diagram: Engineering Data Mesh in Azure Cloud Aniruddha Deswandikar, 2024-03-29 Overcome data mesh adoption challenges using the cloud-scale analytics framework and make your data analytics landscape agile and efficient by using standard architecture patterns for diverse analytical workloads Key Features Delve into core data mesh concepts and apply them to real-world situations Safely reassess and redesign your framework for seamless data mesh integration Conquer practical challenges, from domain organization to building data contracts Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDecentralizing data and centralizing governance are practical, scalable, and modern approaches to data analytics. However, implementing a data mesh can feel like changing the engine of a moving car. Most organizations struggle to start and get caught up in the concept of data domains, spending months trying to organize domains. This is where Engineering Data Mesh in Azure Cloud can help. The book starts by assessing your existing framework before helping you architect a practical design. As you progress, you’ll focus on the Microsoft Cloud Adoption Framework for Azure and the cloud-scale analytics framework, which will help you quickly set up a landing zone for your data mesh in the cloud. The book also resolves common challenges related to the adoption and implementation of a data mesh faced by real customers. It touches on the concepts of data contracts and helps you build practical data contracts that work for your organization. The last part of the book covers some common architecture patterns used for modern analytics frameworks such as artificial intelligence (AI). By the end of this book, you’ll be able to transform existing analytics frameworks into a streamlined data mesh using Microsoft Azure, thereby navigating challenges and implementing advanced architecture patterns for modern analytics workloads.What you will learn Build a strategy to implement a data mesh in Azure Cloud Plan your data mesh journey to build a collaborative analytics platform Address challenges in designing, building, and managing data contracts Get to grips with monitoring and governing a data mesh Understand how to build a self-service portal for analytics Design and implement a secure data mesh architecture Resolve practical challenges related to data mesh adoption Who this book is for This book is for chief data officers and data architects of large and medium-size organizations who are struggling to maintain silos of data and analytics projects. Data architects and data engineers looking to understand data mesh and how it can help their organizations democratize data and analytics will also benefit from this book. Prior knowledge of managing centralized analytical systems, as well as experience with building data lakes, data warehouses, data pipelines, data integrations, and transformations is needed to get the most out of this book. |
azure data factory architecture diagram: Azure Data Factory Cookbook Dmitry Foshin, Tonya Chernyshova, Dmitry Anoshin, Xenia Ireton, 2024-02-28 Data Engineers guide to solve real-world problems encountered while building and transforming data pipelines using Azure's data integration tool Key Features Solve real-world data problems and create data-driven workflows with ease using Azure Data Factory Build an ADF pipeline that operates on pre-built ML model and Azure AI Get up and running with Fabric Data Explorer and extend ADF with Logic Apps and Azure functions Book DescriptionThis new edition of the Azure Data Factory book, fully updated to reflect ADS V2, will help you get up and running by showing you how to create and execute your first job in ADF. There are updated and new recipes throughout the book based on developments happening in Azure Synapse, Deployment with Azure DevOps, and Azure Purview. The current edition also runs you through Fabric Data Factory, Data Explorer, and some industry-grade best practices with specific chapters on each. You’ll learn how to branch and chain activities, create custom activities, and schedule pipelines, as well as discover the benefits of cloud data warehousing, Azure Synapse Analytics, and Azure Data Lake Gen2 Storage. With practical recipes, you’ll learn how to actively engage with analytical tools from Azure Data Services and leverage your on-premises infrastructure with cloud-native tools to get relevant business insights. You'll familiarize yourself with the common errors that you may encounter while working with ADF and find out the solutions to them. You’ll also understand error messages and resolve problems in connectors and data flows with the debugging capabilities of ADF. By the end of this book, you’ll be able to use ADF with its latest advancements as the main ETL and orchestration tool for your data warehouse projects.What you will learn Build and Manage data pipelines with ease using the latest version of ADF Configure, load data, and operate data flows with Azure Synapse Get up and running with Fabric Data Factory Working with Azure Data Factory and Azure Purview Create big data pipelines using Databricks and Delta tables Integrate ADF with commonly used Azure services such as Azure ML, Azure Logic Apps, and Azure Functions Learn industry-grade best practices for using Azure Data Factory Who this book is for This book is for ETL developers, data warehouse and ETL architects, software professionals, and anyone else who wants to learn about the common and not-so-common challenges faced while developing traditional and hybrid ETL solutions using Microsoft's Azure Data Factory. You’ll also find this book useful if you are looking for recipes to improve or enhance your existing ETL pipelines. Basic knowledge of data warehousing is a prerequisite. |
azure data factory architecture diagram: Azure Data Factory by Example Richard Swinbank, |
azure data factory architecture diagram: Solution Architecture with .NET Jamil Hallal, 2021-08-27 Learn about the responsibilities of a .NET solution architect and explore solution architecture principles, DevOps solutions, and design techniques and standards with hands-on examples of design patterns Key FeaturesFind out what are the essential personality traits and responsibilities of a solution architectBecome well-versed with architecture principles and modern design patterns with hands-on examplesDesign modern web solutions and make the most of Azure DevOps to automate your development life cycleBook Description Understanding solution architecture is a must to build and integrate robust systems to meet your client's needs. This makes it crucial for a professional .NET software engineer to learn the key skills of a .NET solution architect to create a unique digital journey and build solutions for a wide range of industries, from strategy and design to implementation. With this handbook, developers working with the .NET technology will be able to put their knowledge to work. The book takes a hands-on approach to help you become an effective solution architect. You'll start by learning the principles of the software development life cycle (SDLC), the roles and responsibilities of a .NET solution architect, and what makes a great .NET solution architect. As you make progress through the chapters, you'll understand the principles of solution architecture and how to design a solution, and explore designing layers and microservices. You'll complete your learning journey by uncovering modern design patterns and techniques for designing and building digital solutions. By the end of this book, you'll have learned how to architect your modern web solutions with ASP.NET Core and Microsoft Azure and be ready to automate your development life cycle with Azure DevOps. What you will learnUnderstand the role and core responsibilities of a .NET solution architectStudy popular UML (Unified Modeling Language) diagrams for solution architectureWork with modern design patterns with the help of hands-on examplesBecome familiar with microservices and designing layersDiscover how to design modern web solutionsAutomate your development life cycle with Azure DevOpsWho this book is for This book is for intermediate and advanced .NET developers and software engineers who want to advance their careers and expand their knowledge of solution architecture and design principles. Beginner or intermediate-level solution architects looking for tips and tricks to build large-scale .NET solutions will find this book useful. |
