Advertisement
ball state data science: Foundations of Data Science Avrim Blum, John Hopcroft, Ravindran Kannan, 2020-01-23 This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data. |
ball state data science: Data Science and SDGs Bikas Kumar Sinha, Md. Nurul Haque Mollah, 2021-08-13 The book presents contributions on statistical models and methods applied, for both data science and SDGs, in one place. Measuring and controlling data of SDGs, data driven measurement of progress needs to be distributed to stakeholders. In this situation, the techniques used in data science, specially, in the big data analytics, play an important role rather than the traditional data gathering and manipulation techniques. This book fills this space through its twenty contributions. The contributions have been selected from those presented during the 7th International Conference on Data Science and Sustainable Development Goals organized by the Department of Statistics, University of Rajshahi, Bangladesh; and cover topics mainly on SDGs, bioinformatics, public health, medical informatics, environmental statistics, data science and machine learning. The contents of the volume would be useful to policymakers, researchers, government entities, civil society, and nonprofit organizations for monitoring and accelerating the progress of SDGs. |
ball state data science: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
ball state data science: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code |
ball state data science: Next Generation Data Science Henry Han, Erich Baker, 2024 Zusammenfassung: This book constitutes the refereed proceedings of the Sescond Southwest Data Science Conference, SDSC 2023, held in Waco, TX, USa, during March 24-25, 2023. The 16 full and 1 short paper included in this book were carefully reviewed and selected from 72 submissions. They were oragnized in topical sections named: Business social and foundation data science; and applied data science, artifiicial intelligence and data engineering. |
ball state data science: Recent Advances in Data Science Henry Han, Tie Wei, Wenbin Liu, Fei Han, 2020-09-28 This book constitutes selected papers of the Third International Conference on Data Science, Medicine and Bioinformatics, IDMB 2019, held in Nanning, China, in June 2019. The 19 full papers and 1 short paper were carefully reviewed and selected from 93 submissions. The papers are organized according to the following topical sections: business data science: fintech, management, and analytics.- health and biological data science.- novel data science theory and applications. |
ball state data science: Data Science Ethics David Martens, 2022-03-24 Data science ethics is all about what is right and wrong when conducting data science. Data science has so far been primarily used for positive outcomes for businesses and society. However, just as with any technology, data science has also come with some negative consequences: an increase of privacy invasion, data-driven discrimination against sensitive groups, and decision making by complex models without explanations. While data scientists and business managers are not inherently unethical, they are not trained to weigh the ethical considerations that come from their work - Data Science Ethics addresses this increasingly significant gap and highlights different concepts and techniques that aid understanding, ranging from k-anonymity and differential privacy to homomorphic encryption and zero-knowledge proofs to address privacy concerns, techniques to remove discrimination against sensitive groups, and various explainable AI techniques. Real-life cautionary tales further illustrate the importance and potential impact of data science ethics, including tales of racist bots, search censoring, government backdoors, and face recognition. The book is punctuated with structured exercises that provide hypothetical scenarios and ethical dilemmas for reflection that teach readers how to balance the ethical concerns and the utility of data. |
ball state data science: The Data Science Design Manual Steven S. Skiena, 2017-07-01 This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com) |
ball state data science: Recent Advances in Next-Generation Data Science Henry Han (Computer scientist), 2024 This book constitutes the refereed proceedings of the Third Southwest Data Science Conference, on Recent advances in next-generation data science, SDSC 2024, held in Waco, TX, USA, in March 22, 2024. The 15 full papers presented were carefully reviewed and selected from 59 submissions. These papers focus on AI security in next-generation data science and address a range of challenges, from protecting sensitive data to mitigating adversarial threats. |
ball state data science: Data Science and Big Data Analytics EMC Education Services, 2014-12-19 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today! |
