Advertisement
big bang data science: Introducing Data Science Davy Cielen, Arno Meysman, 2016-05-02 Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user |
big bang data science: The Big R-Book Philippe J. S. De Brouwer, 2020-10-27 Introduces professionals and scientists to statistics and machine learning using the programming language R Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science. The Big R-Book for Professionals: From Data Science to Learning Machines and Reporting with R includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling. Part 5 teaches readers about exploring data. In Part 6 we learn to build models, Part 7 introduces the reader to the reality in companies, Part 8 covers reports and interactive applications and finally Part 9 introduces the reader to big data and performance computing. It also includes some helpful appendices. Provides a practical guide for non-experts with a focus on business users Contains a unique combination of topics including an introduction to R, machine learning, mathematical models, data wrangling, and reporting Uses a practical tone and integrates multiple topics in a coherent framework Demystifies the hype around machine learning and AI by enabling readers to understand the provided models and program them in R Shows readers how to visualize results in static and interactive reports Supplementary materials includes PDF slides based on the book’s content, as well as all the extracted R-code and is available to everyone on a Wiley Book Companion Site The Big R-Book is an excellent guide for science technology, engineering, or mathematics students who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models. |
big bang data science: Data Science Strategy For Dummies Ulrika Jägare, 2019-06-12 All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value. |
big bang data science: Understanding Information Alfons Josef Schuster, 2017-07-26 The motivation of this edited book is to generate an understanding about information, related concepts and the roles they play in the modern, technology permeated world. In order to achieve our goal, we observe how information is understood in domains, such as cosmology, physics, biology, neuroscience, computer science, artificial intelligence, the Internet, big data, information society, or philosophy. Together, these observations form an integrated view so that readers can better understand this exciting building-block of modern-day society. On the surface, information is a relatively straightforward and intuitive concept. Underneath, however, information is a relatively versatile and mysterious entity. For instance, the way a physicist looks at information is not necessarily the same way as that of a biologist, a neuroscientist, a computer scientist, or a philosopher. Actually, when it comes to information, it is common that each field has its domain specific views, motivations, interpretations, definitions, methods, technologies, and challenges. With contributions by authors from a wide range of backgrounds, Understanding Information: From the Big Bang to Big Data will appeal to readers interested in the impact of ‘information’ on modern-day life from a variety of perspectives. |
big bang data science: Data Science Doug Rose, 2016-11-17 Learn how to build a data science team within your organization rather than hiring from the outside. Teach your team to ask the right questions to gain actionable insights into your business. Most organizations still focus on objectives and deliverables. Instead, a data science team is exploratory. They use the scientific method to ask interesting questions and run small experiments. Your team needs to see if the data illuminate their questions. Then, they have to use critical thinking techniques to justify their insights and reasoning. They should pivot their efforts to keep their insights aligned with business value. Finally, your team needs to deliver these insights as a compelling story. Insight!: How to Build Data Science Teams that Deliver Real Business Value shows that the most important thing you can do now is help your team think about data. Management coach Doug Rose walks you through the process of creating and managing effective data science teams. You will learn how to find the right people inside your organization and equip them with the right mindset. The book has three overarching concepts: You should mine your own company for talent. You can’t change your organization by hiring a few data science superheroes. You should form small, agile-like data teams that focus on delivering valuable insights early and often. You can make real changes to your organization by telling compelling data stories. These stories are the best way to communicate your insights about your customers, challenges, and industry. What Your Will Learn: Create data science teams from existing talent in your organization to cost-efficiently extract maximum business value from your organization’s data Understand key data science terms and concepts Follow practical guidance to create and integrate an effective data science team with key roles and the responsibilities for each team member Utilize the data science life cycle (DSLC) to model essential processes and practices for delivering value Use sprints and storytelling to help your team stay on track and adapt to new knowledge Who This Book Is For Data science project managers and team leaders. The secondary readership is data scientists, DBAs, analysts, senior management, HR managers, and performance specialists. |
big bang data science: The Big Bang Never Happened Eric Lerner, 1992-10-27 A mesmerizing challenge to orthodox cosmology with powerful implications not only for cosmology itself but also for our notions of time, God, and human nature -- with a new Preface addressing the latest developments in the field. Far-ranging and provocative, The Big Bang Never Happened is more than a critique of one of the primary theories of astronomy -- that the universe appeared out of nothingness in a single cataclysmic explosion ten to twenty billion years ago. Drawing on new discoveries in particle physics and thermodynamics as well as on readings in history and philosophy, Eric J. Lerner confronts the values behind the Big Bang theory: the belief that mathematical formulae are superior to empirical observation; that the universe is finite and decaying; and that it could only come into being through some outside force. With inspiring boldness and scientific rigor, he offers a brilliantly orchestrated argument that generates explosive intellectual debate. |
