Advertisement
big data in higher education: Big Data on Campus Karen L. Webber, Henry Y. Zheng, 2020-11-03 Webber, Henry Y. Zheng, Ying Zhou |
big data in higher education: Big Data and Learning Analytics in Higher Education Ben Kei Daniel, 2016-08-27 This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns. |
big data in higher education: The Analytics Revolution in Higher Education Jonathan S. Gagliardi, Amelia Parnell, Julia Carpenter-Hubin, 2023-07-03 Co-published with and In this era of “Big Data,” institutions of higher education are challenged to make the most of the information they have to improve student learning outcomes, close equity gaps, keep costs down, and address the economic needs of the communities they serve at the local, regional, and national levels. This book helps readers understand and respond to this “analytics revolution,” examining the evolving dynamics of the institutional research (IR) function, and the many audiences that institutional researchers need to serve.Internally, there is a growing need among senior leaders, administrators, faculty, advisors, and staff for decision analytics that help craft better resource strategies and bring greater efficiencies and return-on-investment for students and families. Externally, state legislators, the federal government, and philanthropies demand more forecasting and more evidence than ever before. These demands require new and creative responses, as they are added to previous demands, rather than replacing them, nor do they come with additional resources to produce the analysis to make data into actionable improvements. Thus the IR function must become that of teacher, ensuring that data and analyses are accurate, timely, accessible, and compelling, whether produced by an IR office or some other source. Despite formidable challenges, IR functions have begun to leverage big data and unlock the power of predictive tools and techniques, contributing to improved student outcomes. |
big data in higher education: Big Data in Education: Pedagogy and Research Theodosia Prodromou, 2021-10-04 This book discusses how Big Data could be implemented in educational settings and research, using empirical data and suggesting both best practices and areas in which to invest future research and development. It also explores: 1) the use of learning analytics to improve learning and teaching; 2) the opportunities and challenges of learning analytics in education. As Big Data becomes a common part of the fabric of our world, education and research are challenged to use this data to improve educational and research systems, and also are tasked with teaching coming generations to deal with Big Data both effectively and ethically. The Big Data era is changing the data landscape for statistical analysis, the ways in which data is captured and presented, and the necessary level of statistical literacy to analyse and interpret data for future decision making. The advent of Big Data accentuates the need to enable citizens to develop statistical skills, thinking and reasoning needed for representing, integrating and exploring complex information. This book offers guidance to researchers who are seeking suitable topics to explore. It presents research into the skills needed by data practitioners (data analysts, data managers, statisticians, and data consumers, academics), and provides insights into the statistical skills, thinking and reasoning needed by educators and researchers in the future to work with Big Data. This book serves as a concise reference for policymakers, who must make critical decisions regarding funding and applications. |
big data in higher education: Adoption of Data Analytics in Higher Education Learning and Teaching Dirk Ifenthaler, David Gibson, 2020-08-10 The book aims to advance global knowledge and practice in applying data science to transform higher education learning and teaching to improve personalization, access and effectiveness of education for all. Currently, higher education institutions and involved stakeholders can derive multiple benefits from educational data mining and learning analytics by using different data analytics strategies to produce summative, real-time, and predictive or prescriptive insights and recommendations. Educational data mining refers to the process of extracting useful information out of a large collection of complex educational datasets while learning analytics emphasizes insights and responses to real-time learning processes based on educational information from digital learning environments, administrative systems, and social platforms. This volume provides insight into the emerging paradigms, frameworks, methods and processes of managing change to better facilitate organizational transformation toward implementation of educational data mining and learning analytics. It features current research exploring the (a) theoretical foundation and empirical evidence of the adoption of learning analytics, (b) technological infrastructure and staff capabilities required, as well as (c) case studies that describe current practices and experiences in the use of data analytics in higher education. |
big data in higher education: Big Data in Education Ben Williamson, 2017-07-24 Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment! |
big data in higher education: Research Anthology on Big Data Analytics, Architectures, and Applications Information Resources Management Association, 2022 Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians. |
