Examples Of Business Analytics

Advertisement



  examples of business analytics: Predictive Business Analytics Lawrence Maisel, Gary Cokins, 2013-09-26 Discover the breakthrough tool your company can use to make winning decisions This forward-thinking book addresses the emergence of predictive business analytics, how it can help redefine the way your organization operates, and many of the misconceptions that impede the adoption of this new management capability. Filled with case examples, Predictive Business Analytics defines ways in which specific industries have applied these techniques and tools and how predictive business analytics can complement other financial applications such as budgeting, forecasting, and performance reporting. Examines how predictive business analytics can help your organization understand its various drivers of performance, their relationship to future outcomes, and improve managerial decision-making Looks at how to develop new insights and understand business performance based on extensive use of data, statistical and quantitative analysis, and explanatory and predictive modeling Written for senior financial professionals, as well as general and divisional senior management Visionary and effective, Predictive Business Analytics reveals how you can use your business's skills, technologies, tools, and processes for continuous analysis of past business performance to gain forward-looking insight and drive business decisions and actions.
  examples of business analytics: Sport Business Analytics C. Keith Harrison, Scott Bukstein, 2016-11-18 Developing and implementing a systematic analytics strategy can result in a sustainable competitive advantage within the sport business industry. This timely and relevant book provides practical strategies to collect data and then convert that data into meaningful, value-added information and actionable insights. Its primary objective is to help sport business organizations utilize data-driven decision-making to generate optimal revenue from such areas as ticket sales and corporate partnerships. To that end, the book includes in-depth case studies from such leading sports organizations as the Orlando Magic, Tampa Bay Buccaneers, Duke University, and the Aspire Group. The core purpose of sport business analytics is to convert raw data into information that enables sport business professionals to make strategic business decisions that result in improved company financial performance and a measurable and sustainable competitive advantage. Readers will learn about the role of big data and analytics in: Ticket pricing Season ticket member retention Fan engagement Sponsorship valuation Customer relationship management Digital marketing Market research Data visualization. This book examines changes in the ticketing marketplace and spotlights innovative ticketing strategies used in various sport organizations. It shows how to engage fans with social media and digital analytics, presents techniques to analyze engagement and marketing strategies, and explains how to utilize analytics to leverage fan engagement to enhance revenue for sport organizations. Filled with insightful case studies, this book benefits both sports business professionals and students. The concluding chapter on teaching sport analytics further enhances its value to academics.
  examples of business analytics: Applied Business Analytics Nathaniel Lin, 2015 Now that you've collected the data and crunched the numbers, what do you do with all this information? How do you take the fruit of your analytics labor and apply it to business decision making? How do you actually apply the information gleaned from quants and tech teams? Applied Business Analytics will help you find optimal answers to these questions, and bridge the gap between analytics and execution in your organization. Nathaniel Lin explains why analytics value chains often break due to organizational and cultural issues, and offers in the trenches guidance for overcoming these obstacles. You'll learn why a special breed of analytics deciders is indispensable for any organization that seeks to compete on analytics; how to become one of those deciders; and how to identify, foster, support, empower, and reward others who join you. Lin draws on actual cases and examples from his own experience, augmenting them with hands-on examples and exercises to integrate analytics at every level: from top-level business questions to low-level technical details. Along the way, you'll learn how to bring together analytics team members with widely diverse goals, knowledge, and backgrounds. Coverage includes: How analytical and conventional decision making differ -- and the challenging implications How to determine who your analytics deciders are, and ought to be Proven best practices for actually applying analytics to decision-making How to optimize your use of analytics as an analyst, manager, executive, or C-level officer
  examples of business analytics: Business Analytics for Decision Making Steven Orla Kimbrough, Hoong Chuin Lau, 2018-09-03 Business Analytics for Decision Making, the first complete text suitable for use in introductory Business Analytics courses, establishes a national syllabus for an emerging first course at an MBA or upper undergraduate level. This timely text is mainly about model analytics, particularly analytics for constrained optimization. It uses implementations that allow students to explore models and data for the sake of discovery, understanding, and decision making. Business analytics is about using data and models to solve various kinds of decision problems. There are three aspects for those who want to make the most of their analytics: encoding, solution design, and post-solution analysis. This textbook addresses all three. Emphasizing the use of constrained optimization models for decision making, the book concentrates on post-solution analysis of models. The text focuses on computationally challenging problems that commonly arise in business environments. Unique among business analytics texts, it emphasizes using heuristics for solving difficult optimization problems important in business practice by making best use of methods from Computer Science and Operations Research. Furthermore, case studies and examples illustrate the real-world applications of these methods. The authors supply examples in Excel®, GAMS, MATLAB®, and OPL. The metaheuristics code is also made available at the book's website in a documented library of Python modules, along with data and material for homework exercises. From the beginning, the authors emphasize analytics and de-emphasize representation and encoding so students will have plenty to sink their teeth into regardless of their computer programming experience.