big bang data science: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
big bang data science: Data Science Ivo D. Dinov, Milen Velchev Velev, 2021-12-06 The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this asymmetry requires novel and revolutionary scientific methods and effective human and artificial intelligence interfaces. By lifting the concept of time from a positive real number to a 2D complex time (kime), this book uncovers a connection between artificial intelligence (AI), data science, and quantum mechanics. It proposes a new mathematical foundation for data science based on raising the 4D spacetime to a higher dimension where longitudinal data (e.g., time-series) are represented as manifolds (e.g., kime-surfaces). This new framework enables the development of innovative data science analytical methods for model-based and model-free scientific inference, derived computed phenotyping, and statistical forecasting. The book provides a transdisciplinary bridge and a pragmatic mechanism to translate quantum mechanical principles, such as particles and wavefunctions, into data science concepts, such as datum and inference-functions. It includes many open mathematical problems that still need to be solved, technological challenges that need to be tackled, and computational statistics algorithms that have to be fully developed and validated. Spacekime analytics provide mechanisms to effectively handle, process, and interpret large, heterogeneous, and continuously-tracked digital information from multiple sources. The authors propose computational methods, probability model-based techniques, and analytical strategies to estimate, approximate, or simulate the complex time phases (kime directions). This allows transforming time-varying data, such as time-series observations, into higher-dimensional manifolds representing complex-valued and kime-indexed surfaces (kime-surfaces). The book includes many illustrations of model-based and model-free spacekime analytic techniques applied to economic forecasting, identification of functional brain activation, and high-dimensional cohort phenotyping. Specific case-study examples include unsupervised clustering using the Michigan Consumer Sentiment Index (MCSI), model-based inference using functional magnetic resonance imaging (fMRI) data, and model-free inference using the UK Biobank data archive. The material includes mathematical, inferential, computational, and philosophical topics such as Heisenberg uncertainty principle and alternative approaches to large sample theory, where a few spacetime observations can be amplified by a series of derived, estimated, or simulated kime-phases. The authors extend Newton-Leibniz calculus of integration and differentiation to the spacekime manifold and discuss possible solutions to some of the problems of time. The coverage also includes 5D spacekime formulations of classical 4D spacetime mathematical equations describing natural laws of physics, as well as, statistical articulation of spacekime analytics in a Bayesian inference framework. The steady increase of the volume and complexity of observed and recorded digital information drives the urgent need to develop novel data analytical strategies. Spacekime analytics represents one new data-analytic approach, which provides a mechanism to understand compound phenomena that are observed as multiplex longitudinal processes and computationally tracked by proxy measures. This book may be of interest to academic scholars, graduate students, postdoctoral fellows, artificial intelligence and machine learning engineers, biostatisticians, econometricians, and data analysts. Some of the material may also resonate with philosophers, futurists, astrophysicists, space industry technicians, biomedical researchers, health practitioners, and the general public. |
big bang data science: God and the Big Bang (1st Edition) Daniel C. Matt, 2011-11-23 Mysticism and science: What do they have in common? How can one enlighten the other? By drawing on modern cosmology and ancient Kabbalah, Matt shows how science and religion can together enrich our spiritual awareness and help us recover a sense of wonder and find our place in the universe. Drawing on the insights of physics and Jewish mysticism, Daniel Matt uncovers the sense of wonder and oneness that connects us with the universe and God. He describes in understandable terms the parallels between modern cosmology and ancient Kabbalah. He shows how science and religion together can enrich our spiritual understanding. We “embody the energy” of the big bang, writes Matt. Furthermore, “God is not somewhere else, hidden from us. God is right here hidden from us.” To discover the presence of God, Matt draws on both science and theology, fact and belief, and on the truths embodied in Buddhism, Hinduism, Islam and Christianity, as well as Judaism. A rich dialogue between the physical and the spiritual, God & the Big Bangtakes us on a deeply personal, thoughtful and inspiring journey that helps us find our place in the universe—and the universe in ourselves. |
big bang data science: Applying Data Science Arthur K. Kordon, 2020-09-12 This book offers practical guidelines on creating value from the application of data science based on selected artificial intelligence methods. In Part I, the author introduces a problem-driven approach to implementing AI-based data science and offers practical explanations of key technologies: machine learning, deep learning, decision trees and random forests, evolutionary computation, swarm intelligence, and intelligent agents. In Part II, he describes the main steps in creating AI-based data science solutions for business problems, including problem knowledge acquisition, data preparation, data analysis, model development, and model deployment lifecycle. Finally, in Part III the author illustrates the power of AI-based data science with successful applications in manufacturing and business. He also shows how to introduce this technology in a business setting and guides the reader on how to build the appropriate infrastructure and develop the required skillsets. The book is ideal for data scientists who will implement the proposed methodology and techniques in their projects. It is also intended to help business leaders and entrepreneurs who want to create competitive advantage by using AI-based data science, as well as academics and students looking for an industrial view of this discipline. |
