Bachelor Of Science In Data Analytics

Advertisement



  bachelor of science in data analytics: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
  bachelor of science in data analytics: A First Course in Machine Learning Simon Rogers, Mark Girolami, 2016-10-14 Introduces the main algorithms and ideas that underpin machine learning techniques and applications Keeps mathematical prerequisites to a minimum, providing mathematical explanations in comment boxes and highlighting important equations Covers modern machine learning research and techniques Includes three new chapters on Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models Offers Python, R, and MATLAB code on accompanying website: http://www.dcs.gla.ac.uk/~srogers/firstcourseml/
  bachelor of science in data analytics: Healthcare Data Analytics Chandan K. Reddy, Charu C. Aggarwal, 2015-06-23 At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available
  bachelor of science in data analytics: Challenges and Applications of Data Analytics in Social Perspectives Sathiyamoorthi, V., Elci, Atilla, 2020-12-04 With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.
  bachelor of science in data analytics: Data Analytics Mohiuddin Ahmed, Al-Sakib Khan Pathan, 2018-09-21 Large data sets arriving at every increasing speeds require a new set of efficient data analysis techniques. Data analytics are becoming an essential component for every organization and technologies such as health care, financial trading, Internet of Things, Smart Cities or Cyber Physical Systems. However, these diverse application domains give rise to new research challenges. In this context, the book provides a broad picture on the concepts, techniques, applications, and open research directions in this area. In addition, it serves as a single source of reference for acquiring the knowledge on emerging Big Data Analytics technologies.
  bachelor of science in data analytics: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  bachelor of science in data analytics: Big Data Science & Analytics Arshdeep Bahga, Vijay Madisetti, 2016-04-15 Big data is defined as collections of datasets whose volume, velocity or variety is so large that it is difficult to store, manage, process and analyze the data using traditional databases and data processing tools. We have written this textbook to meet this need at colleges and universities, and also for big data service providers.
  bachelor of science in data analytics: Big Data Analytics in Cybersecurity Onur Savas, Julia Deng, 2017-09-18 Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.
  bachelor of science in data analytics: Security Informatics Christopher C. Yang, Michael Chau, Jau-Hwang Wang, Hsinchun Chen, 2010-01-08 Intelligence and Security Informatics (ISI) is defined as the study of the development and use of advanced information systems and technologies for national, international, and societal security-related applications. With the rise of global terrorism, the field has been given an increasing amount of attention from academic researchers, law enforcement, intelligent experts, information technology consultants and practitioners. SECURITY INFORMATICS is global in scope and perspective. Leading experts will be invited as contributing authors from the US, UK, Denmark, Israel, Singapore, Hong Kong, Taiwan, Europe, etc. It is the first systematic, archival volume treatment of the field and will cover the very latest advances in ISI research and practice. It is organized in four major subject areas: (1) Information and Systems Security, (2) Information Sharing and Analysis in Security Informatics, (3) Infrastructure Protection and Emergency Responses, and (4) National Security and Terrorism Informatics.
  bachelor of science in data analytics: Big Data Analytics Kim H. Pries, Robert Dunnigan, 2015-02-05 With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market.Comparing and contrasting the dif
  bachelor of science in data analytics: Bioinformatics For Dummies Jean-Michel Claverie, Cedric Notredame, 2011-02-10 Were you always curious about biology but were afraid to sit through long hours of dense reading? Did you like the subject when you were in high school but had other plans after you graduated? Now you can explore the human genome and analyze DNA without ever leaving your desktop! Bioinformatics For Dummies is packed with valuable information that introduces you to this exciting new discipline. This easy-to-follow guide leads you step by step through every bioinformatics task that can be done over the Internet. Forget long equations, computer-geek gibberish, and installing bulky programs that slow down your computer. You’ll be amazed at all the things you can accomplish just by logging on and following these trusty directions. You get the tools you need to: Analyze all types of sequences Use all types of databases Work with DNA and protein sequences Conduct similarity searches Build a multiple sequence alignment Edit and publish alignments Visualize protein 3-D structures Construct phylogenetic trees This up-to-date second edition includes newly created and popular databases and Internet programs as well as multiple new genomes. It provides tips for using servers and places to seek resources to find out about what’s going on in the bioinformatics world. Bioinformatics For Dummies will show you how to get the most out of your PC and the right Web tools so you'll be searching databases and analyzing sequences like a pro!