  examples of business analytics: Business Analytics Principles, Concepts, and Applications with SAS Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 2014-10-07 Responding to a shortage of effective content for teaching business analytics, this text offers a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. Business Analytics Principles, Concepts, and Applications with SAS offers a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, Business Analytics Principles, Concepts, and Applications with SAS demonstrates the use of SAS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself.
  examples of business analytics: R for Business Analytics A Ohri, 2012-09-14 This book examines common tasks performed by business analysts and helps the reader navigate the wealth of information in R and its 4000 packages to create useful analytics applications. Includes interviews with corporate users of R, and easy-to-use examples.
  examples of business analytics: Competing on Analytics Thomas H. Davenport, Jeanne G. Harris, 2007-03-06 You have more information at hand about your business environment than ever before. But are you using it to “out-think” your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new tools to identify their most profitable customers and offer them the right price, to accelerate product innovation, to optimize supply chains, and to identify the true drivers of financial performance. A wealth of examples—from organizations as diverse as Amazon, Barclay’s, Capital One, Harrah’s, Procter & Gamble, Wachovia, and the Boston Red Sox—illuminate how to leverage the power of analytics.
  examples of business analytics: Business Analytics Walter R. Paczkowski, 2022-01-03 This book focuses on three core knowledge requirements for effective and thorough data analysis for solving business problems. These are a foundational understanding of: 1. statistical, econometric, and machine learning techniques; 2. data handling capabilities; 3. at least one programming language. Practical in orientation, the volume offers illustrative case studies throughout and examples using Python in the context of Jupyter notebooks. Covered topics include demand measurement and forecasting, predictive modeling, pricing analytics, customer satisfaction assessment, market and advertising research, and new product development and research. This volume will be useful to business data analysts, data scientists, and market research professionals, as well as aspiring practitioners in business data analytics. It can also be used in colleges and universities offering courses and certifications in business data analytics, data science, and market research.
  examples of business analytics: Business Analytics S. Christian Albright, Wayne L. Winston, 2017
  examples of business analytics: Introduction to Business Analytics Using Simulation Jonathan P. Pinder, 2022-02-06 Introduction to Business Analytics Using Simulation, Second Edition employs an innovative strategy to teach business analytics. The book uses simulation modeling and analysis as mechanisms to introduce and link predictive and prescriptive modeling. Because managers can't fully assess what will happen in the future, but must still make decisions, the book treats uncertainty as an essential element in decision-making. Its use of simulation gives readers a superior way of analyzing past data, understanding an uncertain future, and optimizing results to select the best decision. With its focus on uncertainty and variability, this book provides a comprehensive foundation for business analytics. Students will gain a better understanding of fundamental statistical concepts that are essential to marketing research, Six-Sigma, financial analysis, and business analytics. - Teaches managers how they can use business analytics to formulate and solve business problems to enhance managerial decision-making - Explains the processes needed to develop, report and analyze business data - Describes how to use and apply business analytics software - Offers expanded coverage on the value and application of prescriptive analytics - Includes a wealth of illustrative exercises that are newly organized by difficulty level - Winner of the 2017 Textbook and Academic Authors Association's (TAA) Most Promising New Textbook Award in the prior edition
  examples of business analytics: Profit Driven Business Analytics Wouter Verbeke, Bart Baesens, Cristian Bravo, 2017-10-09 Maximize profit and optimize decisions with advanced business analytics Profit-Driven Business Analytics provides actionable guidance on optimizing the use of data to add value and drive better business. Combining theoretical and technical insights into daily operations and long-term strategy, this book acts as a development manual for practitioners seeking to conceive, develop, and manage advanced analytical models. Detailed discussion delves into the wide range of analytical approaches and modeling techniques that can help maximize business payoff, and the author team draws upon their recent research to share deep insight about optimal strategy. Real-life case studies and examples illustrate these techniques at work, and provide clear guidance for implementation in your own organization. From step-by-step instruction on data handling, to analytical fine-tuning, to evaluating results, this guide provides invaluable guidance for practitioners seeking to reap the advantages of true business analytics. Despite widespread discussion surrounding the value of data in decision making, few businesses have adopted advanced analytic techniques in any meaningful way. This book shows you how to delve deeper into the data and discover what it can do for your business. Reinforce basic analytics to maximize profits Adopt the tools and techniques of successful integration Implement more advanced analytics with a value-centric approach Fine-tune analytical information to optimize business decisions Both data stored and streamed has been increasing at an exponential rate, and failing to use it to the fullest advantage equates to leaving money on the table. From bolstering current efforts to implementing a full-scale analytics initiative, the vast majority of businesses will see greater profit by applying advanced methods. Profit-Driven Business Analytics provides a practical guidebook and reference for adopting real business analytics techniques.