big bang data science: God of the Big Bang PhD Leslie Wickman, 2015-04-14 Ph.D. expert in astronautical and aeronautical engineering provides good news for believers — new scientific research supports the idea that the universe was created by God. |
big bang data science: Data Science Foundations Fionn Murtagh, 2017-09-22 Data Science Foundations is most welcome and, indeed, a piece of literature that the field is very much in need of...quite different from most data analytics texts which largely ignore foundational concepts and simply present a cookbook of methods...a very useful text and I would certainly use it in my teaching. - Mark Girolami, Warwick University Data Science encompasses the traditional disciplines of mathematics, statistics, data analysis, machine learning, and pattern recognition. This book is designed to provide a new framework for Data Science, based on a solid foundation in mathematics and computational science. It is written in an accessible style, for readers who are engaged with the subject but not necessarily experts in all aspects. It includes a wide range of case studies from diverse fields, and seeks to inspire and motivate the reader with respect to data, associated information, and derived knowledge. |
big bang data science: Big Data MBA Bill Schmarzo, 2015-12-11 Integrate big data into business to drive competitive advantage and sustainable success Big Data MBA brings insight and expertise to leveraging big data in business so you can harness the power of analytics and gain a true business advantage. Based on a practical framework with supporting methodology and hands-on exercises, this book helps identify where and how big data can help you transform your business. You'll learn how to exploit new sources of customer, product, and operational data, coupled with advanced analytics and data science, to optimize key processes, uncover monetization opportunities, and create new sources of competitive differentiation. The discussion includes guidelines for operationalizing analytics, optimal organizational structure, and using analytic insights throughout your organization's user experience to customers and front-end employees alike. You'll learn to “think like a data scientist” as you build upon the decisions your business is trying to make, the hypotheses you need to test, and the predictions you need to produce. Business stakeholders no longer need to relinquish control of data and analytics to IT. In fact, they must champion the organization's data collection and analysis efforts. This book is a primer on the business approach to analytics, providing the practical understanding you need to convert data into opportunity. Understand where and how to leverage big data Integrate analytics into everyday operations Structure your organization to drive analytic insights Optimize processes, uncover opportunities, and stand out from the rest Help business stakeholders to “think like a data scientist” Understand appropriate business application of different analytic techniques If you want data to transform your business, you need to know how to put it to use. Big Data MBA shows you how to implement big data and analytics to make better decisions. |
big bang data science: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Annotation This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. By learning data science principles, you will understand the many data-mining techniques in use today. More importantly, these principles underpin the processes and strategies necessary to solve business problems through data mining techniques. |
big bang data science: Big Data Analytics Arun K. Somani, Ganesh Chandra Deka, 2017-10-30 The proposed book will discuss various aspects of big data Analytics. It will deliberate upon the tools, technology, applications, use cases and research directions in the field. Chapters would be contributed by researchers, scientist and practitioners from various reputed universities and organizations for the benefit of readers. |
big bang data science: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail |
big bang data science: Information Systems Management in the Big Data Era Peter Lake, Robert Drake, 2015-01-12 This timely text/reference explores the business and technical issues involved in the management of information systems in the era of big data and beyond. Topics and features: presents review questions and discussion topics in each chapter for classroom group work and individual research assignments; discusses the potential use of a variety of big data tools and techniques in a business environment, explaining how these can fit within an information systems strategy; reviews existing theories and practices in information systems, and explores their continued relevance in the era of big data; describes the key technologies involved in information systems in general and big data in particular, placing these technologies in an historic context; suggests areas for further research in this fast moving domain; equips readers with an understanding of the important aspects of a data scientist’s job; provides hands-on experience to further assist in the understanding of the technologies involved. |
big bang data science: Dear Data Giorgia Lupi, Stefanie Posavec, 2016-09-13 Equal parts mail art, data visualization, and affectionate correspondence, Dear Data celebrates the infinitesimal, incomplete, imperfect, yet exquisitely human details of life, in the words of Maria Popova (Brain Pickings), who introduces this charming and graphically powerful book. For one year, Giorgia Lupi, an Italian living in New York, and Stefanie Posavec, an American in London, mapped the particulars of their daily lives as a series of hand-drawn postcards they exchanged via mail weekly—small portraits as full of emotion as they are data, both mundane and magical. Dear Data reproduces in pinpoint detail the full year's set of cards, front and back, providing a remarkable portrait of two artists connected by their attention to the details of their lives—including complaints, distractions, phone addictions, physical contact, and desires. These details illuminate the lives of two remarkable young women and also inspire us to map our own lives, including specific suggestions on what data to draw and how. A captivating and unique book for designers, artists, correspondents, friends, and lovers everywhere. |