  bachelor of science in data analytics: Introduction to Bioinformatics Arthur M. Lesk, 2019 Lesk provides an accessible and thorough introduction to a subject which is becoming a fundamental part of biological science today. The text generates an understanding of the biological background of bioinformatics.
  bachelor of science in data analytics: Developing Analytic Talent Vincent Granville, 2014-03-24 Learn what it takes to succeed in the the most in-demand tech job Harvard Business Review calls it the sexiest tech job of the 21st century. Data scientists are in demand, and this unique book shows you exactly what employers want and the skill set that separates the quality data scientist from other talented IT professionals. Data science involves extracting, creating, and processing data to turn it into business value. With over 15 years of big data, predictive modeling, and business analytics experience, author Vincent Granville is no stranger to data science. In this one-of-a-kind guide, he provides insight into the essential data science skills, such as statistics and visualization techniques, and covers everything from analytical recipes and data science tricks to common job interview questions, sample resumes, and source code. The applications are endless and varied: automatically detecting spam and plagiarism, optimizing bid prices in keyword advertising, identifying new molecules to fight cancer, assessing the risk of meteorite impact. Complete with case studies, this book is a must, whether you're looking to become a data scientist or to hire one. Explains the finer points of data science, the required skills, and how to acquire them, including analytical recipes, standard rules, source code, and a dictionary of terms Shows what companies are looking for and how the growing importance of big data has increased the demand for data scientists Features job interview questions, sample resumes, salary surveys, and examples of job ads Case studies explore how data science is used on Wall Street, in botnet detection, for online advertising, and in many other business-critical situations Developing Analytic Talent: Becoming a Data Scientist is essential reading for those aspiring to this hot career choice and for employers seeking the best candidates.
  bachelor of science in data analytics: The Accidental Data Scientist Amy L. Affelt, 2015 Amy Affelt, author of The Accidental Data Scientist, notes that Librarians and information professionals have always worked with data in order to meet the information needs of their constituents, thus 'Big Data' is not a new concept for them. With The Accidental Data Scientist, Amy Affelt shows information professionals how to leverage their skills and training to master emerging tools, techniques, and vocabulary; create mission-critical Big Data research deliverables; and discover rewarding new career opportunities by embracing their inner Data Scientist.
  bachelor of science in data analytics: Bioinformatics Algorithms Phillip Compeau, Pavel Pevzner, 1986-06 Bioinformatics Algorithms: an Active Learning Approach is one of the first textbooks to emerge from the recent Massive Online Open Course (MOOC) revolution. A light-hearted and analogy-filled companion to the authors' acclaimed online course (http://coursera.org/course/bioinformatics), this book presents students with a dynamic approach to learning bioinformatics. It strikes a unique balance between practical challenges in modern biology and fundamental algorithmic ideas, thus capturing the interest of students of biology and computer science students alike.Each chapter begins with a central biological question, such as Are There Fragile Regions in the Human Genome? or Which DNA Patterns Play the Role of Molecular Clocks? and then steadily develops the algorithmic sophistication required to answer this question. Hundreds of exercises are incorporated directly into the text as soon as they are needed; readers can test their knowledge through automated coding challenges on Rosalind (http://rosalind.info), an online platform for learning bioinformatics.The textbook website (http://bioinformaticsalgorithms.org) directs readers toward additional educational materials, including video lectures and PowerPoint slides.
  bachelor of science in data analytics: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