  examples of business analytics: Business Analytics with Management Science Models and Methods Arben Asllani, 2015 This book is about prescriptive analytics. It provides business practitioners and students with a selected set of management science and optimization techniques and discusses the fundamental concepts, methods, and models needed to understand and implement these techniques in the era of Big Data. A large number of management science models exist in the body of literature today. These models include optimization techniques or heuristics, static or dynamic programming, and deterministic or stochastic modeling. The topics selected in this book, mathematical programming and simulation modeling, are believed to be among the most popular management science tools, as they can be used to solve a majority of business optimization problems. Over the years, these techniques have become the weapon of choice for decision makers and practitioners when dealing with complex business systems.
  examples of business analytics: Business Analytics Using R - A Practical Approach Umesh R Hodeghatta, Umesha Nayak, 2016-12-27 Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals.
  examples of business analytics: Data Mining and Business Analytics with R Johannes Ledolter, 2013-05-28 Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.
  examples of business analytics: How to Start a Business Analyst Career Laura Brandenburg, 2015-01-02 You may be wondering if business analysis is the right career choice, debating if you have what it takes to be successful as a business analyst, or looking for tips to maximize your business analysis opportunities. With the average salary for a business analyst in the United States reaching above $90,000 per year, more talented, experienced professionals are pursuing business analysis careers than ever before. But the path is not clear cut. No degree will guarantee you will start in a business analyst role. What's more, few junior-level business analyst jobs exist. Yet every year professionals with experience in other occupations move directly into mid-level and even senior-level business analyst roles. My promise to you is that this book will help you find your best path forward into a business analyst career. More than that, you will know exactly what to do next to expand your business analysis opportunities.
  examples of business analytics: Business Analytics for Managers Gert Laursen, Jesper Thorlund, 2010-07-13 While business analytics sounds like a complex subject, this book provides a clear and non-intimidating overview of the topic. Following its advice will ensure that your organization knows the analytics it needs to succeed, and uses them in the service of key strategies and business processes. You too can go beyond reporting!—Thomas H. Davenport, President's Distinguished Professor of IT and Management, Babson College; coauthor, Analytics at Work: Smarter Decisions, Better Results Deliver the right decision support to the right people at the right time Filled with examples and forward-thinking guidance from renowned BA leaders Gert Laursen and Jesper Thorlund, Business Analytics for Managers offers powerful techniques for making increasingly advanced use of information in order to survive any market conditions. Take a look inside and find: Proven guidance on developing an information strategy Tips for supporting your company's ability to innovate in the future by using analytics Practical insights for planning and implementing BA How to use information as a strategic asset Why BA is the next stepping-stone for companies in the information age today Discussion on BA's ever-increasing role Improve your business's decision making. Align your business processes with your business's objectives. Drive your company into a prosperous future. Taking BA from buzzword to enormous value-maker, Business Analytics for Managers helps you do it all with workable solutions that will add tremendous value to your business.
  examples of business analytics: Business Analytics Principles, Concepts, and Applications Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 2014-04-23 Learn everything you need to know to start using business analytics and integrating it throughout your organization. Business Analytics Principles, Concepts, and Applications brings together a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. They offer a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, this text demonstrates the use of IBM's menu-based SPSS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself. A valuable resource for all beginning-to-intermediate-level business analysts and business analytics managers; for MBA/Masters' degree students in the field; and for advanced undergraduates majoring in statistics, applied mathematics, or engineering/operations research.
  examples of business analytics: Delivering Business Analytics Evan Stubbs, 2013-01-30 AVOID THE MISTAKES THAT OTHERS MAKE – LEARN WHAT LEADS TO BEST PRACTICE AND KICKSTART SUCCESS This groundbreaking resource provides comprehensive coverage across all aspects of business analytics, presenting proven management guidelines to drive sustainable differentiation. Through a rich set of case studies, author Evan Stubbs reviews solutions and examples to over twenty common problems spanning managing analytics assets and information, leveraging technology, nurturing skills, and defining processes. Delivering Business Analytics also outlines the Data Scientist’s Code, fifteen principles that when followed ensure constant movement towards effective practice. Practical advice is offered for addressing various analytics issues; the advantages and disadvantages of each issue’s solution; and how these solutions can optimally create organizational value. With an emphasis on real-world examples and pragmatic advice throughout, Delivering Business Analytics provides a reference guide on: The economic principles behind how business analytics leads to competitive differentiation The elements which define best practice The Data Scientist’s Code, fifteen management principles that when followed help teams move towards best practice Practical solutions and frequent missteps to twenty-four common problems across people and process, systems and assets, and data and decision-making Drawing on the successes and failures of countless organizations, author Evan Stubbs provides a densely packed practical reference on how to increase the odds of success in designing business analytics systems and managing teams of data scientists. Uncover what constitutes best practice in business analytics and start achieving it with Delivering Business Analytics.