azure data factory architecture diagram: Azure Data Factory Cookbook Dmitry Anoshin, Dmitry Foshin, Roman Storchak, Xenia Ireton, 2020-12-24 Solve real-world data problems and create data-driven workflows for easy data movement and processing at scale with Azure Data Factory Key FeaturesLearn how to load and transform data from various sources, both on-premises and on cloudUse Azure Data Factory’s visual environment to build and manage hybrid ETL pipelinesDiscover how to prepare, transform, process, and enrich data to generate key insightsBook Description Azure Data Factory (ADF) is a modern data integration tool available on Microsoft Azure. This Azure Data Factory Cookbook helps you get up and running by showing you how to create and execute your first job in ADF. You’ll learn how to branch and chain activities, create custom activities, and schedule pipelines. This book will help you to discover the benefits of cloud data warehousing, Azure Synapse Analytics, and Azure Data Lake Gen2 Storage, which are frequently used for big data analytics. With practical recipes, you’ll learn how to actively engage with analytical tools from Azure Data Services and leverage your on-premise infrastructure with cloud-native tools to get relevant business insights. As you advance, you’ll be able to integrate the most commonly used Azure Services into ADF and understand how Azure services can be useful in designing ETL pipelines. The book will take you through the common errors that you may encounter while working with ADF and show you how to use the Azure portal to monitor pipelines. You’ll also understand error messages and resolve problems in connectors and data flows with the debugging capabilities of ADF. By the end of this book, you’ll be able to use ADF as the main ETL and orchestration tool for your data warehouse or data platform projects. What you will learnCreate an orchestration and transformation job in ADFDevelop, execute, and monitor data flows using Azure SynapseCreate big data pipelines using Azure Data Lake and ADFBuild a machine learning app with Apache Spark and ADFMigrate on-premises SSIS jobs to ADFIntegrate ADF with commonly used Azure services such as Azure ML, Azure Logic Apps, and Azure FunctionsRun big data compute jobs within HDInsight and Azure DatabricksCopy data from AWS S3 and Google Cloud Storage to Azure Storage using ADF's built-in connectorsWho this book is for This book is for ETL developers, data warehouse and ETL architects, software professionals, and anyone who wants to learn about the common and not-so-common challenges faced while developing traditional and hybrid ETL solutions using Microsoft's Azure Data Factory. You’ll also find this book useful if you are looking for recipes to improve or enhance your existing ETL pipelines. Basic knowledge of data warehousing is expected. |
azure data factory architecture diagram: Microsoft Azure Data Solutions - An Introduction Daniel A. Seara, Francesco Milano, Danilo Dominici, 2021-07-14 Discover and apply the Azure platform's most powerful data solutions Cloud technologies are advancing at an accelerating pace, supplanting traditional relational and data warehouse storage solutions with novel, high-value alternatives. Now, three pioneering Azure Data consultants offer an expert introduction to the relational, non-relational, and data warehouse solutions offered by the Azure platform. Drawing on their extensive experience helping organizations get more value from the Microsoft Data Platform, the authors guide you through decision-making, implementation, operations, security, and more. Throughout, step-by-step tutorials and hands-on exercises prepare you to succeed, even if you have no cloud data experience. Three leading experts in Microsoft Azure Data Solutions show how to: Master essential concepts of data storage and processing in cloud environments Handle the changing responsibilities of data engineers moving to the cloud Get started with Azure data storage accounts and other data facilities Walk through implementing relational and non-relational data stores in Azure Secure data using the least-permissions principle, Azure Active Directory, role-based access control, and other methods Develop efficient Azure batch processing and streaming solutions Monitor Azure SQL databases, blob storage, data lakes, Azure Synapse Analytics, and Cosmos DB Optimize Azure data solutions by solving problems with storage, management, and service interactions About This Book For data engineers, systems engineers, IT managers, developers, database administrators, cloud architects, and other IT professionals Requires little or no knowledge about Azure tools and services for data analysis |
azure data factory architecture diagram: Azure Internet of Things Revealed Robert Stackowiak, 2019-11-09 Design, build, and justify an optimal Microsoft IoT footprint to meet your project needs. This book describes common Internet of Things components and architecture and then focuses on Microsoft’s Azure components relevant in deploying these solutions. Microsoft-specific topics addressed include: deploying edge devices and pushing intelligence to the edge; connecting IoT devices to Azure and landing data there, applying Azure Machine Learning, analytics, and Cognitive Services; roles for Microsoft solution accelerators and managed solutions; and integration of the Azure footprint with legacy infrastructure. The book concludes with a discussion of best practices in defining and developing solutions and creating a plan for success. What You Will LearnDesign the right IoT architecture to deliver solutions for a variety of project needs Connect IoT devices to Azure for data collection and delivery of services Use Azure Machine Learning and Cognitive Services to deliver intelligence in cloud-based solutions and at the edge Understand the benefits and tradeoffs of Microsoft's solution accelerators and managed solutions Investigate new use cases that are described and apply best practices in deployment strategies Integrate cutting-edge Azure deployments with existing legacy data sources Who This Book Is For Developers and architects new to IoT projects or new to Microsoft Azure IoT components as well as readers interested in best practices used in architecting IoT solutions that utilize the Azure platform |
azure data factory architecture diagram: Mastering Data Engineering and Analytics with Databricks Manoj Kumar, 2024-09-30 TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index |
azure data factory architecture diagram: Azure Data Engineer Associate Certification Guide Newton Alex, 2022-02-28 Become well-versed with data engineering concepts and exam objectives to achieve Azure Data Engineer Associate certification Key Features Understand and apply data engineering concepts to real-world problems and prepare for the DP-203 certification exam Explore the various Azure services for building end-to-end data solutions Gain a solid understanding of building secure and sustainable data solutions using Azure services Book DescriptionAzure is one of the leading cloud providers in the world, providing numerous services for data hosting and data processing. Most of the companies today are either cloud-native or are migrating to the cloud much faster than ever. This has led to an explosion of data engineering jobs, with aspiring and experienced data engineers trying to outshine each other. Gaining the DP-203: Azure Data Engineer Associate certification is a sure-fire way of showing future employers that you have what it takes to become an Azure Data Engineer. This book will help you prepare for the DP-203 examination in a structured way, covering all the topics specified in the syllabus with detailed explanations and exam tips. The book starts by covering the fundamentals of Azure, and then takes the example of a hypothetical company and walks you through the various stages of building data engineering solutions. Throughout the chapters, you'll learn about the various Azure components involved in building the data systems and will explore them using a wide range of real-world use cases. Finally, you’ll work on sample questions and answers to familiarize yourself with the pattern of the exam. By the end of this Azure book, you'll have gained the confidence you need to pass the DP-203 exam with ease and land your dream job in data engineering.What you will learn Gain intermediate-level knowledge of Azure the data infrastructure Design and implement data lake solutions with batch and stream pipelines Identify the partition strategies available in Azure storage technologies Implement different table geometries in Azure Synapse Analytics Use the transformations available in T-SQL, Spark, and Azure Data Factory Use Azure Databricks or Synapse Spark to process data using Notebooks Design security using RBAC, ACL, encryption, data masking, and more Monitor and optimize data pipelines with debugging tips Who this book is for This book is for data engineers who want to take the DP-203: Azure Data Engineer Associate exam and are looking to gain in-depth knowledge of the Azure cloud stack. The book will also help engineers and product managers who are new to Azure or interviewing with companies working on Azure technologies, to get hands-on experience of Azure data technologies. A basic understanding of cloud technologies, extract, transform, and load (ETL), and databases will help you get the most out of this book. |