ball state data science: Effective Data Science Infrastructure Ville Tuulos, 2022-08-30 Simplify data science infrastructure to give data scientists an efficient path from prototype to production. In Effective Data Science Infrastructure you will learn how to: Design data science infrastructure that boosts productivity Handle compute and orchestration in the cloud Deploy machine learning to production Monitor and manage performance and results Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, Conda, and Docker Architect complex applications for multiple teams and large datasets Customize and grow data science infrastructure Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you’ll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You’ll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python. The author is donating proceeds from this book to charities that support women and underrepresented groups in data science. About the technology Growing data science projects from prototype to production requires reliable infrastructure. Using the powerful new techniques and tooling in this book, you can stand up an infrastructure stack that will scale with any organization, from startups to the largest enterprises. About the book Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company’s specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems. What's inside Handle compute and orchestration in the cloud Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, AWS, and the Python data ecosystem Architect complex applications that require large datasets and models, and a team of data scientists About the reader For infrastructure engineers and engineering-minded data scientists who are familiar with Python. About the author At Netflix, Ville Tuulos designed and built Metaflow, a full-stack framework for data science. Currently, he is the CEO of a startup focusing on data science infrastructure. Table of Contents 1 Introducing data science infrastructure 2 The toolchain of data science 3 Introducing Metaflow 4 Scaling with the compute layer 5 Practicing scalability and performance 6 Going to production 7 Processing data 8 Using and operating models 9 Machine learning with the full stack |
ball state data science: Basketball Data Science Paola Zuccolotto, Marica Manisera, 2020-01-03 Using data from one season of NBA games, Basketball Data Science: With Applications in R is the perfect book for anyone interested in learning and applying data analytics in basketball. Whether assessing the spatial performance of an NBA player's shots or doing an analysis of the impact of high pressure game situations on the probability of scoring, this book discusses a variety of case studies and hands-on examples using a custom R package. The codes are supplied so readers can reproduce the analyses themselves or create their own. Assuming a basic statistical knowledge, Basketball Data Science with R is suitable for students, technicians, coaches, data analysts and applied researchers. Features: One of the first books to provide statistical and data mining methods for the growing field of analytics in basketball Presents tools for modelling graphs and figures to visualize the data Includes real world case studies and examples, such as estimations of scoring probability using the Golden State Warriors as a test case Provides the source code and data so readers can do their own analyses on NBA teams and players |
ball state data science: High-Dimensional Probability Roman Vershynin, 2018-09-27 An integrated package of powerful probabilistic tools and key applications in modern mathematical data science. |
ball state data science: Data Analytics in Professional Soccer Daniel Link, 2018-02-16 Daniel Link explores how data analytics can be used for studying performance in soccer. Based on spatiotemporal data from the German Bundesliga, the six individual studies in this book present innovative mathematical approaches for game analysis and player assessment. The findings can support coaches and analysts to improve performance of their athletes and inspire other researchers to advance the research field of sports analytics. |
ball state data science: The Recent Advances in Transdisciplinary Data Science Henry Han, Erich Baker, 2023-01-28 This book constitutes the refereed proceedings of the First Southwest Data Science Conference, on The Recent Advances in Transdisciplinary Data Science, SDSC 2022, held in Waco, TX, USA, during March 25–26, 2022. The 14 full papers and 2 short papers included in this book were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Business and social data science; Health and biological data science; Applied data science, artificial intelligence, and data engineering. |
ball state data science: Data Science Pinle Qin, Hongzhi Wang, Guanglu Sun, Zeguang Lu, 2020-08-20 This two volume set (CCIS 1257 and 1258) constitutes the refereed proceedings of the 6th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2020 held in Taiyuan, China, in September 2020. The 98 papers presented in these two volumes were carefully reviewed and selected from 392 submissions. The papers are organized in topical sections: database, machine learning, network, graphic images, system, natural language processing, security, algorithm, application, and education. |
ball state data science: Data Science in Engineering Vol. 10 Thomas Matarazzo, |
ball state data science: Smarter Data Science Neal Fishman, Cole Stryker, 2020-04-09 Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how. Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive. Smarter Data Science helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments. When an organization manages its data effectively, its data science program becomes a fully scalable function that’s both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise. By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements: Improving time-to-value with infused AI models for common use cases Optimizing knowledge work and business processes Utilizing AI-based business intelligence and data visualization Establishing a data topology to support general or highly specialized needs Successfully completing AI projects in a predictable manner Coordinating the use of AI from any compute node. From inner edges to outer edges: cloud, fog, and mist computing When they climb the ladder presented in this book, businesspeople and data scientists alike will be able to improve and foster repeatable capabilities. They will have the knowledge to maximize their AI and data assets for the benefit of their organizations. |
