Advertisement
euler's method calculus: Foundations of Differential Calculus Euler, 2006-05-04 The positive response to the publication of Blanton's English translations of Euler's Introduction to Analysis of the Infinite confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's Foundations of Differential Calculus as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community. |
euler's method calculus: Active Calculus 2018 Matthew Boelkins, 2018-08-13 Active Calculus - single variable is a free, open-source calculus text that is designed to support an active learning approach in the standard first two semesters of calculus, including approximately 200 activities and 500 exercises. In the HTML version, more than 250 of the exercises are available as interactive WeBWorK exercises; students will love that the online version even looks great on a smart phone. Each section of Active Calculus has at least 4 in-class activities to engage students in active learning. Normally, each section has a brief introduction together with a preview activity, followed by a mix of exposition and several more activities. Each section concludes with a short summary and exercises; the non-WeBWorK exercises are typically involved and challenging. More information on the goals and structure of the text can be found in the preface. |
euler's method calculus: Calculus Volume 3 Edwin Herman, Gilbert Strang, 2016-03-30 Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations. |
euler's method calculus: Differential Equations: From Calculus to Dynamical Systems: Second Edition Virginia W. Noonburg, 2020-08-28 A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve well for use in a flipped-classroom pedagogical approach or for self-study for an advanced undergraduate or beginning graduate student. This second edition of Noonburg's best-selling textbook includes two new chapters on partial differential equations, making the book usable for a two-semester sequence in differential equations. It includes exercises, examples, and extensive student projects taken from the current mathematical and scientific literature. |
euler's method calculus: Numerical Solution of Ordinary Differential Equations Kendall Atkinson, Weimin Han, David E. Stewart, 2011-10-24 A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering. |
euler's method calculus: Advanced Calculus (Revised Edition) Lynn Harold Loomis, Shlomo Zvi Sternberg, 2014-02-26 An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds. |
euler's method calculus: How Euler Did Even More C. Edward Sandifer, 2014-11-19 Sandifer has been studying Euler for decades and is one of the world’s leading experts on his work. This volume is the second collection of Sandifer’s “How Euler Did It” columns. Each is a jewel of historical and mathematical exposition. The sum total of years of work and study of the most prolific mathematician of history, this volume will leave you marveling at Euler’s clever inventiveness and Sandifer’s wonderful ability to explicate and put it all in context. |
euler's method calculus: Differential Equations for Engineers Wei-Chau Xie, 2010-04-26 Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering. |
euler's method calculus: Notes on Diffy Qs Jiri Lebl, 2019-11-13 Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions. |
euler's method calculus: Differential Equations For Dummies Steven Holzner, 2008-06-03 The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores. |
euler's method calculus: Applied Scientific Computing Peter R. Turner, Thomas Arildsen, Kathleen Kavanagh, 2018-07-18 This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge–Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science. |
euler's method calculus: Calculus of Finite Difference & Numerical Analysis Gupta & Malik, 2003 |
euler's method calculus: Programming for Computations - Python Svein Linge, Hans Petter Langtangen, 2019-10-30 This book is published open access under a CC BY 4.0 license. This book presents computer programming as a key method for solving mathematical problems. This second edition of the well-received book has been extensively revised: All code is now written in Python version 3.6 (no longer version 2.7). In addition, the two first chapters of the previous edition have been extended and split up into five new chapters, thus expanding the introduction to programming from 50 to 150 pages. Throughout the book, the explanations provided are now more detailed, previous examples have been modified, and new sections, examples and exercises have been added. Also, a number of small errors have been corrected. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style employed is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows students to write simple programs for solving common mathematical problems with numerical methods in the context of engineering and science courses. The emphasis is on generic algorithms, clean program design, the use of functions, and automatic tests for verification. |