big bang data science: Applying Business Intelligence Initiatives in Healthcare and Organizational Settings Miah, Shah J., Yeoh, William, 2018-07-13 Data analysis is an important part of modern business administration, as efficient compilation of information allows managers and business leaders to make the best decisions for the financial solvency of their organizations. Understanding the use of analytics, reporting, and data mining in everyday business environments is imperative to the success of modern businesses. Applying Business Intelligence Initiatives in Healthcare and Organizational Settings incorporates emerging concepts, methods, models, and relevant applications of business intelligence systems within problem contexts of healthcare and other organizational boundaries. Featuring coverage on a broad range of topics such as rise of embedded analytics, competitive advantage, and strategic capability, this book is ideally designed for business analysts, investors, corporate managers, and entrepreneurs seeking to advance their understanding and practice of business intelligence. |
big bang data science: Machine Learning and Data Analytics for Predicting, Managing, and Monitoring Disease Roy, Manikant, Gupta, Lovi Raj, 2021-06-25 Data analytics is proving to be an ally for epidemiologists as they join forces with data scientists to address the scale of crises. Analytics examined from many sources can derive insights and be used to study and fight global outbreaks. Pandemic analytics is a modern way to combat a problem as old as humanity itself: the proliferation of disease. Machine Learning and Data Analytics for Predicting, Managing, and Monitoring Disease explores different types of data and discusses how to prepare data for analysis, perform simple statistical analyses, create meaningful data visualizations, predict future trends from data, and more by applying cutting edge technology such as machine learning and data analytics in the wake of the COVID-19 pandemic. Covering a range of topics such as mental health analytics during COVID-19, data analysis and machine learning using Python, and statistical model development and deployment, it is ideal for researchers, academicians, data scientists, technologists, data analysts, diagnosticians, healthcare professionals, computer scientists, and students. |
big bang data science: Data Analytics for Cultural Heritage Abdelhak Belhi, Abdelaziz Bouras, Abdulaziz Khalid Al-Ali, Abdul Hamid Sadka, 2021-03-25 This book considers the challenges related to the effective implementation of artificial intelligence (AI) and machine learning (ML) technologies to the cultural heritage digitization process. Particular focus is placed on improvements to the data acquisition stage, as well as the data enrichment and curation stages, using advanced artificial intelligence techniques and tools. An emphasis is placed on recent applications related to deep learning for visual recognition, generative models, natural language processing, and super resolution. The book is a valuable reference for researchers working in the multidisciplinary field of cultural heritage and AI, as well as professional experts in the art and culture domains, such as museums, libraries, and historic sites and buildings. Reports on techniques and methods that leverage AI and machine learning and their impact on the digitization of cultural heritage; Addresses challenges of improving data acquisition, enrichment and management processes; Highlights contributions from international researchers from diverse fields and subject areas. |
big bang data science: Capitalizing Data Science Mathangi Sri Ramachandran, 2022-12-03 Unlock the Potential of Data Science and Machine Learning to Your Business and Organization KEY FEATURES ● Includes today's most popular applications powered by data science and machine learning technology. ● A solid primer on the entire data science lifecycle, detailed with examples. ● An integrated approach to demonstrating the use of Image Processing, Natural Language Processing, and Neural Networks in business. DESCRIPTION Can you foresee how your company and its products will benefit from data science? How can the results of using AI and ML in business be tracked and questioned? Do questions like ‘how do you build a data science team?’ keep popping into your head? All these strategic concerns and challenges are addressed in this book. Firstly, the book explores the evolution of decision-making based on empirical evidence. The book then helps compare the data-supported era with the current data-led era. It also discusses how to successfully run a data science project, the lifecycle of a data science project, and what it looks like. The book dives fairly in-depth into various today's data-led applications, highlights example datasets, discusses obstacles, and explains machine learning models and algorithms intuitively. This book covers structural and organizational considerations for making a data science team. The book helps recommend the use of optimal data science organization structure based on the company's level of development. Finally, the book explains data science's effects on businesses by assisting technological leaders. WHAT YOU WILL LEARN ● Learn the entire data science lifecycle and become fluent in each phase. ● Discover the world of supervised and unsupervised learning applications and structured and unstructured datasets. ● Discuss NLP's function, its potential, and the application of well-known methods like BERT and GPT3. ● Explain practical applications like automatic captioning, machine translation, and emotion recognition. ● Provide a framework for evaluating your team's data science skills and resources. WHO THIS BOOK IS FOR Startups, investors, small businesses, product management teams, CxO and all developing businesses desiring to leverage a data science team to gain the most from this book. The book also discusses the potential of practical applications of machine learning and AI for the future of businesses in banking and e-commerce. TABLE OF CONTENTS 1. Data-Driven Decisions from Beginning to Now 2. Data Science Life Cycle —Part 1 3. Data Science Life Cycle —Part 2 4. Deep Dive into AI 5. Applying AI with Structured Data—Banking 6. Applying AI with Structured Data 7. Applying AI with Structured Data—On-Demand Deliveries 8. AI in Natural Language Processing 9. Bringing It All Together |