ball state data science: Applied Big Data Analytics in Operations Management Kumar, Manish, 2016-09-30 Operations management is a tool by which companies can effectively meet customers’ needs using the least amount of resources necessary. With the emergence of sensors and smart metering, big data is becoming an intrinsic part of modern operations management. Applied Big Data Analytics in Operations Management enumerates the challenges and creative solutions and tools to apply when using big data in operations management. Outlining revolutionary concepts and applications that help businesses predict customer behavior along with applications of artificial neural networks, predictive analytics, and opinion mining on business management, this comprehensive publication is ideal for IT professionals, software engineers, business professionals, managers, and students of management. |
ball state data science: Analytics, Data Science, and Artificial Intelligence Ramesh Sharda, Dursun Delen, Efraim Turban, 2020-03-06 For courses in decision support systems, computerized decision-making tools, and management support systems. Market-leading guide to modern analytics, for better business decisionsAnalytics, Data Science, & Artificial Intelligence: Systems for Decision Support is the most comprehensive introduction to technologies collectively called analytics (or business analytics) and the fundamental methods, techniques, and software used to design and develop these systems. Students gain inspiration from examples of organisations that have employed analytics to make decisions, while leveraging the resources of a companion website. With six new chapters, the 11th edition marks a major reorganisation reflecting a new focus -- analytics and its enabling technologies, including AI, machine-learning, robotics, chatbots, and IoT. |
ball state data science: Data Mining: Concepts and Techniques Jiawei Han, Micheline Kamber, Jian Pei, 2011-06-09 Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data |
ball state data science: Interpretable Machine Learning Christoph Molnar, 2020 This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project. |
ball state data science: School, Family, and Community Partnerships Joyce L. Epstein, Mavis G. Sanders, Steven B. Sheldon, Beth S. Simon, Karen Clark Salinas, Natalie Rodriguez Jansorn, Frances L. Van Voorhis, Cecelia S. Martin, Brenda G. Thomas, Marsha D. Greenfeld, Darcy J. Hutchins, Kenyatta J. Williams, 2018-07-19 Strengthen programs of family and community engagement to promote equity and increase student success! When schools, families, and communities collaborate and share responsibility for students′ education, more students succeed in school. Based on 30 years of research and fieldwork, the fourth edition of the bestseller School, Family, and Community Partnerships: Your Handbook for Action, presents tools and guidelines to help develop more effective and more equitable programs of family and community engagement. Written by a team of well-known experts, it provides a theory and framework of six types of involvement for action; up-to-date research on school, family, and community collaboration; and new materials for professional development and on-going technical assistance. Readers also will find: Examples of best practices on the six types of involvement from preschools, and elementary, middle, and high schools Checklists, templates, and evaluations to plan goal-linked partnership programs and assess progress CD-ROM with slides and notes for two presentations: A new awareness session to orient colleagues on the major components of a research-based partnership program, and a full One-Day Team Training Workshop to prepare school teams to develop their partnership programs. As a foundational text, this handbook demonstrates a proven approach to implement and sustain inclusive, goal-linked programs of partnership. It shows how a good partnership program is an essential component of good school organization and school improvement for student success. This book will help every district and all schools strengthen and continually improve their programs of family and community engagement. |
ball state data science: Computational Topology for Data Analysis Tamal Krishna Dey, Yusu Wang, 2022-03-10 Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks. |
ball state data science: Machine Learning, Optimization, and Data Science Giuseppe Nicosia, Panos Pardalos, Renato Umeton, Giovanni Giuffrida, Vincenzo Sciacca, 2020-01-03 This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019. The 54 full papers presented were carefully reviewed and selected from 158 submissions. The papers cover topics in the field of machine learning, artificial intelligence, reinforcement learning, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications. |
ball state data science: Data Mining for Business Analytics Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel, 2019-10-14 Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R |
ball state data science: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results |