big data in higher education: How Colleges Use Data Jonathan S. Gagliardi, 2022-12-20 What does a culture of evidence really look like in higher education? The use of big data and the rapid acceleration of storage and analytics tools have led to a revolution of data use in higher education. Institutions have moved from relying largely on historical trends and descriptive data to the more widespread adoption of predictive and prescriptive analytics. Despite this rapid evolution of data technology and analytics tools, universities and colleges still face a number of obstacles in their data use. In How Colleges Use Data, Jonathan S. Gagliardi presents college and university leaders with an important resource to help cultivate, implement, and sustain a culture of evidence through the ethical and responsible use and adoption of data and analytics. Gagliardi provides a broad context for data use among colleges, including key concepts and use cases related to data and analytics. He also addresses the different dimensions of data use and highlights the promise and perils of the widespread adoption of data and analytics, in addition to important elements of implementing and scaling a culture of evidence. Demystifying data and analytics, the book helps faculty and administrators understand important topics, including: • How to define institutional aspirations using data • Equity and student success • Strategic finance and resource optimization • Academic quality and integrity • Data governance and utility • Implicit and explicit bias in data • Implementation and planning • How data will be used in the future How Colleges Use Data helps college and university leaders understand what a culture of evidence in higher education truly looks like. |
big data in higher education: Advancing the Power of Learning Analytics and Big Data in Education Azevedo, Ana, Azevedo, José Manuel, Onohuome Uhomoibhi, James, Ossiannilsson, Ebba, 2021-03-19 The term learning analytics is used in the context of the use of analytics in e-learning environments. Learning analytics is used to improve quality. It uses data about students and their activities to provide better understanding and to improve student learning. The use of learning management systems, where the activity of the students can be easily accessed, potentiated the use of learning analytics to understand their route during the learning process, help students be aware of their progress, and detect situations where students can give up the course before its completion, which is a growing problem in e-learning environments. Advancing the Power of Learning Analytics and Big Data in Education provides insights concerning the use of learning analytics, the role and impact of analytics on education, and how learning analytics are designed, employed, and assessed. The chapters will discuss factors affecting learning analytics such as human factors, geographical factors, technological factors, and ethical and legal factors. This book is ideal for teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in the use of big data and learning analytics for improved student success and educational environments. |
big data in higher education: Building a Smarter University Jason E. Lane, 2014-09-30 The Big Data movement and the renewed focus on data analytics are transforming everything from healthcare delivery systems to the way cities deliver services to residents. Now is the time to examine how this Big Data could help build smarter universities. While much of the cutting-edge research that is being done with Big Data is happening at colleges and universities, higher education has yet to turn the digital mirror on itself to advance the academic enterprise. Institutions can use the huge amounts of data being generated to improve the student learning experience, enhance research initiatives, support effective community outreach, and develop campus infrastructure. This volume focuses on three primary themes related to creating a smarter university: refining the operations and management of higher education institutions, cultivating the education pipeline, and educating the next generation of data scientists. Through an analysis of these issues, the contributors address how universities can foster innovation and ingenuity in the academy. They also provide scholarly and practical insights in order to frame these topics for an international discussion. |
big data in higher education: Digital Solutions and the Case for Africa’s Sustainable Development Maake, Albert Ong'uti, Maake, Benard Magara, Awuor, Fredrick Mzee, 2020-11-20 African economies can benefit tremendously from the new wave of digital innovation and information technology by using it to build and maintain sustainable systems. However, the gap in the theory and practice of providing these solutions remains poorly understood and difficult to fill. Only by addressing this gap head-on can it be traversed to the greater benefit of African citizens. Digital Solutions and the Case for Africa’s Sustainable Development is a pivotal reference source that presents existing technologies and their relevant solutions and further inspires inventions and innovation to provide sustainable solutions to African problems. Highlighting a wide range of topics including artificial intelligence, cryptocurrency, and digital identity, this book is ideally designed for government officials, public officials, computer engineers, economists, IT specialists, entrepreneurs, researchers, academicians, and students. |