  bachelor of science in data analytics: Outsmarting AI Brennan Pursell, Joshua Walker, 2020-08-15 From factories to smartphones, Artificial Intelligence is already taking over. Outsmarting AI is not a how-to guide on making AI work, but making it work for YOU to boost profits and productivity. Each development in Artificial Intelligence (AI) technology brings about apprehension and panic for the future of society and for business. We’re bombarded with stories about the impending human-less workplace; it is no longer a question if man can be replaced by machine in certain tasks, but when. However, AI was not manufactured to destroy life as we know it. These emerging technologies were developed and are constantly updating with a particular goal in mind: optimization. AI feeds on data and information to improve outputs and increase potential. With this enhanced productivity, profit and productivity will be sure to follow. Written by Brennan Pursell, a business consultant and professor who hates jargon, and Joshua Walker, an AI pioneer with 18 years of experience in solutions and applications, Outsmarting AI is the first plain-English how-to guide on adapting AI for the non-coding proficient business leader. This book will help readers to Cut through the fog of AI hype See exactly what AI can actually do for people in business Identify the areas of their organization in most need of AI tools Prepare and control their data – AI is useless without it Adopt AI and develop the right culture to support it Track the productivity boost, cost savings, and increased profits Manage and minimize the threat of crippling lawsuits
  bachelor of science in data analytics: Colleges That Create Futures Princeton Review, 2016-05-10 KICK-START YOUR CAREER WITH THE RIGHT ON-CAMPUS EXPERIENCE! When it comes to getting the most out of college, the experiences you have outside the classroom are just as important as what you study. Colleges That Create Futures looks beyond the usual “best of” college lists to highlight 50 schools that empower students to discover practical, real-world applications for their talents and interests. The schools in this book feature distinctive research, internship, and hands-on learning programs—all the info you need to help find a college where you can parlay your passion into a successful post-college career. Inside, You'll Find: • In-depth profiles covering career services, internship support, student group activity, alumni satisfaction, noteworthy facilities and programs, and more • Candid assessments of each school’s academics from students, current faculty, and alumni • Unique hands-on learning opportunities for students across majors • Testimonials on career prep from alumni in business, education, law, and much more *************************** What makes Colleges That Create Futures important? You've seen the headlines—lately the news has been full of horror stories about how the college educational system has failed many recent grads who leave school with huge debt, no job prospects, and no experience in the working world. Colleges That Create Futures identifies schools that don't fall into this trap but instead prepare students for successful careers! How are the colleges selected? Schools are selected based on survey results on career services, grad school matriculation, internship support, student group and government activity, alumni activity and salaries, and noteworthy facilities and programs.
  bachelor of science in data analytics: SQL Pocket Guide Alice Zhao, 2021-08-26 If you use SQL in your day-to-day work as a data analyst, data scientist, or data engineer, this popular pocket guide is your ideal on-the-job reference. You'll find many examples that address the language's complexities, along with key aspects of SQL used in Microsoft SQL Server, MySQL, Oracle Database, PostgreSQL, and SQLite. In this updated edition, author Alice Zhao describes how these database management systems implement SQL syntax for both querying and making changes to a database. You'll find details on data types and conversions, regular expression syntax, window functions, pivoting and unpivoting, and more. Quickly look up how to perform specific tasks using SQL Apply the book's syntax examples to your own queries Update SQL queries to work in five different database management systems NEW: Connect Python and R to a relational database NEW: Look up frequently asked SQL questions in the How Do I? chapter
  bachelor of science in data analytics: White Awareness Judy H. Katz, 1978 Stage 1.
  bachelor of science in data analytics: Data Mining For Dummies Meta S. Brown, 2014-09-04 Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.