ball state data science: Analytics Phil Simon, 2017-07-03 For years, organizations have struggled to make sense out of their data. IT projects designed to provide employees with dashboards, KPIs, and business-intelligence tools often take a year or more to reach the finish line...if they get there at all. This has always been a problem. Today, though, it's downright unacceptable. The world changes faster than ever. Speed has never been more important. By adhering to antiquated methods, firms lose the ability to see nascent trends—and act upon them until it's too late. But what if the process of turning raw data into meaningful insights didn't have to be so painful, time-consuming, and frustrating? What if there were a better way to do analytics? Fortunately, you're in luck... Analytics: The Agile Way is the eighth book from award-winning author and Arizona State University professor Phil Simon. Analytics: The Agile Way demonstrates how progressive organizations such as Google, Nextdoor, and others approach analytics in a fundamentally different way. They are applying the same Agile techniques that software developers have employed for years. They have replaced large batches in favor of smaller ones...and their results will astonish you. Through a series of case studies and examples, Analytics: The Agile Way demonstrates the benefits of this new analytics mind-set: superior access to information, quicker insights, and the ability to spot trends far ahead of your competitors. |
ball state data science: Data Mining and Predictive Analytics Daniel T. Larose, 2015-02-19 Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives. |
ball state data science: Data Analytics in Digital Humanities Shalin Hai-Jew, 2017-05-03 This book covers computationally innovative methods and technologies including data collection and elicitation, data processing, data analysis, data visualizations, and data presentation. It explores how digital humanists have harnessed the hypersociality and social technologies, benefited from the open-source sharing not only of data but of code, and made technological capabilities a critical part of humanities work. Chapters are written by researchers from around the world, bringing perspectives from diverse fields and subject areas. The respective authors describe their work, their research, and their learning. Topics include semantic web for cultural heritage valorization, machine learning for parody detection by classification, psychological text analysis, crowdsourcing imagery coding in natural disasters, and creating inheritable digital codebooks.Designed for researchers and academics, this book is suitable for those interested in methodologies and analytics that can be applied in literature, history, philosophy, linguistics, and related disciplines. Professionals such as librarians, archivists, and historians will also find the content informative and instructive. |
ball state data science: An Introduction to Data Science Jeffrey S. Saltz, Jeffrey M. Stanton, 2017-08-25 An Introduction to Data Science is an easy-to-read data science textbook for those with no prior coding knowledge. It features exercises at the end of each chapter, author-generated tables and visualizations, and R code examples throughout. |
ball state data science: Entertainment Science Thorsten Hennig-Thurau, Mark B. Houston, 2018-08-01 The entertainment industry has long been dominated by legendary screenwriter William Goldman’s “Nobody-Knows-Anything” mantra, which argues that success is the result of managerial intuition and instinct. This book builds the case that combining such intuition with data analytics and rigorous scholarly knowledge provides a source of sustainable competitive advantage – the same recipe for success that is behind the rise of firms such as Netflix and Spotify, but has also fueled Disney’s recent success. Unlocking a large repertoire of scientific studies by business scholars and entertainment economists, the authors identify essential factors, mechanisms, and methods that help a new entertainment product succeed. The book thus offers a timely alternative to “Nobody-Knows” decision-making in the digital era: while coupling a good idea with smart data analytics and entertainment theory cannot guarantee a hit, it systematically and substantially increases the probability of success in the entertainment industry. Entertainment Science is poised to inspire fresh new thinking among managers, students of entertainment, and scholars alike. Thorsten Hennig-Thurau and Mark B. Houston – two of our finest scholars in the area of entertainment marketing – have produced a definitive research-based compendium that cuts across various branches of the arts to explain the phenomena that provide consumption experiences to capture the hearts and minds of audiences. Morris B. Holbrook, W. T. Dillard Professor Emeritus of Marketing, Columbia University Entertainment Science is a must-read for everyone working in the entertainment industry today, where the impact of digital and the use of big data can’t be ignored anymore. Hennig-Thurau and Houston are the scientific frontrunners of knowledge that the industry urgently needs. Michael Kölmel, media entrepreneur and Honorary Professor of Media Economics at University of Leipzig Entertainment Science’s winning combination of creativity, theory, and data analytics offers managers in the creative industries and beyond a novel, compelling, and comprehensive approach to support their decision-making. This ground-breaking book marks the dawn of a new Golden Age of fruitful conversation between entertainment scholars, managers, and artists. Allègre Hadida, Associate Professor in Strategy, University of Cambridge |
ball state data science: Advances in Feature Selection for Data and Pattern Recognition Urszula Stańczyk, Beata Zielosko, Lakhmi C. Jain, 2017-11-16 This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved. Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners. |
ball state data science: Strengthening Forensic Science in the United States National Research Council, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Policy and Global Affairs, Committee on Science, Technology, and Law, Committee on Identifying the Needs of the Forensic Sciences Community, 2009-07-29 Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators. |