azure data factory architecture diagram: Optimizing Databricks Workloads Anirudh Kala, Anshul Bhatnagar, Sarthak Sarbahi, 2021-12-24 Accelerate computations and make the most of your data effectively and efficiently on Databricks Key FeaturesUnderstand Spark optimizations for big data workloads and maximizing performanceBuild efficient big data engineering pipelines with Databricks and Delta LakeEfficiently manage Spark clusters for big data processingBook Description Databricks is an industry-leading, cloud-based platform for data analytics, data science, and data engineering supporting thousands of organizations across the world in their data journey. It is a fast, easy, and collaborative Apache Spark-based big data analytics platform for data science and data engineering in the cloud. In Optimizing Databricks Workloads, you will get started with a brief introduction to Azure Databricks and quickly begin to understand the important optimization techniques. The book covers how to select the optimal Spark cluster configuration for running big data processing and workloads in Databricks, some very useful optimization techniques for Spark DataFrames, best practices for optimizing Delta Lake, and techniques to optimize Spark jobs through Spark core. It contains an opportunity to learn about some of the real-world scenarios where optimizing workloads in Databricks has helped organizations increase performance and save costs across various domains. By the end of this book, you will be prepared with the necessary toolkit to speed up your Spark jobs and process your data more efficiently. What you will learnGet to grips with Spark fundamentals and the Databricks platformProcess big data using the Spark DataFrame API with Delta LakeAnalyze data using graph processing in DatabricksUse MLflow to manage machine learning life cycles in DatabricksFind out how to choose the right cluster configuration for your workloadsExplore file compaction and clustering methods to tune Delta tablesDiscover advanced optimization techniques to speed up Spark jobsWho this book is for This book is for data engineers, data scientists, and cloud architects who have working knowledge of Spark/Databricks and some basic understanding of data engineering principles. Readers will need to have a working knowledge of Python, and some experience of SQL in PySpark and Spark SQL is beneficial. |
azure data factory architecture diagram: Data Lakes For Dummies Alan R. Simon, 2021-07-14 Take a dive into data lakes “Data lakes” is the latest buzz word in the world of data storage, management, and analysis. Data Lakes For Dummies decodes and demystifies the concept and helps you get a straightforward answer the question: “What exactly is a data lake and do I need one for my business?” Written for an audience of technology decision makers tasked with keeping up with the latest and greatest data options, this book provides the perfect introductory survey of these novel and growing features of the information landscape. It explains how they can help your business, what they can (and can’t) achieve, and what you need to do to create the lake that best suits your particular needs. With a minimum of jargon, prolific tech author and business intelligence consultant Alan Simon explains how data lakes differ from other data storage paradigms. Once you’ve got the background picture, he maps out ways you can add a data lake to your business systems; migrate existing information and switch on the fresh data supply; clean up the product; and open channels to the best intelligence software for to interpreting what you’ve stored. Understand and build data lake architecture Store, clean, and synchronize new and existing data Compare the best data lake vendors Structure raw data and produce usable analytics Whatever your business, data lakes are going to form ever more prominent parts of the information universe every business should have access to. Dive into this book to start exploring the deep competitive advantage they make possible—and make sure your business isn’t left standing on the shore. |
azure data factory architecture diagram: Exam Ref AZ-304 Microsoft Azure Architect Design Certification and Beyond Brett Hargreaves, 2021-07-23 Master the Microsoft Azure platform and prepare for the AZ-304 certification exam by learning the key concepts needed to identify key stakeholder requirements and translate these into robust solutions Key FeaturesBuild secure and scalable solutions on the Microsoft Azure platformLearn how to design solutions that are compliant with customer requirementsWork with real-world scenarios to become a successful Azure architect, and prepare for the AZ-304 examBook Description The AZ-304 exam tests an architect's ability to design scalable, reliable, and secure solutions in Azure based on customer requirements. Exam Ref AZ-304 Microsoft Azure Architect Design Certification and Beyond offers complete, up-to-date coverage of the AZ-304 exam content to help you prepare for it confidently, pass the exam first time, and get ready for real-world challenges. This book will help you to investigate the need for good architectural practices and discover how they address common concerns for cloud-based solutions. You will work through the CloudStack, from identity and access through to infrastructure (IaaS), data, applications, and serverless (PaaS). As you make progress, you will delve into operations including monitoring, resilience, scalability, and disaster recovery. Finally, you'll gain a clear understanding of how these operations fit into the real world with the help of full scenario-based examples throughout the book. By the end of this Azure book, you'll have covered everything you need to pass the AZ-304 certification exam and have a handy desktop reference guide. What you will learnUnderstand the role of architecture in the cloudEnsure security through identity, authorization, and governanceFind out how to use infrastructure components such as compute, containerization, networking, and storage accountsDesign scalable applications and databases using web apps, functions, messaging, SQL, and Cosmos DBMaintain operational health through monitoring, alerting, and backupsDiscover how to create repeatable and reliable automated deploymentsUnderstand customer requirements and respond to their changing needsWho this book is for This book is for Azure Solution Architects who advise stakeholders and help translate business requirements into secure, scalable, and reliable solutions. Junior architects looking to advance their skills in the Cloud will also benefit from this book. Experience with the Azure platform is expected, and a general understanding of development patterns will be advantageous. |
azure data factory architecture diagram: IoT Solutions in Microsoft's Azure IoT Suite Scott Klein, 2017-04-20 Collect and analyze sensor and usage data from Internet of Things applications with Microsoft Azure IoT Suite. Internet connectivity to everyday devices such as light bulbs, thermostats, and even voice-command devices such as Google Home and Amazon.com's Alexa is exploding. These connected devices and their respective applications generate large amounts of data that can be mined to enhance user-friendliness and make predictions about what a user might be likely to do next. Microsoft's Azure IoT Suite is a cloud-based platform that is ideal for collecting data from connected devices. You'll learn in this book about data acquisition and analysis, including real-time analysis. Real-world examples are provided to teach you to detect anomalous patterns in your data that might lead to business advantage. We live in a time when the amount of data being generated and stored is growing at an exponential rate. Understanding and getting real-time insight into these data is critical to business. IoT Solutions in Microsoft's Azure IoT Suite walks you through a complete, end-to-end journey of how to collect and store data from Internet-connected devices. You'll learn to analyze the data and to apply your results to solving real-world problems. Your customers will benefit from the increasingly capable and reliable applications that you'll be able to deploy to them. You and your business will benefit from the gains in insight and knowledge that can be applied to delight your customers and increase the value from their business. What You'll Learn Go through data generation, collection, and storage from sensors and devices, both relational and non-relational Understand, from end to end, Microsoft’s analytic services and where they fit into the analytical ecosystem Look at the Internet of your things and find ways to discover and draw on the insights your data can provide Understand Microsoft's IoT technologies and services, and stitch them together for business insight and advantage Who This Book Is For Developers and architects who plan on delivering IoT solutions, data scientists who want to understand how to get better insights into their data, and anyone needing or wanting to do real-time analysis of data from the Internet of Things |