  bachelor of science in data analytics: Enhancing Effective Instruction and Learning Using Assessment Data Hong Jiao, Robert W. Lissitz, 2021 This book introduces theories and practices for using assessment data to enhance learning and instruction. Topics include reshaping the homework review process, iterative learning engineering, learning progressions, learning maps, score report designing, the use of psychosocial data, and the combination of adaptive testing and adaptive learning. In addition, studies proposing new methods and strategies, technical details about the collection and maintenance of process data, and examples illustrating proposed methods and/or software are included. Chapter 1, 4, 6, 8, and 9 discuss how to make valid interpretations of results and/or achieve more efficient instructions from various sources of data. Chapter 3 and 7 propose and evaluate new methods to promote students' learning by using evidence-based iterative learning engineering and supporting the teachers' use of assessment data, respectively. Chapter 2 provides technical details on the collection, storage, and security protection of process data. Chapter 5 introduces software for automating some aspects of developmental education and the use of predictive modeling. Chapter 10 describes the barriers to using psychosocial data for formative assessment purposes. Chapter 11 describes a conceptual framework for adaptive learning and testing and gives an example of a functional learning and assessment system. In summary, the book includes comprehensive perspectives of the recent development and challenges of using test data for formative assessment purposes. The chapters provide innovative theoretical frameworks, new perspectives on the use of data with technology, and how to build new methods based on existing theories. This book is a useful resource to researchers who are interested in using data and technology to inform decision making, facilitate instructional utility, and achieve better learning outcomes--
  bachelor of science in data analytics: Big Data Science and Analytics for Smart Sustainable Urbanism Simon Elias Bibri, 2019 We are living at the dawn of what has been termed 'the fourth paradigm of science, ' a scientific revolution that is marked by both the emergence of big data science and analytics, and by the increasing adoption of the underlying technologies in scientific and scholarly research practices. Everything about science development or knowledge production is fundamentally changing thanks to the ever-increasing deluge of data. This is the primary fuel of the new age, which powerful computational processes or analytics algorithms are using to generate valuable knowledge for enhanced decision-making, and deep insights pertaining to a wide variety of practical uses and applications. This book addresses the complex interplay of the scientific, technological, and social dimensions of the city, and what it entails in terms of the systemic implications for smart sustainable urbanism. In concrete terms, it explores the interdisciplinary and transdisciplinary field of smart sustainable urbanism and the unprecedented paradigmatic shifts and practical advances it is undergoing in light of big data science and analytics. This new era of science and technology embodies an unprecedentedly transformative and constitutive power-manifested not only in the form of revolutionizing science and transforming knowledge, but also in advancing social practices, producing new discourses, catalyzing major shifts, and fostering societal transitions. Of particular relevance, it is instigating a massive change in the way both smart cities and sustainable cities are studied and understood, and in how they are planned, designed, operated, managed, and governed in the face of urbanization. This relates to what has been dubbed data-driven smart sustainable urbanism, an emerging approach based on a computational understanding of city systems and processes that reduces urban life to logical and algorithmic rules and procedures, while also harnessing urban big data to provide a more holistic and integrated view or synoptic intelligence of the city. This is increasingly being directed towards improving, advancing, and maintaining the contribution of both sustainable cities and smart cities to the goals of sustainable development. This timely and multifaceted book is aimed at a broad readership. As such, it will appeal to urban scientists, data scientists, urbanists, planners, engineers, designers, policymakers, philosophers of science, and futurists, as well as all readers interested in an overview of the pivotal role of big data science and analytics in advancing every academic discipline and social practice concerned with data-intensive science and its application, particularly in relation to sustainability.
  bachelor of science in data analytics: Data Analytics in Project Management Seweryn Spalek, J. Davidson Frame, Yanping Chen, Carl Pritchard, Alfonso Bucero, Werner Meyer, Ryan Legard, Michael Bragen, Klas Skogmar, Deanne Larson, Bert Brijs, 2019-01-01 Data Analytics in Project Management. Data analytics plays a crucial role in business analytics. Without a rigid approach to analyzing data, there is no way to glean insights from it. Business analytics ensures the expected value of change while that change is implemented by projects in the business environment. Due to the significant increase in the number of projects and the amount of data associated with them, it is crucial to understand the areas in which data analytics can be applied in project management. This book addresses data analytics in relation to key areas, approaches, and methods in project management. It examines: • Risk management • The role of the project management