Example Of Population In Biology

Advertisement



  example of population in biology: Concepts of Biology Samantha Fowler, Rebecca Roush, James Wise, 2023-05-12 Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
  example of population in biology: Population Biology Alan Hastings, 2013-03-14 Population biology has been investigated quantitatively for many decades, resulting in a rich body of scientific literature. Ecologists often avoid this literature, put off by its apparently formidable mathematics. This textbook provides an introduction to the biology and ecology of populations by emphasizing the roles of simple mathematical models in explaining the growth and behavior of populations. The author only assumes acquaintance with elementary calculus, and provides tutorial explanations where needed to develop mathematical concepts. Examples, problems, extensive marginal notes and numerous graphs enhance the book's value to students in classes ranging from population biology and population ecology to mathematical biology and mathematical ecology. The book will also be useful as a supplement to introductory courses in ecology.
  example of population in biology: Complex Population Dynamics Peter Turchin, 2003-02-02 Why do organisms become extremely abundant one year and then seem to disappear a few years later? Why do population outbreaks in particular species happen more or less regularly in certain locations, but only irregularly (or never at all) in other locations? Complex population dynamics have fascinated biologists for decades. By bringing together mathematical models, statistical analyses, and field experiments, this book offers a comprehensive new synthesis of the theory of population oscillations. Peter Turchin first reviews the conceptual tools that ecologists use to investigate population oscillations, introducing population modeling and the statistical analysis of time series data. He then provides an in-depth discussion of several case studies--including the larch budmoth, southern pine beetle, red grouse, voles and lemmings, snowshoe hare, and ungulates--to develop a new analysis of the mechanisms that drive population oscillations in nature. Through such work, the author argues, ecologists can develop general laws of population dynamics that will help turn ecology into a truly quantitative and predictive science. Complex Population Dynamics integrates theoretical and empirical studies into a major new synthesis of current knowledge about population dynamics. It is also a pioneering work that sets the course for ecology's future as a predictive science.
  example of population in biology: Principles of Biology Lisa Bartee, Walter Shiner, Catherine Creech, 2017 The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
  example of population in biology: Population Biology Philip W. Hedrick, 1984
  example of population in biology: Conservation Biology in Sub-Saharan Africa Richard Primack, Johnny W. Wilson, 2019-09-10 Conservation Biology in Sub-Saharan Africa comprehensively explores the challenges and potential solutions to key conservation issues in Sub-Saharan Africa. Easy to read, this lucid and accessible textbook includes fifteen chapters that cover a full range of conservation topics, including threats to biodiversity, environmental laws, and protected areas management, as well as related topics such as sustainability, poverty, and human-wildlife conflict. This rich resource also includes a background discussion of what conservation biology is, a wide range of theoretical approaches to the subject, and concrete examples of conservation practice in specific African contexts. Strategies are outlined to protect biodiversity whilst promoting economic development in the region. Boxes covering specific themes written by scientists who live and work throughout the region are included in each chapter, together with recommended readings and suggested discussion topics. Each chapter also includes an extensive bibliography. Conservation Biology in Sub-Saharan Africa provides the most up-to-date study in the field. It is an essential resource, available on-line without charge, for undergraduate and graduate students, as well as a handy guide for professionals working to stop the rapid loss of biodiversity in Sub-Saharan Africa and elsewhere.
  example of population in biology: Biology for AP ® Courses Julianne Zedalis, John Eggebrecht, 2017-10-16 Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
  example of population in biology: Applied Population Biology S.K. Jain, L.W. Botsford, 2007-07-23 An increasing variety of biological problems involving resource management, conservation and environmental quality have been dealt with using the principles of population biology (defined to include population dynamics, genetics and certain aspects of community ecology). There appears to be a mixed record of successes and failures and almost no critical synthesis or reviews that have attempted to discuss the reasons and ways in which population biology, with its remarkable theoretical as well as experimental advances, could find more useful application in agriculture, forestry, fishery, medicine and resource and environmental management. This book provides examples of state-of-the-art applications by a distinguished group of researchers in several fields. The diversity of topics richly illustrates the scientific and economic breadth of their discussions as well as epistemological and comparative analyses by the authors and editors. Several principles and common themes are emphasized and both strengths and potential sources of uncertainty in applications are discussed. This volume will hopefully stimulate new interdisciplinary avenues of problem-solving research.