euler's method calculus: Applied Calculus of Variations for Engineers Louis Komzsik, 2018-09-03 The purpose of the calculus of variations is to find optimal solutions to engineering problems whose optimum may be a certain quantity, shape, or function. Applied Calculus of Variations for Engineers addresses this important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts, as it is aimed at enhancing the engineer’s understanding of the topic. This Second Edition text: Contains new chapters discussing analytic solutions of variational problems and Lagrange-Hamilton equations of motion in depth Provides new sections detailing the boundary integral and finite element methods and their calculation techniques Includes enlightening new examples, such as the compression of a beam, the optimal cross section of beam under bending force, the solution of Laplace’s equation, and Poisson’s equation with various methods Applied Calculus of Variations for Engineers, Second Edition extends the collection of techniques aiding the engineer in the application of the concepts of the calculus of variations. |
euler's method calculus: Simulating Hamiltonian Dynamics Benedict Leimkuhler, Sebastian Reich, 2004 Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject. |
euler's method calculus: Encyclopedia of Applied and Computational Mathematics Björn Engquist, 2016-12-16 EACM is a comprehensive reference work covering the vast field of applied and computational mathematics. Applied mathematics itself accounts for at least 60 per cent of mathematics, and the emphasis on computation reflects the current and constantly growing importance of computational methods in all areas of applications. EACM emphasizes the strong links of applied mathematics with major areas of science, such as physics, chemistry, biology, and computer science, as well as specific fields like atmospheric ocean science. In addition, the mathematical input to modern engineering and technology form another core component of EACM. |
euler's method calculus: Differential Equations, Mechanics, and Computation Richard S. Palais, Robert Andrew Palais, 2009-11-13 This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject. |
euler's method calculus: Differential Equations Allan Struthers, Merle Potter, 2019-07-31 This book is designed to serve as a textbook for a course on ordinary differential equations, which is usually a required course in most science and engineering disciplines and follows calculus courses. The book begins with linear algebra, including a number of physical applications, and goes on to discuss first-order differential equations, linear systems of differential equations, higher order differential equations, Laplace transforms, nonlinear systems of differential equations, and numerical methods used in solving differential equations. The style of presentation of the book ensures that the student with a minimum of assistance may apply the theorems and proofs presented. Liberal use of examples and homework problems aids the student in the study of the topics presented and applying them to numerous applications in the real scientific world. This textbook focuses on the actual solution of ordinary differential equations preparing the student to solve ordinary differential equations when exposed to such equations in subsequent courses in engineering or pure science programs. The book can be used as a text in a one-semester core course on differential equations, alternatively it can also be used as a partial or supplementary text in intensive courses that cover multiple topics including differential equations. |
euler's method calculus: Numerical Methods for Partial Differential Equations Sandip Mazumder, 2015-12-01 Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives |
euler's method calculus: Programming for Computations - Python Svein Linge, Hans Petter Langtangen, 2016-07-25 This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification. |
euler's method calculus: Python Programming and Numerical Methods Qingkai Kong, Timmy Siauw, Alexandre Bayen, 2020-11-27 Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and try this features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online |
euler's method calculus: Partial Differential Equations Walter A. Strauss, 2007-12-21 Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics. |