office (PMO) • Planning and resource management • Project portfolio management • Earned value method (EVM) • Big Data • Software support • Data mining • Decision-making • Agile project management Data analytics in project management is of increasing importance and extremely challenging. There is rapid multiplication of data volumes, and, at the same time, the structure of the data is more complex. Digging through exabytes and zettabytes of data is a technological challenge in and of itself. How project management creates value through data analytics is crucial. Data Analytics in Project Management addresses the most common issues of applying data analytics in project management. The book supports theory with numerous examples and case studies and is a resource for academics and practitioners alike. It is a thought-provoking examination of data analytics applications that is valuable for projects today and those in the future.
  bachelor of science in data analytics: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.
  bachelor of science in data analytics: Numsense! Data Science for the Layman Annalyn Ng, 2017-03-24 Used in Stanford's CS102 Big Data (Spring 2017) course. Want to get started on data science? Our promise: no math added. This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations, as well as lots of visuals, all of which are colorblind-friendly. Popular concepts covered include: A/B Testing Anomaly Detection Association Rules Clustering Decision Trees and Random Forests Regression Analysis Social Network Analysis Neural Networks Features: Intuitive explanations and visuals Real-world applications to illustrate each algorithm Point summaries at the end of each chapter Reference sheets comparing the pros and cons of algorithms Glossary list of commonly-used terms With this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.
  bachelor of science in data analytics: Big Data Fundamentals Thomas Erl, Wajid Khattak, Paul Buhler, 2015-12-29 “This text should be required reading for everyone in contemporary business.” --Peter Woodhull, CEO, Modus21 “The one book that clearly describes and links Big Data concepts to business utility.” --Dr. Christopher Starr, PhD “Simply, this is the best Big Data book on the market!” --Sam Rostam, Cascadian IT Group “...one of the most contemporary approaches I’ve seen to Big Data fundamentals...” --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data’s fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 “V” characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data’s relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data’s distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning
  bachelor of science in data analytics: SQL for Data Analytics Upom Malik, Matt Goldwasser, Benjamin Johnston, 2019-08-22 Take your first steps to become a fully qualified data analyst by learning how to explore large relational datasets. Key Features Explore a variety of statistical techniques to analyze your data Integrate your SQL pipelines with other analytics technologies Perform advanced analytics such as geospatial and text analysis Book Description Understanding and finding patterns in data has become one of the most important ways to improve business decisions. If you know the basics of SQL, but don't know how to use it to gain business insights from data, this book is for you. SQL for Data Analytics covers everything you need progress from simply knowing basic SQL to telling stories and identifying trends in data. You'll be able to start exploring your data by identifying patterns and unlocking deeper insights. You'll also gain experience working with different types of data in SQL, including time-series, geospatial, and text data. Finally, you'll understand how to become productive with SQL with the help of profiling and automation to gain insights faster. By the end of the book, you'll able to use SQL in everyday business scenarios efficiently and look at data with the critical eye of analytics professional. What you will learn Use SQL to summarize and identify patterns in data Apply special SQL clauses and functions to generate descriptive statistics Use SQL queries and subqueries to prepare data for analysis Perform advanced statistical calculations using the window function Analyze special data types in SQL, including geospatial data and time data Import and export data using a text file and PostgreSQL Debug queries that won't run Optimize queries to improve their performance for faster results Who this book is for If you're a database engineer looking to transition into analytics, or a backend engineer who wants to develop a deeper understanding of production data, you will find this book useful. This book is also ideal for data scientists or business analysts who want to improve their data analytics skills using SQL. Knowledge of basic SQL and database concepts will aid in understanding the concepts covered in this book.