  example of population in biology: Insect Ecology Timothy D. Schowalter, 2006-02-27 Dr. Timothy Schowalter has succeeded in creating a unique, updated treatment of insect ecology. This revised and expanded text looks at how insects adapt to environmental conditions while maintaining the ability to substantially alter their environment. It covers a range of topics- from individual insects that respond to local changes in the environment and affect resource distribution, to entire insect communities that have the capacity to modify ecosystem conditions.Insect Ecology, Second Edition, synthesizes the latest research in the field and has been produced in full color throughout. It is ideal for students in both entomology and ecology-focused programs.NEW TO THIS EDITION:* New topics such as elemental defense by plants, chaotic models, molecular methods to measure disperson, food web relationships, and more* Expanded sections on plant defenses, insect learning, evolutionary tradeoffs, conservation biology and more* Includes more than 350 new references* More than 40 new full-color figures
  example of population in biology: Introduction to Population Biology Dick Neal, 2004 Provides a quantitative and Darwinian perspective on population biology, with problem sets, simulations and worked examples to aid the student.
  example of population in biology: The Rate of Living Raymond Pearl, 1928
  example of population in biology: Between Zeus and the Salmon Caleb E. Finch, Committee on Population, 1997-10-29 Demographers and public health specialists have been surprised by the rapid increases in life expectancy, especially at the oldest ages, that have occurred since the early 1960s. Some scientists are calling into question the idea of a fixed upper limit for the human life span. There is new evidence about the genetic bases for both humans and other species. There are also new theories and models of the role of mutations accumulating over the life span and the possible evolutionary advantages of survival after the reproductive years. This volume deals with such diverse topics as the role of the elderly in other species and among human societies past and present, the contribution of evolutionary theory to our understanding of human longevity and intergenerational transfers, mathematical models for survival, and the potential for collecting genetic material in household surveys. It will be particularly valuable for promoting communication between the social and life sciences.
  example of population in biology: Niche Construction F. John Odling-Smee, Kevin N. Lala, Marcus Feldman, 2013-02-15 The seemingly innocent observation that the activities of organisms bring about changes in environments is so obvious that it seems an unlikely focus for a new line of thinking about evolution. Yet niche construction--as this process of organism-driven environmental modification is known--has hidden complexities. By transforming biotic and abiotic sources of natural selection in external environments, niche construction generates feedback in evolution on a scale hitherto underestimated--and in a manner that transforms the evolutionary dynamic. It also plays a critical role in ecology, supporting ecosystem engineering and influencing the flow of energy and nutrients through ecosystems. Despite this, niche construction has been given short shrift in theoretical biology, in part because it cannot be fully understood within the framework of standard evolutionary theory. Wedding evolution and ecology, this book extends evolutionary theory by formally including niche construction and ecological inheritance as additional evolutionary processes. The authors support their historic move with empirical data, theoretical population genetics, and conceptual models. They also describe new research methods capable of testing the theory. They demonstrate how their theory can resolve long-standing problems in ecology, particularly by advancing the sorely needed synthesis of ecology and evolution, and how it offers an evolutionary basis for the human sciences. Already hailed as a pioneering work by some of the world's most influential biologists, this is a rare, potentially field-changing contribution to the biological sciences.