azure data factory architecture diagram: NET Application Architecture Guide , 2009 The guide is intended to serve as a practical and convenient overview of, and reference to, the general principles of architecture and design on the Microsoft platform and the .NET Framework. |
azure data factory architecture diagram: The Modern Data Warehouse in Azure Matt How, 2020-06-15 Build a modern data warehouse on Microsoft's Azure Platform that is flexible, adaptable, and fast—fast to snap together, reconfigure, and fast at delivering results to drive good decision making in your business. Gone are the days when data warehousing projects were lumbering dinosaur-style projects that took forever, drained budgets, and produced business intelligence (BI) just in time to tell you what to do 10 years ago. This book will show you how to assemble a data warehouse solution like a jigsaw puzzle by connecting specific Azure technologies that address your own needs and bring value to your business. You will see how to implement a range of architectural patterns using batches, events, and streams for both data lake technology and SQL databases. You will discover how to manage metadata and automation to accelerate the development of your warehouse while establishing resilience at every level. And you will know how to feed downstream analytic solutions such as Power BI and Azure Analysis Services to empower data-driven decision making that drives your business forward toward a pattern of success. This book teaches you how to employ the Azure platform in a strategy to dramatically improve implementation speed and flexibility of data warehousing systems. You will know how to make correct decisions in design, architecture, and infrastructure such as choosing which type of SQL engine (from at least three options) best meets the needs of your organization. You also will learn about ETL/ELT structure and the vast number of accelerators and patterns that can be used to aid implementation and ensure resilience. Data warehouse developers and architects will find this book a tremendous resource for moving their skills into the future through cloud-based implementations. What You Will LearnChoose the appropriate Azure SQL engine for implementing a given data warehouse Develop smart, reusable ETL/ELT processes that are resilient and easily maintained Automate mundane development tasks through tools such as PowerShell Ensure consistency of data by creating and enforcing data contracts Explore streaming and event-driven architectures for data ingestionCreate advanced staging layers using Azure Data Lake Gen 2 to feed your data warehouse Who This Book Is For Data warehouse or ETL/ELT developers who wish to implement a data warehouse project in the Azure cloud, and developers currently working in on-premise environments who want to move to the cloud, and for developers with Azure experience looking to tighten up their implementation and consolidate their knowledge |
azure data factory architecture diagram: Enterprise Cloud Strategy Barry Briggs, Eduardo Kassner, 2016-01-07 How do you start? How should you build a plan for cloud migration for your entire portfolio? How will your organization be affected by these changes? This book, based on real-world cloud experiences by enterprise IT teams, seeks to provide the answers to these questions. Here, you’ll see what makes the cloud so compelling to enterprises; with which applications you should start your cloud journey; how your organization will change, and how skill sets will evolve; how to measure progress; how to think about security, compliance, and business buy-in; and how to exploit the ever-growing feature set that the cloud offers to gain strategic and competitive advantage. |
azure data factory architecture diagram: Data Engineering Best Practices Richard J. Schiller, David Larochelle, 2024-10-11 Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines. |
azure data factory architecture diagram: Cloud Analytics with Microsoft Azure Has Altaiar, Jack Lee, Michael Peña, 2021-01-28 Learn to extract actionable insights from your big data in real time using a range of Microsoft Azure features Key FeaturesUpdated with the latest features and new additions to Microsoft AzureMaster the fundamentals of cloud analytics using AzureLearn to use Azure Synapse Analytics (formerly known as Azure SQL Data Warehouse) to derive real-time customer insightsBook Description Cloud Analytics with Microsoft Azure serves as a comprehensive guide for big data analysis and processing using a range of Microsoft Azure features. This book covers everything you need to build your own data warehouse and learn numerous techniques to gain useful insights by analyzing big data The book begins by introducing you to the power of data with big data analytics, the Internet of Things (IoT), machine learning, artificial intelligence, and DataOps. You will learn about cloud-scale analytics and the services Microsoft Azure offers to empower businesses to discover insights. You will also be introduced to the new features and functionalities added to the modern data warehouse. Finally, you will look at two real-world business use cases to demonstrate high-level solutions using Microsoft Azure. The aim of these use cases will be to illustrate how real-time data can be analyzed in Azure to derive meaningful insights and make business decisions. You will learn to build an end-to-end analytics pipeline on the cloud with machine learning and deep learning concepts. By the end of this book, you will be proficient in analyzing large amounts of data with Azure and using it effectively to benefit your organization. What you will learnExplore the concepts of modern data warehouses and data pipelinesDiscover unique design considerations while applying a cloud analytics solutionDesign an end-to-end analytics pipeline on the cloudDifferentiate between structured, semi-structured, and unstructured dataChoose a cloud-based service for your data analytics solutionsUse Azure services to ingest, store, and analyze data of any scaleWho this book is for This book is designed to benefit software engineers, Azure developers, cloud consultants, and anyone who is keen to learn the process of deriving business insights from huge amounts of data using Azure. Though not necessary, a basic understanding of data analytics concepts such as data streaming, data types, the machine learning life cycle, and Docker containers will help you get the most out of the book. |
azure data factory architecture diagram: The Azure Cloud Native Architecture Mapbook Stephane Eyskens, Ed Price, 2021-02-17 Improve your Azure architecture practice and set out on a cloud and cloud-native journey with this Azure cloud native architecture guide Key FeaturesDiscover the key drivers of successful Azure architectureImplement architecture maps as a compass to tackle any challengeUnderstand architecture maps in detail with the help of practical use casesBook Description Azure offers a wide range of services that enable a million ways to architect your solutions. Complete with original maps and expert analysis, this book will help you to explore Azure and choose the best solutions for your unique requirements. Starting with the key aspects of architecture, this book shows you how to map different architectural perspectives and covers a variety of use cases for each architectural discipline. You'll get acquainted with the basic cloud vocabulary and learn which strategic aspects to consider for a successful cloud journey. As you advance through the chapters, you'll understand technical considerations from the perspective of a solutions architect. You'll then explore infrastructure aspects, such as network, disaster recovery, and high availability, and leverage Infrastructure as Code (IaC) through ARM templates, Bicep, and