big data in higher education: Learning With Big Data Viktor Mayer-Schönberger, Kenneth Cukier, 2014-03-04 Homework assignments that learn from students. Courses tailored to fit individual pupils. Textbooks that talk back. This is tomorrow’s education landscape, thanks to the power of big data. These advances go beyond online courses. As the New York Times-bestselling authors of Big Data explain, the truly fascinating changes are actually occurring in how we measure students’ progress and how we can use that data to improve education for everyone, in real time, both on- and offline. Learning with Big Data offers an eye-opening, insight-packed tour through these new trends, for educators, administrators, and readers interested in the latest developments in business and technology. |
big data in higher education: Managerial Perspectives on Intelligent Big Data Analytics Sun, Zhaohao, 2019-02-22 Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce. |
big data in higher education: Big Data Analytics for Sustainable Computing Haldorai, Anandakumar, Ramu, Arulmurugan, 2019-09-20 Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative research that focuses on new computing and system development issues in emerging sustainable applications. Featuring coverage on a wide range of topics such as data filtering, knowledge engineering, and cognitive analytics, this publication is ideally designed for data scientists, IT specialists, computer science practitioners, computer engineers, academicians, professionals, and students seeking current research on emerging analytical techniques and data processing software. |
big data in higher education: Global Approaches to Sustainability Through Learning and Education Al-Sartawi, Abdalmuttaleb M.A. Musleh, Hussainey, Khaled, Hannoon, Azzam, Hamdan, Allam, 2019-08-30 Unequal distribution of wealth, poverty, pollution, and gender inequality are just a few of the problems we face and struggle to eliminate. Sustainable development offers a long-term holistic solution to these problems through meeting the needs of the current generation without endangering the capability of future generations in meeting their own needs. Sustainable education or education for sustainability is a transformative learning paradigm that prepares learners and provides them with knowledge, ethical awareness, skills, values, and attitudes to achieve sustainable goals. Global Approaches to Sustainability Through Learning and Education is a comprehensive academic publication that facilitates a greater understanding of sustainable development and fosters a culture of sustainability through learning and education. Highlighting a range of topics such as ethics, game-based learning, and knowledge management, this book is ideal for teachers, environmentalists, higher education faculty, activists, curriculum developers, academicians, researchers, professionals, administrators, and policymakers. |
big data in higher education: Applications of Big Data in Large- and Small-Scale Systems Goundar, Sam, Rayani, Praveen Kumar, 2021-01-15 With new technologies, such as computer vision, internet of things, mobile computing, e-governance and e-commerce, and wide applications of social media, organizations generate a huge volume of data and at a much faster rate than several years ago. Big data in large-/small-scale systems, characterized by high volume, diversity, and velocity, increasingly drives decision making and is changing the landscape of business intelligence. From governments to private organizations, from communities to individuals, all areas are being affected by this shift. There is a high demand for big data analytics that offer insights for computing efficiency, knowledge discovery, problem solving, and event prediction. To handle this demand and this increase in big data, there needs to be research on innovative and optimized machine learning algorithms in both large- and small-scale systems. Applications of Big Data in Large- and Small-Scale Systems includes state-of-the-art research findings on the latest development, up-to-date issues, and challenges in the field of big data and presents the latest innovative and intelligent applications related to big data. This book encompasses big data in various multidisciplinary fields from the medical field to agriculture, business research, and smart cities. While highlighting topics including machine learning, cloud computing, data visualization, and more, this book is a valuable reference tool for computer scientists, data scientists and analysts, engineers, practitioners, stakeholders, researchers, academicians, and students interested in the versatile and innovative use of big data in both large-scale and small-scale systems. |
big data in higher education: Effective Big Data Management and Opportunities for Implementation Singh, Manoj Kumar, G., Dileep Kumar, 2016-06-20 “Big data” has become a commonly used term to describe large-scale and complex data sets which are difficult to manage and analyze using standard data management methodologies. With applications across sectors and fields of study, the implementation and possible uses of big data are limitless. Effective Big Data Management and Opportunities for Implementation explores emerging research on the ever-growing field of big data and facilitates further knowledge development on methods for handling and interpreting large data sets. Providing multi-disciplinary perspectives fueled by international research, this publication is designed for use by data analysts, IT professionals, researchers, and graduate-level students interested in learning about the latest trends and concepts in big data. |