  example of population in biology: Evolutionary Conservation Biology Régis Ferrière, Ulf Dieckmann, Denis Couvet, 2004-06-10 As anthropogenic environmental changes spread and intensify across the planet, conservation biologists have to analyze dynamics at large spatial and temporal scales. Ecological and evolutionary processes are then closely intertwined. In particular, evolutionary responses to anthropogenic environmental change can be so fast and pronounced that conservation biology can no longer afford to ignore them. To tackle this challenge, areas of conservation biology that are disparate ought to be integrated into a unified framework. Bringing together conservation genetics, demography, and ecology, this book introduces evolutionary conservation biology as an integrative approach to managing species in conjunction with ecological interactions and evolutionary processes. Which characteristics of species and which features of environmental change foster or hinder evolutionary responses in ecological systems? How do such responses affect population viability, community dynamics, and ecosystem functioning? Under which conditions will evolutionary responses ameliorate, rather than worsen, the impact of environmental change?
  example of population in biology: Mathematical Models in Population Biology and Epidemiology Fred Brauer, Carlos Castillo-Chavez, 2013-03-09 The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.
  example of population in biology: Ecological Niches and Geographic Distributions (MPB-49) A. Townsend Peterson, 2011-11-20 Terminology, conceptual overview, biogeography, modeling.
  example of population in biology: Ecological Models and Data in R Benjamin M. Bolker, 2008-07-21 Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.
  example of population in biology: Opportunities in Biology National Research Council, Division on Earth and Life Studies, Commission on Life Sciences, Board on Biology, Committee on Research Opportunities in Biology, 1989-01-01 Biology has entered an era in which interdisciplinary cooperation is at an all-time high, practical applications follow basic discoveries more quickly than ever before, and new technologiesâ€recombinant DNA, scanning tunneling microscopes, and moreâ€are revolutionizing the way science is conducted. The potential for scientific breakthroughs with significant implications for society has never been greater. Opportunities in Biology reports on the state of the new biology, taking a detailed look at the disciplines of biology; examining the advances made in medicine, agriculture, and other fields; and pointing out promising research opportunities. Authored by an expert panel representing a variety of viewpoints, this volume also offers recommendations on how to meet the infrastructure needsâ€for funding, effective information systems, and other supportâ€of future biology research. Exploring what has been accomplished and what is on the horizon, Opportunities in Biology is an indispensable resource for students, teachers, and researchers in all subdisciplines of biology as well as for research administrators and those in funding agencies.
  example of population in biology: Population Regulation Robert H. Tamarin, 1978
  example of population in biology: Integrated Population Models Michael Schaub, Marc Kéry, 2021-11-12 Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. - Offers practical and accessible ecological applications of IPMs (integrated population models) - Provides full documentation of analyzed code in the Bayesian framework - Written and structured for an easy approach to the subject, especially for non-statisticians
  example of population in biology: The Theory of Ecological Communities (MPB-57) Mark Vellend, 2020-09-15 A plethora of different theories, models, and concepts make up the field of community ecology. Amid this vast body of work, is it possible to build one general theory of ecological communities? What other scientific areas might serve as a guiding framework? As it turns out, the core focus of community ecology—understanding patterns of diversity and composition of biological variants across space and time—is shared by evolutionary biology and its very coherent conceptual framework, population genetics theory. The Theory of Ecological Communities takes this as a starting point to pull together community ecology's various perspectives into a more unified whole. Mark Vellend builds a theory of ecological communities based on four overarching processes: selection among species, drift, dispersal, and speciation. These are analogues of the four central processes in population genetics theory—selection within species, drift, gene flow, and mutation—and together they subsume almost all of the many dozens of more specific models built to describe the dynamics of communities of interacting species. The result is a theory that allows the effects of many low-level processes, such as competition, facilitation, predation, disturbance, stress, succession, colonization, and local extinction to be understood as the underpinnings of high-level processes with widely applicable consequences for ecological communities. Reframing the numerous existing ideas in community ecology, The Theory of Ecological Communities provides a new way for thinking about biological composition and diversity.