ball state data science: Classroom Literacy Assessment Jeanne R. Paratore, Rachel L. McCormack, 2007-04-05 Showcasing assessment practices that can help teachers plan effective instruction, this book addresses the real-world complexities of teaching literacy in grades K-8. Leading contributors present trustworthy approaches that examine learning processes as well as learning products, that yield information on how the learning environment can be improved, and that are conducted in the context of authentic reading and writing activities. The volume provides workable, nuts-and-bolts ideas for incorporating assessment into instruction in all major literacy domains and with diverse learners, including students in high-poverty schools and those with special learning needs. It is illustrated throughout with helpful concrete examples. |
ball state data science: Educational and Psychological Measurement W. Holmes Finch, Brian F. French, 2018-10-12 This new text provides the most current coverage of measurement and psychometrics in a single volume. Authors W. Holmes Finch and Brian F. French first review the basics of psychometrics and measurement, before moving on to more complex topics such as equating and scaling, item response theory, standard setting, and computer adaptive testing. Also included are discussions of cutting-edge topics utilized by practitioners in the field, such as automated test development, game-based assessment, and automated test scoring. This book is ideal for use as a primary text for graduate-level psychometrics/measurement courses, as well as for researchers in need of a broad resource for understanding test theory. Features: How it Works and Psychometrics in the Real World boxes break down important concepts through worked examples, and show how theory can be applied to practice. End-of-chapter exercises allow students to test their comprehension of the material, while suggested readings and website links provide resources for further investigation. A collection of free online resources include the full output from R, SPSS, and Excel for each of the analyses conducted in the book, as well as additional exercises, sample homework assignments, answer keys, and PowerPoint lecture slides. |
ball state data science: Introducing Data Science Davy Cielen, Arno Meysman, 2016-05-02 Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user |
ball state data science: Critical Mass Philip Ball, 2006-05-16 Are there any laws of nature that influence the ways in which humans behave and organize themselves? In the seventeenth century, tired of the civil war ravaging England, Thomas Hobbes decided that he would work out what kind of government was needed for a stable society. His approach was based not on utopian wishful thinking but rather on Galileo's mechanics to construct a theory of government from first principles. His solution is unappealing to today's society, yet Hobbes had sparked a new way of thinking about human behavior in looking for the scientific rules of society. Adam Smith, Immanuel Kant, Auguste Comte, and John Stuart Mill pursued this idea from different political perspectives. Little by little, however, social and political philosophy abandoned a scientific approach. Today, physics is enjoying a revival in the social, political and economic sciences. Ball shows how much we can understand of human behavior when we cease to try to predict and analyze the behavior of individuals and instead look to the impact of individual decisions-whether in circumstances of cooperation or conflict-can have on our laws, institutions and customs. Lively and compelling, Critical Mass is the first book to bring these new ideas together and to show how they fit within the broader historical context of a rational search for better ways to live. |
ball state data science: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
ball state data science: Data Sketches Nadieh Bremer, Shirley Wu, 2021-02-09 In Data Sketches, Nadieh Bremer and Shirley Wu document the deeply creative process behind 24 unique data visualization projects, and they combine this with powerful technical insights which reveal the mindset behind coding creatively. Exploring 12 different themes – from the Olympics to Presidents & Royals and from Movies to Myths & Legends – each pair of visualizations explores different technologies and forms, blurring the boundary between visualization as an exploratory tool and an artform in its own right. This beautiful book provides an intimate, behind-the-scenes account of all 24 projects and shares the authors’ personal notes and drafts every step of the way. The book features: Detailed information on data gathering, sketching, and coding data visualizations for the web, with screenshots of works-in-progress and reproductions from the authors’ notebooks Never-before-published technical write-ups, with beginner-friendly explanations of core data visualization concepts Practical lessons based on the data and design challenges overcome during each project Full-color pages, showcasing all 24 final data visualizations This book is perfect for anyone interested or working in data visualization and information design, and especially those who want to take their work to the next level and are inspired by unique and compelling data-driven storytelling. |
Home - Ball
Ball Corporation is the world’s leading provider of innovative, sustainable aluminum packaging for beverage, personal care and household products, as well as other technologies and services.