big bang data science: Cosmic Horizons Steven Soter, Neil deGrasse Tyson, 2001 Leading scientists offer a collection of essays that furnish illuminating explanations of recent discoveries in modern astrophysics--from the Big Bang to black holes--the possibility of life on other worlds, and the emerging technologies that make such research possible, accompanied by incisive profiles of such key figures as Carl Sagan and Georges Lemaetre. Original. |
big bang data science: Analytics and Knowledge Management Suliman Hawamdeh, Hsia-Ching Chang, 2018-08-06 The process of transforming data into actionable knowledge is a complex process that requires the use of powerful machines and advanced analytics technique. Analytics and Knowledge Management examines the role of analytics in knowledge management and the integration of big data theories, methods, and techniques into an organizational knowledge management framework. Its chapters written by researchers and professionals provide insight into theories, models, techniques, and applications with case studies examining the use of analytics in organizations. The process of transforming data into actionable knowledge is a complex process that requires the use of powerful machines and advanced analytics techniques. Analytics, on the other hand, is the examination, interpretation, and discovery of meaningful patterns, trends, and knowledge from data and textual information. It provides the basis for knowledge discovery and completes the cycle in which knowledge management and knowledge utilization happen. Organizations should develop knowledge focuses on data quality, application domain, selecting analytics techniques, and on how to take actions based on patterns and insights derived from analytics. Case studies in the book explore how to perform analytics on social networking and user-based data to develop knowledge. One case explores analyze data from Twitter feeds. Another examines the analysis of data obtained through user feedback. One chapter introduces the definitions and processes of social media analytics from different perspectives as well as focuses on techniques and tools used for social media analytics. Data visualization has a critical role in the advancement of modern data analytics, particularly in the field of business intelligence and analytics. It can guide managers in understanding market trends and customer purchasing patterns over time. The book illustrates various data visualization tools that can support answering different types of business questions to improve profits and customer relationships. This insightful reference concludes with a chapter on the critical issue of cybersecurity. It examines the process of collecting and organizing data as well as reviewing various tools for text analysis and data analytics and discusses dealing with collections of large datasets and a great deal of diverse data types from legacy system to social networks platforms. |
big bang data science: The Book of Alternative Data Alexander Denev, Saeed Amen, 2020-07-02 The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject. This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors—leading experts in financial modeling, machine learning, and quantitative research and analytics—employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book: Provides an integrated modeling approach to extract value from multiple types of datasets Treats the processes needed to make alternative data signals operational Helps investors and risk managers rethink how they engage with alternative datasets Features practical use case studies in many different financial markets and real-world techniques Describes how to avoid potential pitfalls and missteps in starting the alternative data journey Explains how to integrate information from different datasets to maximize informational value The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users. |
big bang data science: Mastering Julia Malcolm Sherrington, 2024-01-19 A hands-on, code-based guide to leveraging Julia in a variety of scientific and data-driven scenarios Key Features Augment your basic computing skills with an in-depth introduction to Julia Focus on topic-based approaches to scientific problems and visualisation Build on prior knowledge of programming languages such as Python, R, or C/C++ Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionJulia is a well-constructed programming language which was designed for fast execution speed by using just-in-time LLVM compilation techniques, thus eliminating the classic problem of performing analysis in one language and translating it for performance in a second. This book is a primer on Julia’s approach to a wide variety of topics such as scientific computing, statistics, machine learning, simulation, graphics, and distributed computing. Starting off with a refresher on installing and running Julia on different platforms, you’ll quickly get to grips with the core concepts and delve into a discussion on how to use Julia with various code editors and interactive development environments (IDEs). As you progress, you’ll see how data works through simple statistics and analytics and discover Julia's speed, its real strength, which makes it particularly useful in highly intensive computing tasks. You’ll also and observe how Julia can cooperate with external processes to enhance graphics and data visualization. Finally, you will explore metaprogramming and learn how it adds great power to the language and establish networking and distributed computing with Julia. By the end of this book, you’ll be confident in using Julia as part of your existing skill set.What you will learn Develop simple scripts in Julia using the REPL, code editors, and web-based IDEs Get to grips with Julia’s type system, multiple dispatch, metaprogramming, and macro development Interact with data files, tables, data frames, SQL, and NoSQL databases Delve into statistical analytics, linear programming, and optimization problems Create graphics and visualizations to enhance modeling and simulation in Julia Understand Julia's main approaches to machine learning, Bayesian analysis, and AI Who this book is for This book is not an introduction to computer programming, but a practical guide for developers who want to enhance their basic knowledge of Julia, or those wishing to augment their skill set by adding Julia to their existing roster of programming languages. Familiarity with a scripting language such as Python or R, or a compiled language such as C/C++, C# or Java, is a prerequisite. |