  example of population in biology: Biodemography James R. Carey, Deborah A. Roach, 2020-01-07 An authoritative overview of the concepts and applications of biological demography This book provides a comprehensive introduction to biodemography, an exciting interdisciplinary field that unites the natural science of biology with the social science of human demography. Biodemography is an essential resource for demographers, epidemiologists, gerontologists, and health professionals as well as ecologists, population biologists, entomologists, and conservation biologists. This accessible and innovative book is also ideal for the classroom. James Carey and Deborah Roach cover everything from baseline demographic concepts to biodemographic applications, and present models and equations in discrete rather than continuous form to enhance mathematical accessibility. They use a wealth of real-world examples that draw from data sets on both human and nonhuman species and offer an interdisciplinary approach to demography like no other, with topics ranging from kinship theory and family demography to reliability engineering, tort law, and demographic disasters such as the Titanic and the destruction of Napoleon's Grande Armée. Provides the first synthesis of demography and biology Covers baseline demographic models and concepts such as Lexis diagrams, mortality, fecundity, and population theory Features in-depth discussions of biodemographic applications like harvesting theory and mark-recapture Draws from data sets on species ranging from fruit flies and plants to elephants and humans Uses a uniquely interdisciplinary approach to demography, bringing together a diverse range of concepts, models, and applications Includes informative biodemographic shorts, appendixes on data visualization and management, and more than 150 illustrations of models and equations
  example of population in biology: Population Biology Alan Hastings, 1996-12-13 Population biology has been investigated quantitatively for many decades, resulting in a rich body of scientific literature. Ecologists often avoid this literature, put off by its apparently formidable mathematics. This textbook provides an introduction to the biology and ecology of populations by emphasizing the roles of simple mathematical models in explaining the growth and behavior of populations. The author only assumes acquaintance with elementary calculus, and provides tutorial explanations where needed to develop mathematical concepts. Examples, problems, extensive marginal notes and numerous graphs enhance the book's value to students in classes ranging from population biology and population ecology to mathematical biology and mathematical ecology. The book will also be useful as a supplement to introductory courses in ecology.
  example of population in biology: Biology Workbook For Dummies Rene Fester Kratz, 2012-05-08 From genetics to ecology — the easy way to score higher in biology Are you a student baffled by biology? You're not alone. With the help of Biology Workbook For Dummies you'll quickly and painlessly get a grip on complex biology concepts and unlock the mysteries of this fascinating and ever-evolving field of study. Whether used as a complement to Biology For Dummies or on its own, Biology Workbook For Dummies aids you in grasping the fundamental aspects of Biology. In plain English, it helps you understand the concepts you'll come across in your biology class, such as physiology, ecology, evolution, genetics, cell biology, and more. Throughout the book, you get plenty of practice exercises to reinforce learning and help you on your goal of scoring higher in biology. Grasp the fundamental concepts of biology Step-by-step answer sets clearly identify where you went wrong (or right) with a problem Hundreds of study questions and exercises give you the skills and confidence to ace your biology course If you're intimidated by biology, utilize the friendly, hands-on information and activities in Biology Workbook For Dummies to build your skills in and out of the science lab.
  example of population in biology: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolu­tion, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wear­able sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manu­facturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individu­als. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frame­works that advance progress.
  example of population in biology: Genetics and Evolution of Infectious Diseases Michel Tibayrenc, 2024-07-19 Genetics and Evolution of Infectious Diseases, Third Edition discusses the evolving field of infectious diseases and their continued impact on the health of populations, especially in resource-limited areas of the world where they must confront the dual burden of death and disability due to infectious and chronic illnesses. Although substantial gains have been made in public health interventions for the treatment, prevention, and control of infectious diseases, in recent decades the world has witnessed the emergence of the human immunodeficiency virus (HIV) and the COVID-19 pandemic, increasing antimicrobial resistance, and the emergence of many new bacterial, fungal, parasitic, and viral pathogens. Fully updated and revised, this new edition presents the consequences of such diseases, the evolution of infectious diseases, the genetics of host-pathogen relationship, and the control and prevention strategies that are, or can be, developed. This book offers valuable information to biomedical researchers, clinicians, public health practitioners, decisions-makers, and students and postgraduates studying infectious diseases, microbiology, medicine, and public health that is relevant to the control and prevention of neglected and emerging worldwide diseases. - Takes an integrated approach to infectious diseases - Provides the latest developments in the field of infectious diseases - Focuses on the contribution of evolutionary and genomic studies for the study and control of transmissible diseases - Includes updated and revised contributions from leading authorities, along with six new chapters