Our Company - Ball
Ball Corporation supplies innovative, sustainable aluminum packaging solutions for beverage, personal care and household product customers. Founded in 1880, the company employs …
Packaging - Ball
Ball Corporation is the world’s leading provider of innovative, sustainable aluminum packaging for beverage, personal care and household products, as well as other technologies and services.
Ball Reports First Quarter 2025 Results
May 6, 2025 · Ball's first quarter 2025 comparable net earnings were $216 million, or 76 cents per diluted share compared to $217 million, or 68 cents per diluted share in 2024. "We delivered …
Ball Corporation to Sell Ball Aluminum Cup® Assets, Forming
WESTMINSTER, Colo., March 21, 2025 /PRNewswire/ -- Ball Corporation (NYSE: BALL), the leading global provider of sustainable aluminum packaging solutions for beverage and …
Sustainability at Ball Corporation
In 2019 we set an ambitious target of a 55 percent absolute reduction in Ball’s operational greenhouse gas (GHG) emissions by 2030, despite expectations that our business would …
Locations Map - Ball
Ball Corporation is the world’s leading provider of innovative, sustainable aluminum packaging for beverage, personal care and household products, as well as other technologies and services.
Careers - Ball
At Ball, you can do more and be more. We work to create an enduring impact by finding lasting, circular solutions that grow value for our business, customers, shareholders and the world. …
Ball Corporation
Search for jobs by keyword or location or simply click "Search Jobs" below to see all jobs at Ball Corporation.
Beverage Bottles - Ball
Ball aluminum bottles are a game-changer for sporting events, concert venues and the always active beverage consumer. From water to beer, kombucha to hard seltzer, your customers can …
Home - Ball
Ball Corporation is the world’s leading provider of innovative, sustainable aluminum packaging for beverage, personal care and household products, as well as other technologies and services.
Our Company - Ball
Ball Corporation supplies innovative, sustainable aluminum packaging solutions for beverage, personal care and household product customers. Founded in 1880, the company employs …
Packaging - Ball
Ball Corporation is the world’s leading provider of innovative, sustainable aluminum packaging for beverage, personal care and household products, as well as other technologies and services.
Ball Reports First Quarter 2025 Results
May 6, 2025 · Ball's first quarter 2025 comparable net earnings were $216 million, or 76 cents per diluted share compared to $217 million, or 68 cents per diluted share in 2024. "We delivered …
Ball Corporation to Sell Ball Aluminum Cup® Assets, Forming
WESTMINSTER, Colo., March 21, 2025 /PRNewswire/ -- Ball Corporation (NYSE: BALL), the leading global provider of sustainable aluminum packaging solutions for beverage and …
Sustainability at Ball Corporation
In 2019 we set an ambitious target of a 55 percent absolute reduction in Ball’s operational greenhouse gas (GHG) emissions by 2030, despite expectations that our business would …
Locations Map - Ball
Ball Corporation is the world’s leading provider of innovative, sustainable aluminum packaging for beverage, personal care and household products, as well as other technologies and services.
Careers - Ball
At Ball, you can do more and be more. We work to create an enduring impact by finding lasting, circular solutions that grow value for our business, customers, shareholders and the world. Join …
Ball Corporation
Search for jobs by keyword or location or simply click "Search Jobs" below to see all jobs at Ball Corporation.
Beverage Bottles - Ball
Ball aluminum bottles are a game-changer for sporting events, concert venues and the always active beverage consumer. From water to beer, kombucha to hard seltzer, your customers can …