big bang data science: Intelligent Data Analytics for Power and Energy Systems Hasmat Malik, Md. Waseem Ahmad, D.P. Kothari, 2022-02-17 This book brings together state-of-the-art advances in intelligent data analytics as driver of the future evolution of PaE systems. In the modern power and energy (PaE) domain, the increasing penetration of renewable energy sources (RES) and the consequent empowerment of consumers as a central and active solution to deal with the generation and development variability are driving the PaE system towards a historic paradigm shift. The small-scale, diversity, and especially the number of new players involved in the PaE system potentiate a significant growth of generated data. Moreover, advances in communication (between IoT devices and M2M: machine to machine, man to machine, etc.) and digitalization hugely increased the volume of data that results from PaE components, installations, and systems operation. This data is becoming more and more important for PaE systems operation, maintenance, planning, and scheduling with relevant impact on all involved entities, from producers, consumer,s and aggregators to market and system operators. However, although the PaE community is fully aware of the intrinsic value of those data, the methods to deal with it still necessitate substantial enhancements, development and research. Intelligent data analytics is thereby playing a fundamental role in this domain, by enabling stakeholders to expand their decision-making method and achieve the awareness on the PaE environment. The editors also included demonstrated codes for presented problems for better understanding for beginners. |
big bang data science: Advanced Data Science and Analytics with Python Jesus Rogel-Salazar, 2020-05-05 Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications. Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science Uses Python throughout Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs Focuses on the practical use of the tools rather than on lengthy explanations Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app. About the Author Dr. Jesús Rogel-Salazar is a lead data scientist in the field, working for companies such as Tympa Health Technologies, Barclays, AKQA, IBM Data Science Studio and Dow Jones. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK. |
big bang data science: Genesis and the Big Bang Theory Gerald Schroeder, 1991-12-01 A ground-breaking book that takes on skeptics from both sides of the cosmological debate, arguing that science and the Bible are not at odds concerning the origin of the universe. The culmination of a physicist's thirty-five-year journey from MIT to Jerusalem, Genesis and the Big Bang presents a compelling argument that the events of the billions of years that cosmologists say followed the Big Bang and those of the first six days described in Genesis are, in fact, one and the same—identical realities described in vastly different terms. In engaging, accessible language, Dr. Schroeder reconciles the observable facts of science with the very essence of Western religion: the biblical account of Creation. Carefully reviewing and interpreting accepted scientific principles, analogous passages of Scripture, and biblical scholarship, Dr. Schroeder arrives at a conclusion so lucid that one wonders why it has taken this long in coming. The result for the reader—whether believer or skeptic, Jewish or Christian—is a totally fresh understanding of the key events in the life of the universe. |
big bang data science: Data Science and Applications Satyasai Jagannath Nanda, Rajendra Prasad Yadav, Amir H. Gandomi, Mukesh Saraswat, 2024-01-17 This book gathers outstanding papers presented at the International Conference on Data Science and Applications (ICDSA 2023), organized by Soft Computing Research Society (SCRS) and Malaviya National Institute of Technology Jaipur, India, from 14 to 15 July 2023. The book is divided into four volumes, and it covers theoretical and empirical developments in various areas of big data analytics, big data technologies, decision tree learning, wireless communication, wireless sensor networking, bioinformatics and systems, artificial neural networks, deep learning, genetic algorithms, data mining, fuzzy logic, optimization algorithms, image processing, computational intelligence in civil engineering, and creative computing. |
big bang data science: Science and the Dao Livia Kohn, 2016 |
big bang data science: Big Data at Work Thomas Davenport, 2014-02-04 Go ahead, be skeptical about big data. The author was—at first. When the term “big data” first came on the scene, bestselling author Tom Davenport (Competing on Analytics, Analytics at Work) thought it was just another example of technology hype. But his research in the years that followed changed his mind. Now, in clear, conversational language, Davenport explains what big data means—and why everyone in business needs to know about it. Big Data at Work covers all the bases: what big data means from a technical, consumer, and management perspective; what its opportunities and costs are; where it can have real business impact; and which aspects of this hot topic have been oversold. This book will help you understand: • Why big data is important to you and your organization • What technology you need to manage it • How big data could change your job, your company, and your industry • How to hire, rent, or develop the kinds of people who make big data work • The key success factors in implementing any big data project • How big data is leading to a new approach to managing analytics With dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities—from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource. |