  example of population in biology: Temperature-Dependent Sex Determination in Vertebrates Nicole Valenzuela, Valentine A. Lance, 2004 Edited by the world's foremost authorities on the subject, with essays by leading scholars in the field, this work shows how the sex of reptiles and many fish is determined not by the chromosomes they inherit but by the temperature at which incubation takes place.
  example of population in biology: Using Science to Improve the BLM Wild Horse and Burro Program National Research Council, Division on Earth and Life Studies, Board on Agriculture and Natural Resources, Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program, 2013-10-04 Using Science to Improve the BLM Wild Horse and Burro Program: A Way Forward reviews the science that underpins the Bureau of Land Management's oversight of free-ranging horses and burros on federal public lands in the western United States, concluding that constructive changes could be implemented. The Wild Horse and Burro Program has not used scientifically rigorous methods to estimate the population sizes of horses and burros, to model the effects of management actions on the animals, or to assess the availability and use of forage on rangelands. Evidence suggests that horse populations are growing by 15 to 20 percent each year, a level that is unsustainable for maintaining healthy horse populations as well as healthy ecosystems. Promising fertility-control methods are available to help limit this population growth, however. In addition, science-based methods exist for improving population estimates, predicting the effects of management practices in order to maintain genetically diverse, healthy populations, and estimating the productivity of rangelands. Greater transparency in how science-based methods are used to inform management decisions may help increase public confidence in the Wild Horse and Burro Program.
  example of population in biology: Spatial Capture-Recapture J. Andrew Royle, Richard B. Chandler, Rahel Sollmann, Beth Gardner, 2013-08-27 Spatial Capture-Recapture provides a comprehensive how-to manual with detailed examples of spatial capture-recapture models based on current technology and knowledge. Spatial Capture-Recapture provides you with an extensive step-by-step analysis of many data sets using different software implementations. The authors' approach is practical – it embraces Bayesian and classical inference strategies to give the reader different options to get the job done. In addition, Spatial Capture-Recapture provides data sets, sample code and computing scripts in an R package. - Comprehensive reference on revolutionary new methods in ecology makes this the first and only book on the topic - Every methodological element has a detailed worked example with a code template, allowing you to learn by example - Includes an R package that contains all computer code and data sets on companion website
  example of population in biology: Quantitative Conservation Biology William F. Morris, Daniel F. Doak, 2002-01-01 The goal of this book is to provide practical, intelligible, and intuitive explanations of population modelling to empirical ecologists and conservation biologists. Modelling methods that do not require large amounts of data (typically unavailable for endangered species) are emphasised. As such, the book is appropriate for undergraduate and graduate students interested in quantitative conservation biology, managers charged with preserving endangered species, and, in short, for any conservation biologist or ecologist seeking to better understand the analysis and modelling of population data.
  example of population in biology: The Biosphere Vladimir I. Vernadsky, 2012-12-06 Vladimir Vernadsky was a brilliant and prescient scholar-a true scientific visionary who saw the deep connections between life on Earth and the rest of the planet and understood the profound implications for life as a cosmic phenomenon. -DAVID H. GRINSPOON, AUTHOR OF VENUS REVEALED The Biosphere should be required reading for all entry level students in earth and planetary sciences. -ERIC D. SCHNEIDER, AUTHOR OF INTO THE COOL: THE NEW THERMODYNAMICS OF CREATIVE DESTRUCTION
  example of population in biology: Molecular Biology of the Cell , 2002