Terraform. The book also guides you through cloud design patterns, distributed architecture, and ecosystem solutions, such as Dapr, from an application architect's perspective. You'll work with both traditional (ETL and OLAP) and modern data practices (big data and advanced analytics) in the cloud and finally get to grips with cloud native security. By the end of this book, you'll have picked up best practices and more rounded knowledge of the different architectural perspectives. What you will learnGain overarching architectural knowledge of the Microsoft Azure cloud platformExplore the possibilities of building a full Azure solution by considering different architectural perspectivesImplement best practices for architecting and deploying Azure infrastructureReview different patterns for building a distributed application with ecosystem frameworks and solutionsGet to grips with cloud-native concepts using containerized workloadsWork with AKS (Azure Kubernetes Service) and use it with service mesh technologies to design a microservices hosting platformWho this book is for This book is for aspiring Azure Architects or anyone who specializes in security, infrastructure, data, and application architecture. If you are a developer or infrastructure engineer looking to enhance your Azure knowledge, you'll find this book useful. |
azure data factory architecture diagram: Mastering Azure Analytics Zoiner Tejada, 2017-04-06 Helps users understand the breadth of Azure services by organizing them into a reference framework they can use when crafting their own big-data analytics solution. |
azure data factory architecture diagram: Microsoft Power Platform Solution Architect's Handbook Hugo Herrera, 2022-07-29 Gain expertise in solution architecture and master all aspects of Power Platform, from data and automation to analytics and security Key Features Become a full-fledged Power Platform expert and lead your solutions with conviction and clarity Adopt a consistent, systematic, and advanced approach to solution architecture Work on practical examples and exercises to develop expert-level skills and prepare for certification Book DescriptionIf you’ve been looking for a way to unlock the potential of Microsoft Power Platform and take your career as a solution architect to the next level, then look no further—this practical guide covers it all. Microsoft Power Platform Solution Architect’s Handbook will equip you with everything you need to build flexible and cost-effective end-to-end solutions. Its comprehensive coverage ranges from best practices surrounding fit-gap analysis, leading design processes, and navigating existing systems to application lifecycle management with Microsoft Azure DevOps, security compliance monitoring, and third-party API integration. The book takes a hands-on approach by guiding you through a fictional case study throughout the book, allowing you to apply what you learn as you learn it. At the end of the handbook, you’ll discover a set of mock tests for you to embed your progress and prepare for PL-600 Microsoft certification. Whether you want to learn how to work with Power Platform or want to take your skills from the intermediate to advanced level, this book will help you achieve that and ensure that you’re able to add value to your organization as an expert solution architect.What you will learn Cement the foundations of your applications using best practices Use proven design, build, and go-live strategies to ensure success Lead requirements gathering and analysis with confidence Secure even the most complex solutions and integrations Ensure compliance between the Microsoft ecosystem and your business Build resilient test and deployment strategies to optimize solutions Who this book is for This book is for solution architects, enterprise architects, technical consultants, and business and system analysts who implement, optimize, and architect Power Platform and Dataverse solutions. It will also help anyone who needs a detailed playbook for architecting and delivering successful digital transformation projects that leverage Power Platform apps and the Microsoft business apps ecosystem. A solid understanding of Power Platform configuration and administration, Power Automate processes, Power Apps Portals, Canvas Apps, Dataverse Plugins, and Workflow Capabilities is expected. |
azure data factory architecture diagram: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts. |
azure data factory architecture diagram: Getting started with Power Query in Power BI and Excel Reza Rad, Leila Etaati, 2021-08-27 Any data analytics solution requires data population and preparation. With the rise of data analytics solutions these years, the need for this data preparation becomes even more essential. Power BI is a helpful data analytics tool that is used worldwide by many users. As a Power BI (or Microsoft BI) developer, it is essential to learn how to prepare the data in the right shape and format needed. You need to learn how to clean the data and build it in the structure that can be modeled easily and used high performant for visualization. Data preparation and transformation is the backend work. If you consider building a BI system as going to a restaurant and ordering food. The visualization is the food you see on the table nicely presented. The quality, the taste, and everything else comes from the hard work in the kitchen. The part that you don’t see or the backend in the world of Power BI is Power Query. You may be already familiar with some other data preparation and data transformation technologies, such as T-SQL, SSIS, Azure Data Factory, Informatica, etc. Power Query is a data transformation engine capable of preparing the data in the format you need. The good news is that to learn Power Query; you don’t need to know programming. Power Query is for citizen data engineers. However, this doesn’t mean that Power Query is not capable of performing advanced transformation. Unfortunately, because Power Query and data preparation is the kitchen work of the BI system, many Power BI users skip the learning of it and become aware of it somewhere along their BI project. Once they get familiar with it, they realize there are tons of things they could have implemented easier, faster, and in a much more maintainable way using Power Query. In other words, they learn mastering Power Query is the key skill toward mastering Power BI. We have been working with Power Query since the very early release of that in 2013, named Data Explorer, and wrote blog articles and published videos about it. The number of articles we published under this subject easily exceeds hundreds. Through those articles, some of the fundamentals and key learnings of Power Query are explained. We thought it is good to compile some of them in a book. A good analytics solution combines a good data model, good data preparation, and good analytics and calculations. Reza has written another book about the Basics of modeling in Power BI and a book on Power BI DAX Simplified. This book is covering the data preparation and transformations aspects of it. This book is for you if you are building a Power BI solution. Even if you are just visualizing the data, preparation and transformations are an essential part of analytics. You do need to have the cleaned and prepared data ready before visualizing it. This book is complied into a series of two books, which will be followed by a third book later; Getting started with Power Query in Power BI and Excel (this book) Mastering Power Query in Power BI and Excel (already available to be purchased separately) Power Query dataflows (will be published later) Although this book is written for Power BI and all the examples are presented using the Power BI. However, the examples can be easily applied to Excel, Dataflows, and other tools and services using Power Query. |
azure data factory architecture diagram: MC Microsoft Certified Azure Data Fundamentals Study Guide Jake Switzer, 2022-04-14 The most authoritative and complete study guide for people beginning to work with data in the Azure cloud In MC Azure Data Fundamentals Study Guide: Exam DP-900, expert Cloud Solution Architect Jake Switzer delivers a hands-on blueprint to acing the DP-900 Azure data certification. The book prepares you for the test – and for a new career in Azure data analytics, architecture, science, and more – with a laser-focus on the job roles and responsibilities of Azure data professionals. You’ll receive a foundational knowledge of core data concepts, like relational and non-relational data and transactional and analytical data workloads, while diving deep into every competency covered on the DP-900 exam. You’ll also get: Access to complimentary online study tools, including hundreds of practice exam questions, electronic flashcards, and a searchable glossary Additional prep assistance with access to Sybex’s superior interactive online learning environment and test bank Walkthroughs of skills and knowledge that are absolutely necessary for current and aspiring Azure data pros in introductory roles Perfect for anyone just beginning to work with data in the cloud, MC Azure Data Fundamentals Study Guide: Exam DP-900 is a can’t-miss resource for anyone prepping for the DP-900 exam or considering a new career working with Azure data. |