big bang data science: The Digital Big Bang Phil Quade, 2019-09-11 Cybersecurity experts from across industries and sectors share insights on how to think like scientists to master cybersecurity challenges Humankind’s efforts to explain the origin of the cosmos birthed disciplines such as physics and chemistry. Scientists conceived of the cosmic ‘Big Bang’ as an explosion of particles—everything in the universe centered around core elements and governed by laws of matter and gravity. In the modern era of digital technology, we are experiencing a similar explosion of ones and zeros, an exponentially expanding universe of bits of data centered around the core elements of speed and connectivity. One of the disciplines to emerge from our efforts to make sense of this new universe is the science of cybersecurity. Cybersecurity is as central to the Digital Age as physics and chemistry were to the Scientific Age. The Digital Big Bang explores current and emerging knowledge in the field of cybersecurity, helping readers think like scientists to master cybersecurity principles and overcome cybersecurity challenges. This innovative text adopts a scientific approach to cybersecurity, identifying the science’s fundamental elements and examining how these elements intersect and interact with each other. Author Phil Quade distills his over three decades of cyber intelligence, defense, and attack experience into an accessible, yet detailed, single-volume resource. Designed for non-specialist business leaders and cybersecurity practitioners alike, this authoritative book is packed with real-world examples, techniques, and strategies no organization should be without. Contributions from many of the world’s leading cybersecurity experts and policymakers enable readers to firmly grasp vital cybersecurity concepts, methods, and practices. This important book: Guides readers on both fundamental tactics and advanced strategies Features observations, hypotheses, and conclusions on a wide range of cybersecurity issues Helps readers work with the central elements of cybersecurity, rather than fight or ignore them Includes content by cybersecurity leaders from organizations such as Microsoft, Target, ADP, Capital One, Verisign, AT&T, Samsung, and many others Offers insights from national-level security experts including former Secretary of Homeland Security Michael Chertoff and former Director of National Intelligence Mike McConnell The Digital Big Bang is an invaluable source of information for anyone faced with the challenges of 21st century cybersecurity in all industries and sectors, including business leaders, policy makers, analysts and researchers as well as IT professionals, educators, and students. |
big bang data science: Principles of Big Data Jules J. Berman, 2013-05-20 Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. - Learn general methods for specifying Big Data in a way that is understandable to humans and to computers - Avoid the pitfalls in Big Data design and analysis - Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources |
big bang data science: Data Scientist Diploma (master's level) - City of London College of Economics - 6 months - 100% online / self-paced City of London College of Economics, Overview This diploma course covers all aspects you need to know to become a successful Data Scientist. Content - Getting Started with Data Science - Data Analytic Thinking - Business Problems and Data Science Solutions - Introduction to Predictive Modeling: From Correlation to Supervised Segmentation - Fitting a Model to Data - Overfitting and Its Avoidance - Similarity, Neighbors, and Clusters Decision Analytic Thinking I: What Is a Good Model? - Visualizing Model Performance - Evidence and Probabilities - Representing and Mining Text - Decision Analytic Thinking II: Toward Analytical Engineering - Other Data Science Tasks and Techniques - Data Science and Business Strategy - Machine Learning: Learning from Data with Your Machine. - And much more Duration 6 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link. |
big bang data science: Big Bang Disruption Larry Downes, Paul Nunes, 2014-01-07 It used to take years or even decades for disruptive innovations to dethrone dominant products and services. But now any business can be devastated virtually overnight by something better and cheaper. How can executives protect themselves and harness the power of Big Bang Disruption? Just a few years ago, drivers happily spent more than $200 for a GPS unit. But as smartphones exploded in popularity, free navigation apps exceeded the performance of stand-alone devices. Eighteen months after the debut of the navigation apps, leading GPS manufacturers had lost 85 percent of their market value. Consumer electronics and computer makers have long struggled in a world of exponential technology improvements and short product life spans. But until recently, hotels, taxi services, doctors, and energy companies had little to fear from the information revolution. Those days are gone forever. Software-based products are replacing physical goods. And every service provider must compete with cloud-based tools that offer customers a better way to interact. Today, start-ups with minimal experience and no capital can unravel your strategy before you even begin to grasp what’s happening. Never mind the “innovator’s dilemma”—this is the innovator’s disaster. And it’s happening in nearly every industry. Worse, Big Bang Disruptors may not even see you as competition. They don’t share your approach to customer service, and they’re not sizing up your product line to offer better prices. You may simply be collateral damage in their efforts to win completely different markets. The good news is that any business can master the strategy of the start-ups. Larry Downes and Paul Nunes analyze the origins, economics, and anatomy of Big Bang Disruption. They identify four key stages of the new innovation life cycle, helping you spot potential disruptors in time. And they offer twelve rules for defending your markets, launching disruptors of your own, and getting out while there’s still time. Based on extensive research by the Accenture Institute for High Performance and in-depth interviews with entrepreneurs, investors, and executives from more than thirty industries, Big Bang Disruption will arm you with strategies and insights to thrive in this brave new world. |
big bang data science: "You Are Not Expected to Understand This" Torie Bosch, 2022-11-15 Leading technologists, historians, and journalists reveal the stories behind the computer coding that touches all aspects of life—for better or worse Few of us give much thought to computer code or how it comes to be. The very word “code” makes it sound immutable or even inevitable. “You Are Not Expected to Understand This” demonstrates that, far from being preordained, computer code is the result of very human decisions, ones we all live with when we use social media, take photos, drive our cars, and engage in a host of other activities. Everything from law enforcement to space exploration relies on code written by people who, at the time, made choices and assumptions that would have long-lasting, profound implications for society. Torie Bosch brings together many of today’s leading technology experts to provide new perspectives on the code that shapes our lives. Contributors discuss a host of topics, such as how university databases were programmed long ago to accept only