  bachelor of science in data analytics: Future Rising Andrew Maynard, 2020-10-27 A scientist offers compelling visions and potential pitfalls of the future—in “a journey through time, space, and the human experience” (Dr. Tanya Harrison, coauthor of For All Humankind). Humanity has gained the ability not only to imagine the future, but to design and engineer it. At times entertaining, and at others profound, Future Rising provides an original perspective on our relationship with the future. As a species, we’ve become talented architects of our future—yet we often struggle to come to terms with what this means. As innovation and rapidly shifting norms and expectations drive our world at breakneck speed, we sometimes need to find a still, quiet place to pause and think. Future Rising creates such a place, where we can take advantage of our species’ knowledge of world history and the importance of science to piece together a positive future. To create a good future, we must rediscover the past. Our relationship with the future is inextricably intertwined with where we’ve come from, who we are, and what we aspire to. Future Rising starts at the beginning of all things with the Big Bang and traces a pathway along the emergence of intelligent life, through what makes humans uniquely capable of imagining and creating different futures. In a series of sixty short reflections, Andrew Maynard, a former physicist and nationally recognized expert in technology and society, will take you on a journey into: What “the future” actually is How it molds and guides our lives How we can use the history of the world to change our future “A thoughtful and thought-provoking response to the moment we’re in, chronicling how we got here, where we’re going, and what role we have in that journey.” —Ramona Pringle, Director of Creative Innovation Studio and Associate Professor, Ryerson University
  bachelor of science in data analytics: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  bachelor of science in data analytics: Recent Trends and Future Direction for Data Analytics Kumari, Aparna, 2024-05-14 In an increasingly data-centric world, scholars and practitioners grapple with the complexities of harnessing data analytics effectively across various industries. The challenge lies in navigating the rapid evolution of methodologies, identifying emerging trends, and understanding the nuanced applications of data analytics in real-world scenarios. This gap between theory and practice inhibits academic progress. It hampers industry innovation, leaving stakeholders needing help to leverage data to its full potential. Recent Trends and Future Direction for Data Analytics presents a compelling solution. By delving into real-world case studies spanning supply chain management, marketing, healthcare, and finance, this book bridges the gap between theory and practice, offering invaluable insights into the practical applications of data analytics. A systematic exploration of fundamental concepts, advanced techniques, and specialized topics equips scholars, researchers, and industry professionals with the knowledge and tools needed to navigate the complexities of data analytics with confidence.
  bachelor of science in data analytics: Handbook of Data Analysis Melissa A Hardy, Alan Bryman, 2009-06-17 ′This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond′ - Environment and Planning ′The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher′ - Clive Seale, Brunel University ′With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. ′ - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa ′This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments′ - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. The book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis.
  bachelor of science in data analytics: Executive Data Science Roger Peng, 2016-08-03 In this concise book you will learn what you need to know to begin assembling and leading a data science enterprise, even if you have never worked in data science before. You'll get a crash course in data science so that you'll be conversant in the field and understand your role as a leader. You'll also learn how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You'll learn the structure of the data science pipeline, the goals of each stage, and how to keep your team on target throughout. Finally, you'll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects.
  bachelor of science in data analytics: The Applied SQL Data Analytics Workshop, Second Edition Upom Malik, Matt Goldwasser, Benjamin Johnston, 2020-02-27