euler's method calculus: Euler's Pioneering Equation Robin Wilson, 2018-02-22 In 1988 The Mathematical Intelligencer, a quarterly mathematics journal, carried out a poll to find the most beautiful theorem in mathematics. Twenty-four theorems were listed and readers were invited to award each a 'score for beauty'. While there were many worthy competitors, the winner was 'Euler's equation'. In 2004 Physics World carried out a similar poll of 'greatest equations', and found that among physicists Euler's mathematical result came second only to Maxwell's equations. The Stanford mathematician Keith Devlin reflected the feelings of many in describing it as like a Shakespearian sonnet that captures the very essence of love, or a painting which brings out the beauty of the human form that is far more than just skin deep, Euler's equation reaches down into the very depths of existence. What is it that makes Euler's identity, eiπ + 1 = 0, so special? In Euler's Pioneering Equation Robin Wilson shows how this simple, elegant, and profound formula links together perhaps the five most important numbers in mathematics, each associated with a story in themselves: the number 1, the basis of our counting system; the concept of zero, which was a major development in mathematics, and opened up the idea of negative numbers; π an irrational number, the basis for the measurement of circles; the exponential e, associated with exponential growth and logarithms; and the imaginary number i, the square root of -1, the basis of complex numbers. Following a chapter on each of the elements, Robin Wilson discusses how the startling relationship between them was established, including the several near misses to the discovery of the formula. |
euler's method calculus: A Most Elegant Equation David Stipp, 2017-11-07 An award-winning science writer introduces us to mathematics using the extraordinary equation that unites five of mathematics' most important numbers Bertrand Russell wrote that mathematics can exalt as surely as poetry. This is especially true of one equation: ei(pi) + 1 = 0, the brainchild of Leonhard Euler, the Mozart of mathematics. More than two centuries after Euler's death, it is still regarded as a conceptual diamond of unsurpassed beauty. Called Euler's identity or God's equation, it includes just five numbers but represents an astonishing revelation of hidden connections. It ties together everything from basic arithmetic to compound interest, the circumference of a circle, trigonometry, calculus, and even infinity. In David Stipp's hands, Euler's identity formula becomes a contemplative stroll through the glories of mathematics. The result is an ode to this magical field. |
euler's method calculus: Introduction to Analysis of the Infinite Leonhard Euler, 2012-12-06 From the preface of the author: ...I have divided this work into two books; in the first of these I have confined myself to those matters concerning pure analysis. In the second book I have explained those thing which must be known from geometry, since analysis is ordinarily developed in such a way that its application to geometry is shown. In the first book, since all of analysis is concerned with variable quantities and functions of such variables, I have given full treatment to functions. I have also treated the transformation of functions and functions as the sum of infinite series. In addition I have developed functions in infinite series... |
euler's method calculus: Calculus in Context James Callahan, 1995 For courses currently engaged, or leaning toward calculus reform. Callahan fully embraces the calculus reform movement in technology and pedagogy, while taking it a step further with a unique organization and applications to real-world problems. |
euler's method calculus: Theory and Applications of Numerical Analysis G. M. Phillips, Peter J. Taylor, 1996-07-05 Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included. - a unique blend of theory and applications - two brand new chapters on eigenvalues and splines - inclusion of formal algorithms - numerous fully worked examples - a large number of problems, many with solutions |
euler's method calculus: Euler's Gem David S. Richeson, 2019-07-23 How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author. |
euler's method calculus: Ordinary Differential Equations And Calculus Of Variations Victor Yu Reshetnyak, Mikola Vladimirovich Makarets, 1995-06-30 This problem book contains exercises for courses in differential equations and calculus of variations at universities and technical institutes. It is designed for non-mathematics students and also for scientists and practicing engineers who feel a need to refresh their knowledge. The book contains more than 260 examples and about 1400 problems to be solved by the students — much of which have been composed by the authors themselves. Numerous references are given at the end of the book to furnish sources for detailed theoretical approaches, and expanded treatment of applications. |
euler's method calculus: Calculus Deborah Hughes-Hallett, Andrew M. Gleason, William G. McCallum, 2020-11-24 Calculus: Single Variable, 8th Edition promotes active learning by providing students across multiple majors with a variety of problems with applications from the physical sciences, medicine, economics, engineering, and more. Designed to promote critical thinking to solve mathematical problems while highlighting the practical value of mathematics, the textbook brings calculus to real life with engaging and relevant examples, numerous opportunities to master key mathematical concepts and skills, and a student-friendly approach that reinforces the conceptual understanding necessary to reduce complicated problems to simple procedures. Developed by the Harvard University Calculus Consortium, Calculus focuses on the Rule of Four—viewing problems graphically, numerically, symbolically, and verbally—with particular emphasis placed on introducing a variety of perspectives for students with different learning styles. The eighth edition provides more problem sets, up-to-date examples, and a range of new multi-part graphing questions and visualizations powered by GeoGebra that reinforce the Rule of Four and strengthen students’ comprehension. |