  example of population in biology: Evolution and Selection of Quantitative Traits Bruce Walsh, Michael Lynch, 2018-06-21 Quantitative traits-be they morphological or physiological characters, aspects of behavior, or genome-level features such as the amount of RNA or protein expression for a specific gene-usually show considerable variation within and among populations. Quantitative genetics, also referred to as the genetics of complex traits, is the study of such characters and is based on mathematical models of evolution in which many genes influence the trait and in which non-genetic factors may also be important. Evolution and Selection of Quantitative Traits presents a holistic treatment of the subject, showing the interplay between theory and data with extensive discussions on statistical issues relating to the estimation of the biologically relevant parameters for these models. Quantitative genetics is viewed as the bridge between complex mathematical models of trait evolution and real-world data, and the authors have clearly framed their treatment as such. This is the second volume in a planned trilogy that summarizes the modern field of quantitative genetics, informed by empirical observations from wide-ranging fields (agriculture, evolution, ecology, and human biology) as well as population genetics, statistical theory, mathematical modeling, genetics, and genomics. Whilst volume 1 (1998) dealt with the genetics of such traits, the main focus of volume 2 is on their evolution, with a special emphasis on detecting selection (ranging from the use of genomic and historical data through to ecological field data) and examining its consequences.
  example of population in biology: Monitoring Animal Populations and Their Habitats Brenda McComb, Benjamin Zuckerberg, David Vesely, Christopher Jordan, 2010-03-11 In the face of so many unprecedented changes in our environment, the pressure is on scientists to lead the way toward a more sustainable future. Written by a team of ecologists, Monitoring Animal Populations and Their Habitats: A Practitioner’s Guide provides a framework that natural resource managers and researchers can use to design monitoring programs that will benefit future generations by distilling the information needed to make informed decisions. In addition, this text is valuable for undergraduate- and graduate-level courses that are focused on monitoring animal populations. With the aid of more than 90 illustrations and a four-page color insert, this book offers practical guidance for the entire monitoring process, from incorporating stakeholder input and data collection, to data management, analysis, and reporting. It establishes the basis for why, what, how, where, and when monitoring should be conducted; describes how to analyze and interpret the data; explains how to budget for monitoring efforts; and discusses how to assemble reports of use in decision-making. The book takes a multi-scaled and multi-taxa approach, focusing on monitoring vertebrate populations and upland habitats, but the recommendations and suggestions presented are applicable to a variety of monitoring programs. Lastly, the book explores the future of monitoring techniques, enabling researchers to better plan for the future of wildlife populations and their habitats. Monitoring Animal Populations and Their Habitats: A Practitioner’s Guide furthers the goal of achieving a world in which biodiversity is allowed to evolve and flourish in the face of such uncertainties as climate change, invasive species proliferation, land use expansion, and population growth.
  example of population in biology: Biodiversity II A Joseph Henry Press book, 1996-09-16 The book before you...carries the urgent warning that we are rapidly altering and destroying the environments that have fostered the diversity of life forms for more than a billion years. With those words, Edward O. Wilson opened the landmark volume Biodiversity (National Academy Press, 1988). Despite this and other such alarms, species continue to vanish at a rapid rate, taking with them their genetic legacy and potential benefits. Many disappear before they can even be identified. Biodiversity II is a renewed call for urgency. This volume updates readers on how much we already know and how much remains to be identified scientifically. It explores new strategies for quantifying, understanding, and protecting biodiversity, including: New approaches to the integration of electronic data, including a proposal for a U.S. National Biodiversity Information Center. Application of techniques developed in the human genome project to species identification and classification. The Gap Analysis Program of the National Biological Survey, which uses layered satellite, climatic, and biological data to assess distribution and better manage biodiversity. The significant contribution of museum collections to identifying and categorizing species, which is essential for understanding ecological function and for targeting organisms and regions at risk. The book describes our growing understanding of how megacenters of diversity (e.g., rainforest insects, coral reefs) are formed, maintained, and lost; what can be learned from mounting bird extinctions; and how conservation efforts for neotropical primates have fared. It also explores ecosystem restoration, sustainable development, and agricultural impact. Biodiversity II reinforces the idea that the conservation of our biological resources is within reach as long as we pool resources; better coordinate the efforts of existing institutionsâ€museums, universities, and government agenciesâ€already dedicated to this goal; and enhance support for research, collections, and training. This volume will be important to environmentalists, biologists, ecologists, educators, students, and concerned individuals.