  bachelor of science in data analytics: New Approaches to Data Analytics and Internet of Things Through Digital Twin Karthikeyan, P., Katina, Polinpapilinho F., Anandaraj, S.P., 2022-09-30 Even though many data analytics tools have been developed in the past years, their usage in the field of cyber twin warrants new approaches that consider various aspects including unified data representation, zero-day attack detection, data sharing across threat detection systems, real-time analysis, sampling, dimensionality reduction, resource-constrained data processing, and time series analysis for anomaly detection. Further study is required to fully understand the opportunities, benefits, and difficulties of data analytics and the internet of things in today’s modern world. New Approaches to Data Analytics and Internet of Things Through Digital Twin considers how data analytics and the internet of things can be used successfully within the field of digital twin as well as the potential future directions of these technologies. Covering key topics such as edge networks, deep learning, intelligent data analytics, and knowledge discovery, this reference work is ideal for computer scientists, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
  bachelor of science in data analytics: The Analysis of Biological Data Michael C. Whitlock, Dolph Schluter, 2019-11-22 The Analysis of Biological Data provides students with a practical foundation of statistics for biology students. Every chapter has several biological or medical examples of key concepts, and each example is prefaced by a substantial description of the biological setting. The emphasis on real and interesting examples carries into the problem sets where students have dozens of practice problems based on real data. The third edition features over 200 new examples and problems. These include new calculation practice problems, which guide the student step by step through the methods, and a greater number of examples and topics come from medical and human health research. Every chapter has been carefully edited for even greater clarity and ease of use. All the data sets, R scripts for all worked examples in the book, as well as many other teaching resources, are available to qualified instructors (see below).
  bachelor of science in data analytics: Concise Survey of Computer Methods Peter Naur, 1974
  bachelor of science in data analytics: Bioentrepreneurship and Transferring Technology Into Product Development Agarwal, Swati, Kumari, Sonu, Khan, Suphiya, 2021-06-25 In terms of becoming a successful bioentrepreneur, there is still much more to learn. There are many ways to learn the essential fundamentals of entrepreneurship, including through the mistakes of previous businesses and models. Increased knowledge and a better understanding of what works can be derived from these previous failures and mistakes. Additionally, learning from other bioentrepreneurs can help businesses run successfully. By looking deeper into business models, product development, the fundamental concepts of bioentrepreneurship, and the essential characteristics of bioentrepreneurs, one can become better equipped to understand the role of biological sciences in entrepreneurship, specifically the role of product development. Bioentrepreneurship and Transferring Technology Into Product Development provides a comprehensive understanding of the role of biological sciences, specifically in transforming technology into commercial product. This book compiles the theoretical and practical aspects of bioentrepreneurship and discusses the various factors, including creating business plans, acquiring funding, and successful business models. The chapters also cover areas such as small-scale product development, intellectual property rights, funding schemes for start-ups, and new prospective biotechnology product development. This book is essential for bioentrepreneurs, entrepreneurs, product developers, scientists, practitioners, researchers, academicians, and students interested in product development from a biological science perspective.
  bachelor of science in data analytics: The Analytics Edge Dimitris Bertsimas, Allison K. O'Hair, William R. Pulleyblank, 2016 Provides a unified, insightful, modern, and entertaining treatment of analytics. The book covers the science of using data to build models, improve decisions, and ultimately add value to institutions and individuals--Back cover.
  bachelor of science in data analytics: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data Paul Zikopoulos, Chris Eaton, 2011-10-22 Big Data represents a new era in data exploration and utilization, and IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is leveraging open source Big Data technology, infused with IBM technologies, to deliver a robust, secure, highly available, enterprise-class Big Data platform. The three defining characteristics of Big Data--volume, variety, and velocity--are discussed. You'll get a primer on Hadoop and how IBM is hardening it for the enterprise, and learn when to leverage IBM InfoSphere BigInsights (Big Data at rest) and IBM InfoSphere Streams (Big Data in motion) technologies. Industry use cases are also included in this practical guide. Learn how IBM hardens Hadoop for enterprise-class scalability and reliability Gain insight into IBM's unique in-motion and at-rest Big Data analytics platform Learn tips and tricks for Big Data use cases and solutions Get a quick Hadoop primer
The Bachelor - Reddit
Oct 19, 2023 · We do not allow posts sharing your social media interactions with BN members. Examples include DMs between yourself and a Bachelor Nation member, comments made by …