euler's method calculus: Elementary Differential Equations with Boundary Value Problems William F. Trench, 2001 Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material. |
euler's method calculus: Introduction To Numerical Computation, An (Second Edition) Wen Shen, 2019-08-28 This book serves as a set of lecture notes for a senior undergraduate level course on the introduction to numerical computation, which was developed through 4 semesters of teaching the course over 10 years. The book requires minimum background knowledge from the students, including only a three-semester of calculus, and a bit on matrices.The book covers many of the introductory topics for a first course in numerical computation, which fits in the short time frame of a semester course. Topics range from polynomial approximations and interpolation, to numerical methods for ODEs and PDEs. Emphasis was made more on algorithm development, basic mathematical ideas behind the algorithms, and the implementation in Matlab.The book is supplemented by two sets of videos, available through the author's YouTube channel. Homework problem sets are provided for each chapter, and complete answer sets are available for instructors upon request.The second edition contains a set of selected advanced topics, written in a self-contained manner, suitable for self-learning or as additional material for an honored version of the course. Videos are also available for these added topics. |
euler's method calculus: Numerical Solution of Ordinary Differential Equations Donald Greenspan, 2008-09-26 This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic systems. The examples are carefully explained and compiled into an algorithm, each of which is presented independent of a specific programming language. Each chapter is rounded off with exercises. |
euler's method calculus: Advanced Calculus for Mathematical Modeling in Engineering and Physics David Stapleton, 2024-06-20 Advanced Calculus for Mathematical Modeling in Engineering and Physics introduces the principles and methods of advanced calculus for mathematical modeling, through a balance of theory and application using a state space approach with elementary functional analysis. This framework facilitates a deeper understanding of the nature of mathematical models and of the behavior of their solutions. The work provides a variety of advanced calculus models for mathematical, physical science, and engineering audiences, with discussion of how calculus-based models and their discrete analogies are generated. This valuable textbook offers scientific computations driven by Octave/MATLAB script, in recognition of the rising importance of associated numerical models. - Adopts a state space/functional analysis approach to advanced calculus-based models to provide a better understanding of the development of models and the behaviors of their solutions - Uniquely includes discrete analogies to calculus-based models, as well as the derivation of many advanced calculus models of physics and engineering– instead of only seeking solutions to the models - Offers online teaching support for qualified instructors (for selected solutions) and study materials for students (MATLAB/Octave scripts) |
euler's method calculus: Numerical Methods for Ordinary Differential Equations J. C. Butcher, 2004-08-20 This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. This book is...an indispensible reference for any researcher.-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography. |
euler's method calculus: Classical Mechanics with Calculus of Variations and Optimal Control Mark Levi, 2014-03-07 This is an intuitively motivated presentation of many topics in classical mechanics and related areas of control theory and calculus of variations. All topics throughout the book are treated with zero tolerance for unrevealing definitions and for proofs which leave the reader in the dark. Some areas of particular interest are: an extremely short derivation of the ellipticity of planetary orbits; a statement and an explanation of the tennis racket paradox; a heuristic explanation (and a rigorous treatment) of the gyroscopic effect; a revealing equivalence between the dynamics of a particle and statics of a spring; a short geometrical explanation of Pontryagin's Maximum Principle, and more. In the last chapter, aimed at more advanced readers, the Hamiltonian and the momentum are compared to forces in a certain static problem. This gives a palpable physical meaning to some seemingly abstract concepts and theorems. With minimal prerequisites consisting of basic calculus and basic undergraduate physics, this book is suitable for courses from an undergraduate to a beginning graduate level, and for a mixed audience of mathematics, physics and engineering students. Much of the enjoyment of the subject lies in solving almost 200 problems in this book. |