big data in higher education: Big Data for Twenty-First-Century Economic Statistics Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, Matthew D. Shapiro, 2022-03-11 Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra. |
big data in higher education: Big Data Analytics for Smart and Connected Cities Dey, Nilanjan, Tamane, Sharvari, 2018-09-07 To continue providing people with safe, comfortable, and affordable places to live, cities must incorporate techniques and technologies to bring them into the future. The integration of big data and interconnected technology, along with the increasing population, will lead to the necessary creation of smart cities. Big Data Analytics for Smart and Connected Cities is a pivotal reference source that provides vital research on the application of the integration of interconnected technologies and big data analytics into the creation of smart cities. While highlighting topics such as energy conservation, public transit planning, and performance measurement, this publication explores technology integration in urban environments as well as the methods of planning cities to implement these new technologies. This book is ideally designed for engineers, professionals, researchers, and technology developers seeking current research on technology implementation in urban settings. |
big data in higher education: Big Data Viktor Mayer-Schönberger, Kenneth Cukier, 2013 A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large. |
big data in higher education: The Elements of Big Data Value Edward Curry, Andreas Metzger, Sonja Zillner, Jean-Christophe Pazzaglia, Ana García Robles, 2021-08-01 This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation. |
big data in higher education: Smart Sensors at the IoT Frontier Hiroto Yasuura, Chong-Min Kyung, Yongpan Liu, Youn-Long Lin, 2017-05-29 This book describes technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, to big data domains and they showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms. |
big data in higher education: Advances in Communication, Cloud, and Big Data Hiren Kumar Deva Sarma, Samarjeet Borah, Nitul Dutta, 2018-06-15 This book is an outcome of the second national conference on Communication, Cloud and Big Data (CCB) held during November 10-11, 2016 at Sikkim Manipal Institute of Technology. The nineteen chapters of the book are some of the accepted papers of CCB 2016. These chapters have undergone review process and then subsequent series of improvements. The book contains chapters on various aspects of communication, computation, cloud and big data. Routing in wireless sensor networks, modulation techniques, spectrum hole sensing in cognitive radio networks, antenna design, network security, Quality of Service issues in routing, medium access control protocol for Internet of Things, and TCP performance over different routing protocols used in mobile ad-hoc networks are some of the topics discussed in different chapters of this book which fall under the domain of communication. Moreover, there are chapters in this book discussing topics like applications of geographic information systems, use of radar for road safety, image segmentation and digital media processing, web content management system, human computer interaction, and natural language processing in the context of Bodo language. These chapters may fall under broader domain of computation. Issues like robot navigation exploring cloud technology, and application of big data analytics in higher education are also discussed in two different chapters. These chapters fall under the domains of cloud and big data, respectively. |
big data in higher education: Higher Education Research Methodology Ben Kei Daniel, Tony Harland, 2017-12-15 This book is for anyone who wishes to improve university teaching and learning through systematic inquiry. It provides advice, but also a constructive critique of research methods and, in turn, the authors also make a contribution to the theories of research methodology. Topics covered include ontology, epistemology and engagement with academic literature, as well as research design approaches and methods of data collection. There is a keen focus on quality in both the analysis and evaluation of research and new models are proposed to help the new researcher. The authors conclude by examining the challenges in getting work published and close with some words on quality of thought and action. The ideas in the book come from the authors’ extensive experience in teaching research methods courses in higher education, health and the corporate sector, as well as several empirical research projects that have helped provide a methodology for higher education. It will be of particular interest to postgraduate students, academic developers and experienced academics from a wide variety of disciplines. |