azure data factory architecture diagram: Exam Ref AZ-304 Microsoft Azure Architect Design Ashish Agrawal, Avinash Bhavsar, MJ Parker, Gurvinder Singh, 2021-07-21 Prepare for Microsoft Exam AZ-304—and help demonstrate your real-world mastery of designing and implementing solutions that run on Microsoft Azure, including key aspects such as compute, network, storage, and security. Designed for modern IT professionals, this Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the Microsoft Certified Expert level. Focus on the expertise measured by these objectives: • Design monitoring • Design identity and security • Design data storage • Design business continuity • Design infrastructure This Microsoft Exam Ref: • Organizes its coverage by exam objectives • Features strategic, what-if scenarios to challenge you • Assumes you are an IT professional with significant experience and knowledge of IT operations, and expert-level Azure administration skills, and experience with Azure development and DevOps processes About the Exam Exam AZ-304 focuses on knowledge needed to design for cost optimization; design logging and monitoring solutions; design authentication, authorization, governance, and application security; design database solutions and data integrations; select storage accounts; design for backup/recovery and high availability; design compute and network infrastructure; design application architectures, and design migrations. About Microsoft Certification Passing this exam and Exam AZ-303: Microsoft Azure Architect Technologies fulfills your requirements for the Microsoft Certified: Azure Solutions Architect Expert credential, demonstrating your expertise in compute, network, storage, and security for designing and implementing modern cloud-based solutions that run on Microsoft Azure. See full details at: microsoft.com/learn |
azure data factory architecture diagram: Enterprise Application Architecture with .NET Core Ganesan Senthilvel, Ovais Mehboob Ahmed Khan, Habib Ahmed Qureshi, 2017-04-25 Architect and design highly scalable, robust, clean and highly performant applications in .NET Core About This Book Incorporate architectural soft-skills such as DevOps and Agile methodologies to enhance program-level objectives Gain knowledge of architectural approaches on the likes of SOA architecture and microservices to provide traceability and rationale for architectural decisions Explore a variety of practical use cases and code examples to implement the tools and techniques described in the book Who This Book Is For This book is for experienced .NET developers who are aspiring to become architects of enterprise-grade applications, as well as software architects who would like to leverage .NET to create effective blueprints of applications. What You Will Learn Grasp the important aspects and best practices of application lifecycle management Leverage the popular ALM tools, application insights, and their usage to monitor performance, testability, and optimization tools in an enterprise Explore various authentication models such as social media-based authentication, 2FA and OpenID Connect, learn authorization techniques Explore Azure with various solution approaches for Microservices and Serverless architecture along with Docker containers Gain knowledge about the recent market trends and practices and how they can be achieved with .NET Core and Microsoft tools and technologies In Detail If you want to design and develop enterprise applications using .NET Core as the development framework and learn about industry-wide best practices and guidelines, then this book is for you. The book starts with a brief introduction to enterprise architecture, which will help you to understand what enterprise architecture is and what the key components are. It will then teach you about the types of patterns and the principles of software development, and explain the various aspects of distributed computing to keep your applications effective and scalable. These chapters act as a catalyst to start the practical implementation, and design and develop applications using different architectural approaches, such as layered architecture, service oriented architecture, microservices and cloud-specific solutions. Gradually, you will learn about the different approaches and models of the Security framework and explore various authentication models and authorization techniques, such as social media-based authentication and safe storage using app secrets. By the end of the book, you will get to know the concepts and usage of the emerging fields, such as DevOps, BigData, architectural practices, and Artificial Intelligence. Style and approach Filled with examples and use cases, this guide takes a no-nonsense approach to show you the best tools and techniques required to become a successful software architect. |
azure data factory architecture diagram: Microsoft Azure Fundamentals Certification and Beyond Steve Miles, 2022-01-07 Gain in-depth knowledge of Azure fundamentals that will make it easy for you to achieve AZ-900 certification Key Features Get fundamental knowledge of cloud concepts and the Microsoft Azure platform Explore practical exercises to gain experience of working with the Microsoft Azure platform in the real world Prepare to achieve AZ-900 certification on the first go with the help of simplified examples covered in the book Book DescriptionThis is the digital and cloud era, and Microsoft Azure is one of the top cloud computing platforms. It’s now more important than ever to understand how the cloud functions and the different services that can be leveraged across the cloud. This book will give you a solid understanding of cloud concepts and Microsoft Azure, starting by taking you through cloud concepts in depth, then focusing on the core Azure architectural components, solutions, and management tools. Next, you will understand security concepts, defense-in-depth, and key security services such as Network Security Groups and Azure Firewall, as well as security operations tooling such as Azure Security Center and Azure Sentinel. As you progress, you will understand how identity, governance, privacy, and compliance are managed in Azure. Finally, you will get to grips with cost management, service-level agreements, and service life cycles. Throughout, the book features a number of hands-on exercises to support the concepts, services, and solutions discussed. This provides you with a glimpse of real-world scenarios, before finally concluding with practice questions for AZ-900 exam preparation. By the end of this Azure book, you will have a thorough understanding of cloud concepts and Azure fundamentals, enabling you to pass the AZ-900 certification exam easily.What you will learn Explore cloud computing with Azure cloud Gain an understanding of the core Azure architectural components Acquire knowledge of core services and management tools on Azure Get up and running with security concepts, security operations, and protection from threats Focus on identity, governance, privacy, and compliance features Understand Azure cost management, SLAs, and service life cycles Who this book is for This Azure fundamentals book is both for those with technical backgrounds and non-technical backgrounds who want to learn and explore the field of cloud computing, especially with Azure. This book will also help anyone who wants to develop a good foundation for achieving advanced Azure certifications. There is no prerequisite for this book except a willingness to learn and explore cloud concepts and Microsoft Azure. |
azure data factory architecture diagram: Microsoft Azure Essentials - Fundamentals of Azure Michael Collier, Robin Shahan, 2015-01-29 Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. The first ebook in the series, Microsoft Azure Essentials: Fundamentals of Azure, introduces developers and IT professionals to the wide range of capabilities in Azure. The authors - both Microsoft MVPs in Azure - present both conceptual and how-to content for key areas, including: Azure Websites and Azure Cloud Services Azure Virtual Machines Azure Storage Azure Virtual Networks Databases Azure Active Directory Management tools Business scenarios Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the “Microsoft Azure Essentials” series. |