Can I apply for a PhD program right after my Bachelors degree?
Mar 9, 2023 · Hello everyone, I have finished my bachelor in Engineering and I want to apply for a PhD program but I don't have any publications. So can anyone tell me is this a good idea or …

Why is it called a “Bachelor’s” degree? : r/AskHistorians - Reddit
Feb 19, 2019 · In Latin, “bachelor” is baccalaureus (or baccalarius).Flattering themselves, medieval scholars thought it came from the phrase bacca lauri, which means “laurel berry,” …

Is a Bachelor’s degree in Information Technology worth it ... - Reddit
Mar 1, 2023 · A Bachelor's degree in Information Technology can be a valuable asset in today's job market. You know what, a bachelor's degree in information technology can put you in a …

MUST Do’s? (& Dont’s) - Vegas Bachelor Party : r/vegas - Reddit
May 26, 2023 · Best tip I can offer…. For the love god. Don’t try and cram a whole bachelor party in one room. Besides the cost of finding a suite big enough, it’s just going to be uncomfortable. …

Game Changer 5.07 Episode Discussion: "The Bachelor (Part 2)"
Feb 21, 2023 · The next episode of Game Changer, "The Bachelor (Part 2)", is out NOW, starring Sam Reich and Grant O'Brien! What were your thoughts on this episode? Contestants: Abel …

Did the phrase “confirmed bachelor” always imply ... - Reddit
Apr 19, 2018 · Prior to the 1970s, the term "confirmed bachelor" was much more commonly used to apply to a (presumed heterosexual) man possessed of what The Nation (in 1913) termed a …

What types of jobs can I pursue with a Bachelor's Degree in
Hello, I (22F) just graduated from college with a Bachelor's degree in Psychology. I have decided to take a year off of school before going back to get my Master's. I had planned to start …

What are the pros and cons of getting 2 bachelor degrees?
Dec 4, 2020 · Hi r/college, so I know that the obvious pros of getting 2 bachelor degrees are of course a wider breadth of knowledge, more skills, more opportunities, etc. However I'm also …

Is SNHU (online) actually as good of a college as it seems?
Oct 23, 2022 · I found SNHU to be equally as rigorous but studying online required me to become a better self-learner. The flexibility was certainly worth the switch and I saved tens of …

The Bachelor - Reddit
Oct 19, 2023 · We do not allow posts sharing your social media interactions with BN members. Examples include DMs between yourself and a Bachelor Nation member, comments made by …

Can I apply for a PhD program right after my Bachelors degree?
Mar 9, 2023 · Hello everyone, I have finished my bachelor in Engineering and I want to apply for a PhD program but I don't have any publications. So can anyone tell me is this a good idea or …

Why is it called a “Bachelor’s” degree? : r/AskHistorians - Reddit
Feb 19, 2019 · In Latin, “bachelor” is baccalaureus (or baccalarius).Flattering themselves, medieval scholars thought it came from the phrase bacca lauri, which means “laurel berry,” …

Is a Bachelor’s degree in Information Technology worth it ... - Reddit
Mar 1, 2023 · A Bachelor's degree in Information Technology can be a valuable asset in today's job market. You know what, a bachelor's degree in information technology can put you in a …

MUST Do’s? (& Dont’s) - Vegas Bachelor Party : r/vegas - Reddit
May 26, 2023 · Best tip I can offer…. For the love god. Don’t try and cram a whole bachelor party in one room. Besides the cost of finding a suite big enough, it’s just going to be uncomfortable. …

Game Changer 5.07 Episode Discussion: "The Bachelor (Part 2)"
Feb 21, 2023 · The next episode of Game Changer, "The Bachelor (Part 2)", is out NOW, starring Sam Reich and Grant O'Brien! What were your thoughts on this episode? Contestants: Abel …

Did the phrase “confirmed bachelor” always imply ... - Reddit
Apr 19, 2018 · Prior to the 1970s, the term "confirmed bachelor" was much more commonly used to apply to a (presumed heterosexual) man possessed of what The Nation (in 1913) termed a …

What types of jobs can I pursue with a Bachelor's Degree in
Hello, I (22F) just graduated from college with a Bachelor's degree in Psychology. I have decided to take a year off of school before going back to get my Master's. I had planned to start …

What are the pros and cons of getting 2 bachelor degrees?
Dec 4, 2020 · Hi r/college, so I know that the obvious pros of getting 2 bachelor degrees are of course a wider breadth of knowledge, more skills, more opportunities, etc. However I'm also …

Is SNHU (online) actually as good of a college as it seems?
Oct 23, 2022 · I found SNHU to be equally as rigorous but studying online required me to become a better self-learner. The flexibility was certainly worth the switch and I saved tens of …