big data in higher education: Applied Degree Education and the Future of Work Christina Hong, Will W. K. Ma, 2020-05-16 This edited volume sets the stage for discussion on Education 4.0, with a focus on applied degree education and the future of work. Education 4.0 refers to the shifts in the education sector in response to Industry 4.0 where digital transformation is impacting the ways in which the world of work and our everyday lives are becoming increasingly automated. In the applied degree sector, significant change and transformation is occurring as leaders, educators and partners evolve smart campus environments to include blended learning, artificial intelligence, data analytics, BYOD devices, process automation and engage in curriculum renewal for and with industries and professions. This volume aims to profile and enhance the contribution of applied educational practice and research particularly in the applied degree sector and includes contributions that show case real world outcomes with students and industry as partners. This edited volume includes a wide range of topics, such as rethinking the role of education and educators; curriculum and the future of work; industrial partnership, collaboration and work integrated learning; vocational and professional practices; students, industry and professions as partners; employability skills and qualities for the 21st century world of work; innovative pedagogy and instructional design; adaptive learning technologies; and data analytics, assessment and feedback. The contributors come from different parts of the world in higher education, including, Canada, China, Finland, Germany, Hong Kong, Italy, Macau, Singapore and the United Kingdom. |
big data in higher education: Data Strategy in Colleges and Universities Kristina Powers, 2019-10-16 This valuable resource helps institutional leaders understand and implement a data strategy at their college or university that maximizes benefits to all creators and users of data. Exploring key considerations necessary for coordination of fragmented resources and the development of an effective, cohesive data strategy, this book brings together professionals from different higher education experiences and perspectives, including academic, administration, institutional research, information technology, and student affairs. Focusing on critical elements of data strategy and governance, each chapter in Data Strategy in Colleges and Universities helps higher education leaders address a frustrating problem with much-needed solutions for fostering a collaborative, data-driven strategy. |
big data in higher education: Learning Analytics in Higher Education Jaime Lester, Carrie Klein, Aditya Johri, Huzefa Rangwala, 2018-08-06 Learning Analytics in Higher Education provides a foundational understanding of how learning analytics is defined, what barriers and opportunities exist, and how it can be used to improve practice, including strategic planning, course development, teaching pedagogy, and student assessment. Well-known contributors provide empirical, theoretical, and practical perspectives on the current use and future potential of learning analytics for student learning and data-driven decision-making, ways to effectively evaluate and research learning analytics, integration of learning analytics into practice, organizational barriers and opportunities for harnessing Big Data to create and support use of these tools, and ethical considerations related to privacy and consent. Designed to give readers a practical and theoretical foundation in learning analytics and how data can support student success in higher education, this book is a valuable resource for scholars and administrators. |
big data in higher education: Applications of Big Data Analytics Mohammed M. Alani, Hissam Tawfik, Mohammed Saeed, Obinna Anya, 2019-02-09 This timely text/reference reviews the state of the art of big data analytics, with a particular focus on practical applications. An authoritative selection of leading international researchers present detailed analyses of existing trends for storing and analyzing big data, together with valuable insights into the challenges inherent in current approaches and systems. This is further supported by real-world examples drawn from a broad range of application areas, including healthcare, education, and disaster management. The text also covers, typically from an application-oriented perspective, advances in data science in such areas as big data collection, searching, analysis, and knowledge discovery. Topics and features: Discusses a model for data traffic aggregation in 5G cellular networks, and a novel scheme for resource allocation in 5G networks with network slicing Explores methods that use big data in the assessment of flood risks, and apply neural networks techniques to monitor the safety of nuclear power plants Describes a system which leverages big data analytics and the Internet of Things in the application of drones to aid victims in disaster scenarios Proposes a novel deep learning-based health data analytics application for sleep apnea detection, and a novel pathway for diagnostic models of headache disorders Reviews techniques for educational data mining and learning analytics, and introduces a scalable MapReduce graph partitioning approach for high degree vertices Presents a multivariate and dynamic data representation model for the visualization of healthcare data, and big data analytics methods for software reliability assessment This practically-focused volume is an invaluable resource for all researchers, academics, data scientists and business professionals involved in the planning, designing, and implementation of big data analytics projects. Dr. Mohammed M. Alani is an Associate Professor in Computer Engineering and currently is the Provost at Al Khawarizmi International College, Abu Dhabi, UAE. Dr. Hissam Tawfik is a Professor of Computer Science in the School of Computing, Creative Technologies & Engineering at Leeds Beckett University, UK. Dr. Mohammed Saeed is a Professor in Computing and currently is the Vice President for Academic Affairs and Research at the University of Modern Sciences, Dubai, UAE. Dr. Obinna Anya is a Research Staff Member at IBM Research – Almaden, San Jose, CA, USA. |