  example of population in biology: The Prokaryotes Edward F. DeLong, Stephen Lory, Erko Stackebrandt, Fabiano Thompson, 2014-10-13 The Prokaryotes is a comprehensive, multi-authored, peer reviewed reference work on Bacteria and Achaea. This fourth edition of The Prokaryotes is organized to cover all taxonomic diversity, using the family level to delineate chapters. Different from other resources, this new Springer product includes not only taxonomy, but also prokaryotic biology and technology of taxa in a broad context. Technological aspects highlight the usefulness of prokaryotes in processes and products, including biocontrol agents and as genetics tools. The content of the expanded fourth edition is divided into two parts: Part 1 contains review chapters dealing with the most important general concepts in molecular, applied and general prokaryote biology; Part 2 describes the known properties of specific taxonomic groups. Two completely new sections have been added to Part 1: bacterial communities and human bacteriology. The bacterial communities section reflects the growing realization that studies on pure cultures of bacteria have led to an incomplete picture of the microbial world for two fundamental reasons: the vast majority of bacteria in soil, water and associated with biological tissues are currently not culturable, and that an understanding of microbial ecology requires knowledge on how different bacterial species interact with each other in their natural environment. The new section on human microbiology deals with bacteria associated with healthy humans and bacterial pathogenesis. Each of the major human diseases caused by bacteria is reviewed, from identifying the pathogens by classical clinical and non-culturing techniques to the biochemical mechanisms of the disease process. The 4th edition of The Prokaryotes is the most complete resource on the biology of prokaryotes. The following volumes are published consecutively within the 4th Edition: Prokaryotic Biology and Symbiotic Associations Prokaryotic Communities and Ecophysiology Prokaryotic Physiology and Biochemistry Applied Bacteriology and Biotechnology Human Microbiology Actinobacteria Firmicutes Alphaproteobacteria and Betaproteobacteria Gammaproteobacteria Deltaproteobacteria and Epsilonproteobacteria Other Major Lineages of Bacteria and the Archaea
  example of population in biology: Discovering the Brain National Academy of Sciences, Institute of Medicine, Sandra Ackerman, 1992-01-01 The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the Decade of the Brain by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a field guide to the brainâ€an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€and how a gut feeling actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the Decade of the Brain, with a look at medical imaging techniquesâ€what various technologies can and cannot tell usâ€and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€and many scientists as wellâ€with a helpful guide to understanding the many discoveries that are sure to be announced throughout the Decade of the Brain.
  example of population in biology: The Population Bomb Paul R. Ehrlich, 1971
  example of population in biology: The Oxford Dictionary of Statistical Terms Yadolah Dodge, 2003 This is the new-in-paperback edition of The Oxford Dictionary of Statistical Terms, the much-awaited sixth edition of the acclaimed standard reference work in statistics, published on behalf of the International Statistical Institute. The first edition, known as the Dictionary of Statistical Terms, was edited in 1957 by the late Sir Maurice Kendall and the late Dr W.R. Buckland. As one of the first dictionaries of statistics it set high standards for the subject, and became a well-respected reference. This edition has been carefully updated and extended to include the most recent terminology and techniques in statistics. Significant revision and expansion from an international editorial board of senior statisticians has resulted in a comprehenisive reference text which includes 30% more material than previous editions. Ideal for all who use statistics in the workplace and in research including all scientists and social scientists, especially in law, politics, finance, business, and history, it is an indispensable reference.
  example of population in biology: How Many People Can the Earth Support? Joel E. Cohen, 1996 Discusses how many people the earth can support in terms of economic, physical, and environmental aspects.
EXAMPLE Definition & Meaning - Merriam-Webster
The meaning of EXAMPLE is one that serves as a pattern to be imitated or not to be imitated. How to use example in a sentence. Synonym Discussion of Example.