azure data factory architecture diagram: Microsoft Azure Security Center Yuri Diogenes, Tom Shinder, 2018-06-04 Discover high-value Azure security insights, tips, and operational optimizations This book presents comprehensive Azure Security Center techniques for safeguarding cloud and hybrid environments. Leading Microsoft security and cloud experts Yuri Diogenes and Dr. Thomas Shinder show how to apply Azure Security Center’s full spectrum of features and capabilities to address protection, detection, and response in key operational scenarios. You’ll learn how to secure any Azure workload, and optimize virtually all facets of modern security, from policies and identity to incident response and risk management. Whatever your role in Azure security, you’ll learn how to save hours, days, or even weeks by solving problems in most efficient, reliable ways possible. Two of Microsoft’s leading cloud security experts show how to: • Assess the impact of cloud and hybrid environments on security, compliance, operations, data protection, and risk management • Master a new security paradigm for a world without traditional perimeters • Gain visibility and control to secure compute, network, storage, and application workloads • Incorporate Azure Security Center into your security operations center • Integrate Azure Security Center with Azure AD Identity Protection Center and third-party solutions • Adapt Azure Security Center’s built-in policies and definitions for your organization • Perform security assessments and implement Azure Security Center recommendations • Use incident response features to detect, investigate, and address threats • Create high-fidelity fusion alerts to focus attention on your most urgent security issues • Implement application whitelisting and just-in-time VM access • Monitor user behavior and access, and investigate compromised or misused credentials • Customize and perform operating system security baseline assessments • Leverage integrated threat intelligence to identify known bad actors |
azure data factory architecture diagram: Implementing Azure Cloud Design Patterns Oliver Michalski, Stefano Demiliani, 2018-01-29 A hands-on guide to mastering Azure cloud design patterns and best practices. Key Features Master architectural design patterns in Azure. Get hands-on with implementing design patterns. Implement best practices for improving efficiency and security Book Description A well designed cloud infrastructure covers factors such as consistency, maintenance, simplified administration and development, and reusability. Hence it is important to choose the right architectural pattern as it has a huge impact on the quality of cloud-hosted services. This book covers all Azure design patterns and functionalities to help you build your cloud infrastructure so it fits your system requirements. This book initially covers design patterns that are focused on factors such as availability and data management/monitoring. Then the focus shifts to complex design patterns such as multitasking, improving scalability, valet keys, and so on, with practical use cases. The book also supplies best practices to improve the security and performance of your cloud. By the end of this book, you will thoroughly be familiar with the different design and architectural patterns available with Windows Azure and capable of choosing the best pattern for your system. What you will learn Learn to organize Azure access Design the core areas of the Azure Execution Model Work with storage and data management Create a health endpoint monitoring pattern Automate early detection of anomalies Identify and secure Azure features Who this book is for This book is targeted at cloud architects and cloud solution providers who are looking for an extensive guide to implementing different patterns for the deployment and maintenance of services in Microsoft Azure. Prior experience with Azure is required as the book is completely focused on design patterns. |
azure data factory architecture diagram: Mastering Power Query in Power BI and Excel Reza Rad, Leila Etaati, 2021-08-27 Any data analytics solution requires data population and preparation. With the rise of data analytics solutions these years, the need for this data preparation becomes even more essential. Power BI is a helpful data analytics tool that is used worldwide by many users. As a Power BI (or Microsoft BI) developer, it is essential to learn how to prepare the data in the right shape and format needed. You need to learn how to clean the data and build it in a structure that can be modeled easily and used high performant for visualization. Data preparation and transformation is the backend work. If you consider building a BI system as going to a restaurant and ordering food. The visualization is the food you see on the table nicely presented. The quality, the taste, and everything else come from the hard work in the kitchen. The part that you don’t see or the backend in the world of Power BI is Power Query. You may already be familiar with other data preparation and transformation technologies, such as T-SQL, SSIS, Azure Data Factory, Informatica, etc. Power Query is a data transformation engine capable of preparing the data in the format you need. The good news is that to learn Power Query; you don’t need to know programming. Power Query is for citizen data engineers. However, this doesn’t mean that Power Query is not capable of performing advanced transformation. Power Query exists in many Microsoft tools and services such as Power BI, Excel, Dataflows, Power Automate, Azure Data Factory, etc. Through the years, this engine became more powerful. These days, we can say this is essential learning for anyone who wants to do data analysis with Microsoft technology to learn Power Query and master it. We have been working with Power Query since the very early release of that in 2013, named Data Explorer, and wrote blog articles and published videos about it. The number of articles we published under this subject easily exceeds hundreds. Through those articles, some of the fundamentals and key learnings of Power Query are explained. We thought it is good to compile some of them in a book series. A good analytics solution combines a good data model, good data preparation, and good analytics and calculations. Reza has written another book about the Basics of modeling in Power BI and a book on Power BI DAX Simplified. This book is covering the data preparation and transformations aspects of it. This book series is for you if you are building a Power BI solution. Even if you are just visualizing the data, preparation and transformations are an essential part of analytics. You do need to have the cleaned and prepared data ready before visualizing it. This book is compiled into a series of two books, which will be followed by a third book later; Getting started with Power Query in Power BI and Excel (already available to be purchased separately) Mastering Power Query in Power BI and Excel (This book) Power Query dataflows (will be published later) This book deeps dive into real-world challenges of data transformation. It starts with combining data sources and continues with aggregations and fuzzy operations. The book covers advanced usage of Power Query in scenarios such as error handling and exception reports, custom functions and parameters, advanced analytics, and some helpful table and list functions. The book continues with some performance tuning tips and it also explains the Power Query formula language (M) and the structure of it and how to use it in practical solutions. Although this book is written for Power BI and all the examples are presented using the Power BI. However, the examples can be easily applied to Excel, Dataflows, and other tools and services using Power Query. |