big data in higher education: University Finances Dean O. Smith, 2019-03-05 An essential and comprehensive guide to university finances. In University Finances, higher education expert Dean O. Smith • demystifies basic accounting procedures, budgets, debt financing, and financial statements • explores more unusual financial topics, such as methods for calculating fringe benefit rates, bond refunding costs, and indirect cost allocations • shows that the use of university wealth is highly restricted by donors, bondholders, government regulators, and others • answers nuanced questions, like How are USDA formula funds calculated? and Why does the university pursue more and more research funding when it loses money on every grant? • illustrates financial calculations using realistic examples Some of these explanations are unavailable in print or online to anyone but a handful of professional accountants. Rigorous, detailed, and wide-ranging, University Finances is a unique and powerful resource. |
big data in higher education: Cultivating a Data Culture in Higher Education Kristina Powers, Angela E. Henderson, 2018 Higher education institutions have experienced a sharp increase in demand for accountability. To meet the growing demand by legislators, accreditors, consumers, taxpayers, and parents for evidence of successful outcomes, this important book provides higher education leaders and practitioners with actionable strategies for developing a comprehensive data culture throughout the entire institution. Exploring key considerations necessary for the development of an effective data culture in colleges and universities, this volume brings together diverse voices and perspectives, including institutional researchers, senior academic leaders, and faculty. Each chapter focuses on a critical element of managing or influencing a data culture, approaches for breaking through common challenges, and concludes with practical, research-based implementation strategies. Collectively, these strategies form a comprehensive list of recommendations for developing a data culture and becoming a change agent within your higher education institution. |
big data in higher education: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development. |
big data in higher education: Data Mining and Learning Analytics Samira ElAtia, Donald Ipperciel, Osmar R. Zaïane, 2016-09-20 Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research. |
big data in higher education: Using Data to Improve Higher Education Maria Eliophotou Menon, Dawn G. Terkla, Paul Gibbs, 2014 In recent decades, higher education systems and institutions have been called to respond to an unprecedented number of challenges. Major challenges emerged with the phenomenal increase in the demand for higher education and the associated massive expansion of higher education systems. In response universities were called to adopt planning and research methods that would enable them to identify and address the needs of a larger, more diverse student body. Higher education institutions began to place greater emphasis on planning and marketing, seeking to maintain their position in an increasingly competitive higher education market. Under the current economic downturn, universities are under pressure to further cut costs while maintaining their attractiveness to prospective students.As a result educational policy makers and administrators are called to select the 'right' alternatives, aiming for both efficiency and effectiveness in delivered outcomes. This book provides insights into the use of data as an input in planning and improvement initiatives in higher education. It focuses on uses (and potential abuses) of data in educational planning and policy formulation, examining several practices and perspectives relating to different types of data. The book is intended to address the need for the collection and utilization of data in the attempt to improve higher education both at the systemic and the institutional level. |