EXAMPLE | English meaning - Cambridge Dictionary
EXAMPLE definition: 1. something that is typical of the group of things that it is a member of: 2. a way of helping…. Learn more.

EXAMPLE Definition & Meaning | Dictionary.com
one of a number of things, or a part of something, taken to show the character of the whole. This painting is an example of his early work. a pattern or model, as of something to be imitated or …

Example - definition of example by The Free Dictionary
1. one of a number of things, or a part of something, taken to show the character of the whole. 2. a pattern or model, as of something to be imitated or avoided: to set a good example. 3. an …

Example Definition & Meaning - YourDictionary
To be illustrated or exemplified (by). Wear something simple; for example, a skirt and blouse.

EXAMPLE - Meaning & Translations | Collins English Dictionary
An example of something is a particular situation, object, or person which shows that what is being claimed is true. 2. An example of a particular class of objects or styles is something that …

example noun - Definition, pictures, pronunciation and usage …
used to emphasize something that explains or supports what you are saying; used to give an example of what you are saying. There is a similar word in many languages, for example in …

Example - Definition, Meaning & Synonyms - Vocabulary.com
An example is a particular instance of something that is representative of a group, or an illustration of something that's been generally described. Example comes from the Latin word …

example - definition and meaning - Wordnik
noun Something that serves as a pattern of behaviour to be imitated (a good example) or not to be imitated (a bad example). noun A person punished as a warning to others. noun A parallel …

EXAMPLE Synonyms: 20 Similar Words - Merriam-Webster
Some common synonyms of example are case, illustration, instance, sample, and specimen. While all these words mean "something that exhibits distinguishing characteristics in its …

EXAMPLE Definition & Meaning - Merriam-Webster
The meaning of EXAMPLE is one that serves as a pattern to be imitated or not to be imitated. How to use example in a sentence. Synonym Discussion of Example.

EXAMPLE | English meaning - Cambridge Dictionary
EXAMPLE definition: 1. something that is typical of the group of things that it is a member of: 2. a way of helping…. Learn more.

EXAMPLE Definition & Meaning | Dictionary.com
one of a number of things, or a part of something, taken to show the character of the whole. This painting is an example of his early work. a pattern or model, as of something to be imitated or …

Example - definition of example by The Free Dictionary
1. one of a number of things, or a part of something, taken to show the character of the whole. 2. a pattern or model, as of something to be imitated or avoided: to set a good example. 3. an …

Example Definition & Meaning - YourDictionary
To be illustrated or exemplified (by). Wear something simple; for example, a skirt and blouse.

EXAMPLE - Meaning & Translations | Collins English Dictionary
An example of something is a particular situation, object, or person which shows that what is being claimed is true. 2. An example of a particular class of objects or styles is something that …

example noun - Definition, pictures, pronunciation and usage …
used to emphasize something that explains or supports what you are saying; used to give an example of what you are saying. There is a similar word in many languages, for example in …

Example - Definition, Meaning & Synonyms - Vocabulary.com
An example is a particular instance of something that is representative of a group, or an illustration of something that's been generally described. Example comes from the Latin word …

example - definition and meaning - Wordnik
noun Something that serves as a pattern of behaviour to be imitated (a good example) or not to be imitated (a bad example). noun A person punished as a warning to others. noun A parallel …

EXAMPLE Synonyms: 20 Similar Words - Merriam-Webster
Some common synonyms of example are case, illustration, instance, sample, and specimen. While all these words mean "something that exhibits distinguishing characteristics in its …