euler's method calculus: Introduction to Partial Differential Equations with Applications E. C. Zachmanoglou, Dale W. Thoe, 2012-04-20 This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers. |
euler's method calculus: Calculus of Variations I Mariano Giaquinta, Stefan Hildebrandt, 2013-03-09 This two-volume treatise is a standard reference in the field. It pays special attention to the historical aspects and the origins partly in applied problems—such as those of geometric optics—of parts of the theory. It contains an introduction to each chapter, section, and subsection and an overview of the relevant literature in the footnotes and bibliography. It also includes an index of the examples used throughout the book. |
euler's method calculus: Leonhard Euler Ronald Calinger, 2019-12-03 This is the first full-scale biography of Leonhard Euler (1707-83), one of the greatest mathematicians and theoretical physicists of all time. In this comprehensive and authoritative account, Ronald Calinger connects the story of Euler's eventful life to the astonishing achievements that place him in the company of Archimedes, Newton, and Gauss. Drawing chiefly on Euler's massive published works and correspondence, which fill more than eighty volumes so far, this biography sets Euler's work in its multilayered context--personal, intellectual, institutional, political, cultural, religious, and social. It is a story of nearly incessant accomplishment, from Euler's fundamental contributions to almost every area of pure and applied mathematics--especially calculus, number theory, notation, optics, and celestial, rational, and fluid mechanics--to his advancements in shipbuilding, telescopes, ballistics, cartography, chronology, and music theory. The narrative takes the reader from Euler's childhood and education in Basel through his first period in St. Petersburg, 1727-41, where he gained a European reputation by solving the Basel problem and systematically developing analytical mechanics. Invited to Berlin by Frederick II, Euler published his famous Introductio in analysin infinitorum, devised continuum mechanics, and proposed a pulse theory of light. Returning to St. Petersburg in 1766, he created the analytical calculus of variations, developed the most precise lunar theory of the time that supported Newton's dynamics, and published the best-selling Letters to a German Princess--all despite eye problems that ended in near-total blindness. In telling the remarkable story of Euler and how his achievements brought pan-European distinction to the Petersburg and Berlin academies of sciences, the book also demonstrates with new depth and detail the central role of mathematics in the Enlightenment.--Publisher's description. |
euler's method calculus: Differential Equations and the Calculus of Variations Lev Elsgolts, 2003-12-01 Originally published in the Soviet Union, this text is meant for students of higher schools and deals with the most important sections of mathematics - differential equations and the calculus of variations. The first part describes the theory of differential equations and reviews the methods for integrating these equations and investigating their solutions. The second part gives an idea of the calculus of variations and surveys the methods for solving variational problems. The book contains a large number of examples and problems with solutions involving applications of mathematics to physics and mechanics. Apart from its main purpose the textbook is of interest to expert mathematicians. Lev Elsgolts (deceased) was a Doctor of Physico-Mathematical Sciences, Professor at the Patrice Lumumba University of Friendship of Peoples. His research work was dedicated to the calculus of variations and differential equations. He worked out the theory of differential equations with deviating arguments and supplied methods for their solution. Lev Elsgolts was the author of many printed works. Among others, he wrote the well-known books Qualitative Methods in Mathematical Analysis and Introduction to the Theory of Differential Equations with Deviating Arguments. In addition to his research work Lev Elsgolts taught at higher schools for over twenty years. |
How to prove Euler's formula: $e^{it}=\\cos t +i\\sin t$?
Aug 28, 2010 · Euler's formula is quite a fundamental result, and we never know where it could have been used. I don't expect one to know the proof of every dependent theorem of a given …
Euler Product formula for Riemann zeta function proof
Apr 15, 2016 · A formal proof based on the sieving method described in Proof of the Euler product formula for the Riemann zeta function is given below, along with a 'heuristic' proof - ie a non …
What is the geometrical importance of the Euler Line?