big data in higher education: The Agile College Nathan D. Grawe, 2021-01-12 Following Grawe's seminal first book, this volume answers the question: How can a college or university prepare for forecasted demographic disruptions? Demographic changes promise to reshape the market for higher education in the next 15 years. Colleges are already grappling with the consequences of declining family size due to low birth rates brought on by the Great Recession, as well as the continuing shift toward minority student populations. Each institution faces a distinct market context with unique organizational strengths; no one-size-fits-all answer could suffice. In this essential follow-up to Demographics and the Demand for Higher Education, Nathan D. Grawe explores how proactive institutions are preparing for the resulting challenges that lie ahead. While it isn't possible to reverse the demographic tide, most institutions, he argues persuasively, can mitigate the effects. Drawing on interviews with higher education leaders, Grawe explores successful avenues of response, including • recruitment initiatives • retention programs • revisions to the academic and cocurricular program • institutional growth plans • retrenchment efforts • collaborative action Throughout, Grawe presents readers with examples taken from a range of institutions—small and large, public and private, two-year and four-year, selective and open-access. While an effective response to demographic change must reflect the individual campus context, the cases Grawe analyzes will prompt conversations about the best paths forward. The Agile College also extends projections for higher education demand. Using data from the High School Longitudinal Study, the book updates prior work by incorporating new information on college-going after the Great Recession and pushes forecasts into the mid-2030s. What's more, the analysis expands to examine additional aspects of the higher education market, such as dual enrollment, transfer students, and the role of immigration in college demand. |
big data in higher education: Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics R. Sujatha, S. L. Aarthy, R. Vettriselvan, 2021-09-22 Data science revolves around two giants: Big Data analytics and Deep Learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of Big Data as well as Deep Learning systems. This book discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and decision-making. It also covers numerous applications in healthcare, education, communication, media, and entertainment. Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics offers innovative platforms for integrating Big Data and Deep Learning and presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval. FEATURES Provides insight into the skill set that leverages one’s strength to act as a good data analyst Discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and help in decision-making Covers numerous potential applications in healthcare, education, communication, media, and entertainment Offers innovative platforms for integrating Big Data and Deep Learning Presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval from Big Data This book is aimed at industry professionals, academics, research scholars, system modelers, and simulation experts. |
big data in higher education: Radical Solutions and Learning Analytics Daniel Burgos, 2020-05-08 Learning Analytics become the key for Personalised Learning and Teaching thanks to the storage, categorisation and smart retrieval of Big Data. Thousands of user data can be tracked online via Learning Management Systems, instant messaging channels, social networks and other ways of communication. Always with the explicit authorisation from the end user, being a student, a teacher, a manager or a persona in a different role, an instructional designer can design a way to produce a practical dashboard that helps him improve that very user’s performance, interaction, motivation or just grading. This book provides a thorough approach on how education, as such, from teaching to learning through management, is improved by a smart analysis of available data, making visible and useful behaviours, predictions and patterns that are hinder to the regular eye without the process of massive data. |
big data in higher education: Applied Big Data Analytics and Its Role in COVID-19 Research Peng Zhao, Xi Chen, 2022 This book provides emerging research on the development and implementation of real-world cases in big data analytics for various industrial and public sections including healthcare, business, social media, and government by highlighting topics such as data processing, deep learning, statistical inference, data visualization, and decision support systems-- |
big data in higher education: Thick Big Data Dariusz Jemielniak, 2020 Thick Big Data presents the available arsenal of new methods and tools for studying society both quantitatively and qualitatively, opening ground for the social sciences to take the lead in analysing digital behaviour. These tools are critical for students and researchers in the social sciences to successfully build mixed-methods approaches. |
big data in higher education: You Are a Data Person Amelia Parnell, 2023-07-03 Internal and external pressure continues to mount for college professionals to provide evidence of successful activities, programs, and services, which means that, going forward, nearly every campus professional will need to approach their work with a data-informed perspective.But you find yourself thinking “I am not a data person”.Yes, you are. Or can be with the help of Amelia Parnell.You Are a Data Person provides context for the levels at which you are currently comfortable using data, helps you identify both the areas where you should strengthen your knowledge and where you can use this knowledge in your particular university role.For example, the rising cost to deliver high-quality programs and services to students has pushed many institutions to reallocate resources to find efficiencies. Also, more institutions are intentionally connecting classroom and cocurricular learning experiences which, in some instances, requires an increased gathering of