azure data factory architecture diagram: Exam Ref DP-900 Microsoft Azure Data Fundamentals Daniel A. Seara, Francesco Milano, 2021-03-12 Prepare for Microsoft Exam DP-900 Demonstrate your real-world foundational knowledge of core data concepts and how they are implemented using Microsoft Azure data services. Designed for business users, functional consultants, and other professionals, this Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the Microsoft Certified: Azure Data Fundamentals level. Focus on the expertise measured by these objectives: Describe core data concepts Describe how to work with relational data on Azure Describe how to work with non-relational data on Azure Describe an analytics workload on Azure This Microsoft Exam Ref: Organizes its coverage by exam objectives Features strategic, what-if scenarios to challenge you Assumes you have foundational knowledge of core data concepts and their implementation with Microsoft Azure data services, and are beginning to work with data in the cloud About the Exam Exam DP-900 focuses on core knowledge for describing fundamental database concepts and skills for cloud environments; cloud data services within Azure; cloud data roles, tasks, and responsibilities; Azure relational and non-relational data offerings, provisioning, and deployment; querying Azure relational databases; working with Azure non-relational data stores; building modern Azure data analytics solutions; and exploring Azure Data Factory, Azure Synapse Analytics, Azure Databricks, and Azure HDInsight. About Microsoft Certification Passing this exam fulfills your requirements for the Microsoft Certified: Azure Data Fundamentals certification, demonstrating your understanding of the core capabilities of Azure data services and their use with relational data, non-relational data, and analytics workloads. See full details at: www.microsoft.com/learn |
azure data factory architecture diagram: Understanding Azure Data Factory Sudhir Rawat, Abhishek Narain, 2018-12-19 Improve your analytics and data platform to solve major challenges, including operationalizing big data and advanced analytics workloads on Azure. You will learn how to monitor complex pipelines, set alerts, and extend your organization's custom monitoring requirements. This book starts with an overview of the Azure Data Factory as a hybrid ETL/ELT orchestration service on Azure. The book then dives into data movement and the connectivity capability of Azure Data Factory. You will learn about the support for hybrid data integration from disparate sources such as on-premise, cloud, or from SaaS applications. Detailed guidance is provided on how to transform data and on control flow. Demonstration of operationalizing the pipelines and ETL with SSIS is included. You will know how to leverage Azure Data Factory to run existing SSIS packages. As you advance through the book, you will wrap up by learning how to create a single pane for end-to-end monitoring, which is a key skill in building advanced analytics and big data pipelines. What You'll Learn Understand data integration on Azure cloud Build and operationalize an ADF pipeline Modernize a data warehouse Be aware of performance and security considerations while moving data Who This Book Is ForData engineers and big data developers. ETL (extract, transform, load) developers also will find the book useful in demonstrating various operations. |
azure data factory architecture diagram: Deep Learning with Azure Mathew Salvaris, Danielle Dean, Wee Hyong Tok, 2018-08-24 Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI? Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll Learn Become familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AI Use pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more) Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolving Discover the options for training and operationalizing deep learning models on Azure Who This Book Is For Professional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful. |
azure data factory architecture diagram: Jumpstart Snowflake Dmitry Anoshin, Dmitry Shirokov, Donna Strok, 2019-12-20 Explore the modern market of data analytics platforms and the benefits of using Snowflake computing, the data warehouse built for the cloud. With the rise of cloud technologies, organizations prefer to deploy their analytics using cloud providers such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform. Cloud vendors are offering modern data platforms for building cloud analytics solutions to collect data and consolidate into single storage solutions that provide insights for business users. The core of any analytics framework is the data warehouse, and previously customers did not have many choices of platform to use. Snowflake was built specifically for the cloud and it is a true game changer for the analytics market. This book will help onboard you to Snowflake, present best practices to deploy, and use the Snowflake data warehouse. In addition, it covers modern analytics architecture and use cases. It provides use cases of integration with leading analytics software such as Matillion ETL, Tableau, and Databricks. Finally, it covers migration scenarios for on-premise legacy data warehouses. What You Will Learn Know the key functionalities of Snowflake Set up security and access with cluster Bulk load data into Snowflake using the COPY command Migrate from a legacy data warehouse to Snowflake integrate the Snowflake data platform with modern business intelligence (BI) and data integration tools Who This Book Is For Those working with data warehouse and business intelligence (BI) technologies, and existing and potential Snowflake users |
azure data factory architecture diagram: Cloud Design Patterns Alex Homer, John Sharp, Larry Brader, Masashi Narumoto, Trent Swanson, 2014-02-17 Cloud applications have a unique set of characteristics. They run on commodity hardware, provide services to untrusted users, and deal with unpredictable workloads. These factors impose a range of problems that you, as a designer or developer, need to resolve. Your applications must be resilient so that they can recover from failures, secure to protect services from malicious attacks, and elastic in order to respond to an ever changing workload. This guide demonstrates design patterns that can help you to solve the problems you might encounter in many different areas of cloud application development. Each pattern discusses design considerations, and explains how you can implement it using the features of Windows Azure. The patterns are grouped into categories: availability, data management, design and implementation, messaging, performance and scalability, resilience, management and monitoring, and security. You will also see more general guidance related to these areas of concern. It explains key concepts such as data consistency and asynchronous messaging. In addition, there is useful guidance and explanation of the key considerations for designing features such as data partitioning, telemetry, and hosting in multiple datacenters. These patterns and guidance can help you to improve the quality of applications and services you create, and make the development process more efficient. Enjoy! |
Microsoft Azure
Microsoft is radically simplifying cloud dev and ops in first-of-its-kind Azure Preview portal at portal.azure.com
Microsoft Azure
Sign in to Microsoft Azure to access and manage your cloud resources and services.
Microsoft Azure
Access and manage your Microsoft Azure cloud resources and services.
Microsoft Azure
Sign in to Microsoft Azure to build, deploy, and manage cloud applications and services.
Microsoft Azure
Sign in to access and manage your cloud resources and services with Microsoft Azure.
Microsoft Azure
Access Microsoft Azure to build, deploy, and manage applications with a range of cloud services and tools.
Microsoft Azure
Sign in to Microsoft Azure to manage cloud resources and services with an intuitive user experience.
Microsoft Azure
Access Microsoft Azure to build, deploy, and manage cloud applications and services.
Microsoft Azure
Sign in to Microsoft Azure to build, manage, and deploy applications on a global scale.
Microsoft Azure
Access Microsoft Azure to build, deploy, and manage applications using a range of cloud computing services and tools.
Microsoft Azure
Microsoft is radically simplifying cloud dev and ops in first-of-its-kind Azure Preview portal at portal.azure.com
Microsoft Azure
Sign in to Microsoft Azure to access and manage your cloud resources and services.
Microsoft Azure
Access and manage your Microsoft Azure cloud resources and services.
Microsoft Azure
Sign in to Microsoft Azure to build, deploy, and manage cloud applications and services.
Microsoft Azure
Sign in to access and manage your cloud resources and services with Microsoft Azure.
Microsoft Azure
Access Microsoft Azure to build, deploy, and manage applications with a range of cloud services and tools.
Microsoft Azure
Sign in to Microsoft Azure to manage cloud resources and services with an intuitive user experience.
Microsoft Azure
Access Microsoft Azure to build, deploy, and manage cloud applications and services.
Microsoft Azure
Sign in to Microsoft Azure to build, manage, and deploy applications on a global scale.
Microsoft Azure
Access Microsoft Azure to build, deploy, and manage applications using a range of cloud computing services and tools.