Jul 23, 2021 · What is the geometrical importance of the Euler Line (ie, the line through the centroid, orthocenter, and circumcenter (and other points) of a non-equilateral triangle)? What …
The interconnection between Hyperbolic functions and Euler's …
Jul 16, 2018 · There is one difference that arises in solving Euler's identity for standard trigonometric functions and hyperbolic trigonometric functions. The difference is that the …
Why is it Euler's 'Totient' Function? - Mathematics Stack Exchange
Dec 13, 2018 · The function ϕ(n) ϕ (n) calculates the number of positive integers k ⩽ n , gcd(k, n) = 1 k ⩽ n , gcd (k, n) = 1. It was found by mathematician Leonhard Euler. In 1879, …
rotations - Are Euler angles the same as pitch, roll and yaw ...
The 3 3 Euler angles (usually denoted by α, β α, β and γ γ) are often used to represent the current orientation of an aircraft. Starting from the "parked on the ground with nose pointed North" …
Does Euler's formula give $e^{-ix}=\\cos(x) -i\\sin(x)$?
Apr 13, 2018 · Does Euler's formula give e − ix = cos(x) − isin(x)? Ask Question Asked 7 years, 2 months ago Modified 6 years, 11 months ago
algebraic topology - Euler characteristic of a covering space ...
The fact that the Euler characteristic of a sensible space with coefficients on a local system of coefficients which locally looks like Zn Z n is n n times that of the space should be written …
How can I prove Euler's formula using mathematical induction
Mar 18, 2019 · Using Euler's formula in graph theory where r − e + v = 2 r − e + v = 2 I can simply do induction on the edges where the base case is a single edge and the result will be 2 …
Euler characteristic of torus - Mathematics Stack Exchange
Jun 1, 2021 · We know that the euler characteristic of the torus is 0 0. Let´s say I have a torus which has a quadratic hole. As far as I understood the shape of the hole doesn't make any …
How to prove Euler's formula: $e^{it}=\\cos t +i\\sin t$?
Aug 28, 2010 · Euler's formula is quite a fundamental result, and we never know where it could have been used. I don't expect one to know the proof of every dependent theorem of a given result.
Euler Product formula for Riemann zeta function proof
Apr 15, 2016 · A formal proof based on the sieving method described in Proof of the Euler product formula for the Riemann zeta function is given below, along with a 'heuristic' proof - ie a non …
What is the geometrical importance of the Euler Line?
Jul 23, 2021 · What is the geometrical importance of the Euler Line (ie, the line through the centroid, orthocenter, and circumcenter (and other points) of a non-equilateral triangle)? What is …
The interconnection between Hyperbolic functions and Euler's …
Jul 16, 2018 · There is one difference that arises in solving Euler's identity for standard trigonometric functions and hyperbolic trigonometric functions. The difference is that the …
Why is it Euler's 'Totient' Function? - Mathematics Stack Exchange
Dec 13, 2018 · The function ϕ(n) ϕ (n) calculates the number of positive integers k ⩽ n , gcd(k, n) = 1 k ⩽ n , gcd (k, n) = 1. It was found by mathematician Leonhard Euler. In 1879, mathematician …
rotations - Are Euler angles the same as pitch, roll and yaw ...
The 3 3 Euler angles (usually denoted by α, β α, β and γ γ) are often used to represent the current orientation of an aircraft. Starting from the "parked on the ground with nose pointed North" …
Does Euler's formula give $e^{-ix}=\\cos(x) -i\\sin(x)$?
Apr 13, 2018 · Does Euler's formula give e − ix = cos(x) − isin(x)? Ask Question Asked 7 years, 2 months ago Modified 6 years, 11 months ago
algebraic topology - Euler characteristic of a covering space ...
The fact that the Euler characteristic of a sensible space with coefficients on a local system of coefficients which locally looks like Zn Z n is n n times that of the space should be written down …
How can I prove Euler's formula using mathematical induction
Mar 18, 2019 · Using Euler's formula in graph theory where r − e + v = 2 r − e + v = 2 I can simply do induction on the edges where the base case is a single edge and the result will be 2 vertices. A …
Euler characteristic of torus - Mathematics Stack Exchange
Jun 1, 2021 · We know that the euler characteristic of the torus is 0 0. Let´s say I have a torus which has a quadratic hole. As far as I understood the shape of the hole doesn't make any difference in …