evidence that students have acquired certain skills and competencies. In addition to programs, services, and pedagogy, professionals are constantly monitoring the rates at which students are entering, remaining enrolled in, and leaving the institution, as those movements impact the institution’s financial position.From teaching professors to student affairs personnel and beyond, Parnell offers tangible examples of how professionals can make data contributions at their current and future knowledge level, and will even inspire readers to take the initiative to engage in data projects.The book includes a set of self-assessment questions and a companion set of action steps and available resources to help readers accept their identity as a data person. It also includes an annotated list of at least 20 indicators that any higher education professional can examine without sophisticated data analyses. |
big data in higher education: Reengineering the University William F. Massy, 2016-03-15 How can colleges and universities improve efficiency while preserving academic values? Winner of the Typographic Jacket of the Washington Publishers Higher education expert William F. Massy’s decades as a professor, senior university officer, and consultant have left him with a passionate belief in the need for reform in America’s traditional universities. In Reengineering the University, he addresses widespread concerns that higher education’s costs are too high, learning falls short of objectives, disruptive technology and education models are mounting serious challenges to traditional institutions, and administrators and faculty are too often unwilling or unable to change. An expert microeconomist, Massy approaches the challenge of reform in a genuinely new way by applying rigorous economic principles, informed by financial data and other evidence, to explain the forces at work on universities and the flaws in the academic business model. Ultimately, he argues that computer models that draw on data from college transaction systems can help both administrators and faculty address problems of educational performance and cost analysis, manage the complexity of planning and budgeting systems, and monitor the progress of reform in nonintrusive and constructive ways. Written for institutional leaders, faculty, board members, and policymakers who bear responsibility for initiating and carrying through on reform in traditional colleges and universities, Reengineering the University shows how, working together, administrators and faculty can improve education, research, and affordability by keeping a close eye on both academic values and the bottom line. |
BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, …
Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such as Copenhill, a waste-to energy plant with a ski slope on …
Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design in Oakland, California in 2018. The new ballpark’s roof is accentuated …
Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and Products. A plethora of in-house perspectives allows us to see …
Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 Third Street builds on years of BIG’s prior study and design …
Sankt Lukas Hospice and Lukashuset | BIG | Bjarke Ingels Group
A small step for each of us becomes a BIG LEAP for all of us. BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the …
Google Bay View | BIG | Bjarke Ingels Group
Leon Rost — Partner, BIG The campus includes 17.3 acres of high-value natural areas – including wet meadows, woodlands, and marsh – that contribute to Google’s broader efforts to …
Gelephu International Airport | BIG | Bjarke Ingels Group
As Bhutan’s second international airport, the project is a collaboration with aviation engineering firm NACO and an integral part of the Gelephu Mindfulness City (GMC) masterplan designed …
Opera and Ballet Theatre of Kosovo | BIG | Bjarke Ingels Group
BIG proposes a simple and prag matic arrangement of the performance venues draped in a soft, undulating exterior skin of photovoltaic tiles. The theatre ’s form is reminiscent of the free …
Freedom Plaza | BIG | Bjarke Ingels Group
Freedom Plaza will extend BIG’s contribution to New York City’s waterfront, alongside adjacent coastal projects that include the East Side Coastal Resiliency project, the Battery Park City …
BIG | Bjarke Ingels Group
BIG has grown organically over the last two decades from a founder, to a family, to a force of 700. Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, …
Bjarke Ingels Group - BIG
Since BIG inception in 2006, David Zahle has been responsible for delivering imaginative and pioneering designs for buildings such as Copenhill, a waste-to energy plant with a ski slope on the …
Athletics Las Vegas Ballpark | BIG | Bjarke Ingels Group
The project builds on a longstanding collaboration between BIG and the Athletics dating back to a different ballpark design in Oakland, California in 2018. The new ballpark’s roof is …
Jinji Lake Pavilion | BIG | Bjarke Ingels Group
Our latest transformation is the BIG LEAP: Bjarke Ingels Group of Landscape, Engineering, Architecture, Planning and Products. A plethora of in-house perspectives allows us to …
Gowanus 175 Third Street | BIG | Bjarke Ingels Group
Catalyzed by the major Gowanus rezoning in 2021 – one of the most significant rezonings in New York City in recent years – 175 Third Street builds on years of BIG’s prior study and …