two genders, what the person who programmed the very first pop-up ad was thinking at the time, the first computer worm, the Bitcoin white paper, and perhaps the most famous seven words in Unix history: “You are not expected to understand this.” This compelling book tells the human stories behind programming, enabling those of us who don’t think much about code to recognize its importance, and those who work with it every day to better understand the long-term effects of the decisions they make. With an introduction by Ellen Ullman and contributions by Mahsa Alimardani, Elena Botella, Meredith Broussard, David Cassel, Arthur Daemmrich, Charles Duan, Quinn DuPont, Claire L. Evans, Hany Farid, James Grimmelmann, Katie Hafner, Susan C. Herring, Syeda Gulshan Ferdous Jana, Lowen Liu, John MacCormick, Brian McCullough, Charlton McIlwain, Lily Hay Newman, Margaret O’Mara, Will Oremus, Nick Partridge, Benjamin Pope, Joy Lisi Rankin, Afsaneh Rigot, Ellen R. Stofan, Lee Vinsel, Josephine Wolff, and Ethan Zuckerman. |
big bang data science: Origin on Trial Christopher H. A. Ting, 2023-01-27 Do you know about the dark secrets in big evolution concerning the origin of the universe? Do you know that the Bible sets God's signature on his creation in the beginning? Not all fields of science are created equal. Some deal with past history rather than the present. Einstein's theory of gravity as curved spacetime is observable science. But some scientists use it with particle physics to tell a story of the origin of the universe. But can anyone see the moment of the Big Bang? Scientists themselves say the Big Bang model has big problems. The data they use to support their best model about the origin of the universe can also be used to undermine it. They started with A to build the model, but their data don't agree with A. Is there something fundamentally wrong? Great scientists make mistakes in science too. Hawking and others have made profound statements, but they don't always make sense. Big evolution has holes. It relies on deep time as god of the gap. Modern science began with Christians like Kepler and Galileo. They believed biblical creation had happened. It's time to bring science back to its genesis and the origin back to church. |
big bang data science: Elgar Encyclopedia of Law and Data Science Comandé, Giovanni, 2022-02-18 This Encyclopedia brings together jurists, computer scientists, and data analysts to map the emerging field of data science and law for the first time, uncovering the challenges, opportunities, and fault lines that arise as these groups are increasingly thrown together by expanding attempts to regulate and adapt to a data-driven world. It explains the concepts and tools at the crossroads of the many disciplines involved in data science and law, bridging scientific and applied domains. Entries span algorithmic fairness, consent, data protection, ethics, healthcare, machine learning, patents, surveillance, transparency and vulnerability. |
big bang data science: Big Data in Practice Bernard Marr, 2016-03-21 The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter |
BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, …
Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such as Copenhill, a waste-to energy plant with a ski slope on …
Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design in Oakland, California in 2018. The new ballpark’s roof is accentuated by …
Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and Products. A plethora of in-house perspectives allows us to see what …
Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 Third Street builds on years of BIG’s prior study and design …
Sankt Lukas Hospice and Lukashuset | BIG | Bjarke Ingels Group
A small step for each of us becomes a BIG LEAP for all of us. BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG …
Google Bay View | BIG | Bjarke Ingels Group
Leon Rost — Partner, BIG The campus includes 17.3 acres of high-value natural areas – including wet meadows, woodlands, and marsh – that contribute to Google’s broader efforts to reestablish …
Gelephu International Airport | BIG | Bjarke Ingels Group
As Bhutan’s second international airport, the project is a collaboration with aviation engineering firm NACO and an integral part of the Gelephu Mindfulness City (GMC) masterplan designed by BIG, …
Opera and Ballet Theatre of Kosovo | BIG | Bjarke Ingels Group
BIG proposes a simple and prag matic arrangement of the performance venues draped in a soft, undulating exterior skin of photovoltaic tiles. The theatre ’s form is reminiscent of the free …
Freedom Plaza | BIG | Bjarke Ingels Group
Freedom Plaza will extend BIG’s contribution to New York City’s waterfront, alongside adjacent coastal projects that include the East Side Coastal Resiliency project, the Battery Park City …
BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, …
Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such as Copenhill, a waste-to energy plant with a ski slope on …
Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design in Oakland, California in 2018. The new ballpark’s roof is accentuated by …
Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and Products. A plethora of in-house perspectives allows us to see what …
Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 Third Street builds on years of BIG’s prior study and design …
Sankt Lukas Hospice and Lukashuset | BIG | Bjarke Ingels Group
A small step for each of us becomes a BIG LEAP for all of us. BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG …
Google Bay View | BIG | Bjarke Ingels Group
Leon Rost — Partner, BIG The campus includes 17.3 acres of high-value natural areas – including wet meadows, woodlands, and marsh – that contribute to Google’s broader efforts to reestablish …
Gelephu International Airport | BIG | Bjarke Ingels Group
As Bhutan’s second international airport, the project is a collaboration with aviation engineering firm NACO and an integral part of the Gelephu Mindfulness City (GMC) masterplan designed by BIG, …
Opera and Ballet Theatre of Kosovo | BIG | Bjarke Ingels Group
BIG proposes a simple and prag matic arrangement of the performance venues draped in a soft, undulating exterior skin of photovoltaic tiles. The theatre ’s form is reminiscent of the free …
Freedom Plaza | BIG | Bjarke Ingels Group
Freedom Plaza will extend BIG’s contribution to New York City’s waterfront, alongside adjacent coastal projects that include the East Side Coastal Resiliency project, the Battery Park City …