  examples of business analytics: International Journal of Business Analytics (IJBAN). John Wang, 2015
  examples of business analytics: Practical Business Analytics Using SAS Shailendra Kadre, Venkat Reddy Konasani, 2015-02-07 Practical Business Analytics Using SAS: A Hands-on Guide shows SAS users and businesspeople how to analyze data effectively in real-life business scenarios. The book begins with an introduction to analytics, analytical tools, and SAS programming. The authors—both SAS, statistics, analytics, and big data experts—first show how SAS is used in business, and then how to get started programming in SAS by importing data and learning how to manipulate it. Besides illustrating SAS basic functions, you will see how each function can be used to get the information you need to improve business performance. Each chapter offers hands-on exercises drawn from real business situations. The book then provides an overview of statistics, as well as instruction on exploring data, preparing it for analysis, and testing hypotheses. You will learn how to use SAS to perform analytics and model using both basic and advanced techniques like multiple regression, logistic regression, and time series analysis, among other topics. The book concludes with a chapter on analyzing big data. Illustrations from banking and other industries make the principles and methods come to life. Readers will find just enough theory to understand the practical examples and case studies, which cover all industries. Written for a corporate IT and programming audience that wants to upgrade skills or enter the analytics field, this book includes: More than 200 examples and exercises, including code and datasets for practice. Relevant examples for all industries. Case studies that show how to use SAS analytics to identify opportunities, solve complicated problems, and chart a course. Practical Business Analytics Using SAS: A Hands-on Guide gives you the tools you need to gain insight into the data at your fingertips, predict business conditions for better planning, and make excellent decisions. Whether you are in retail, finance, healthcare, manufacturing, government, or any other industry, this book will help your organization increase revenue, drive down costs, improve marketing, and satisfy customers better than ever before.
  examples of business analytics: Getting Started with Business Analytics David Roi Hardoon, Galit Shmueli, 2013-03-26 Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications. The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics. The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data. The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data. Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.
  examples of business analytics: An Introduction to Business Analytics Ger Koole, 2019 Business Analytics (BA) is about turning data into decisions. This book covers the full range of BA topics, including statistics, machine learning and optimization, in a way that makes them accessible to a broader audience. Decision makers will gain enough insight into the subject to have meaningful discussions with machine learning specialists, and those starting out as data scientists will benefit from an overview of the field and take their first steps as business analytics specialist. Through this book and the various exercises included, you will be equipped with an understanding of BA, while learning R, a popular tool for statistics and machine learning.
  examples of business analytics: Business Analytics Arul Mishra, Himanshu Mishra, 2024-01-25 Businesses typically encounter problems first and then seek out analytical methods to help in decision making. Business Analytics: Solving Business Problems with R by Arul Mishra and Himanshu Mishra offers practical, data-driven solutions for today′s dynamic business environment. This text helps students see the real-world potential of analytical methods to help meet their business challenges by demonstrating the application of crucial methods. These methods are cutting edge, including neural nets, natural language processing, and boosted decision trees. Applications throughout the book, including pricing models, social sentiment analysis, and branding show students how to use these analytical methods in real business settings, including Frito-Lay, Netflix, and Zappos. Step-by-step R code with commentary gives readers the tools to adapt each method to their business settings. The book offers comprehensive coverage across diverse business domains, including finance, marketing, human resources, operations, and accounting. Finally, an entire chapter explores equity and fairness in analytical methods, as well as the techniques that can be used to mitigate biases and enhance equity in the results. Included with this title: LMS Cartridge: Import this title’s instructor resources into your school’s learning management system (LMS) and save time. Don’t use an LMS? You can still access all of the same online resources for this title via the password-protected Instructor Resource Site. Learn more.
  examples of business analytics: Key Business Analytics Bernard Marr, 2016-02-10 Key Business Analytics will help managers apply tools to turn data into insights that help them better understand their customers, optimize their internal processes and identify cost savings and growth opportunities. It includes analysis techniques within the following categories: Financial analytics – cashflow, profitability, sales forecasts Market analytics – market size, market trends, marketing channels Customer analytics – customer lifetime values, social media, customer needs Employee analytics – capacity, performance, leadership Operational analytics – supply chains, competencies, environmental impact Bare business analytics – sentiments, text, correlations Each tool will follow the bestselling Key format of being 5-6 pages long, broken into short sharp advice on the essentials: What is it? When should I use it? How do I use it? Tips and pitfalls Further reading This essential toolkit also provides an invaluable section on how to gather original data yourself through surveys, interviews, focus groups, etc.
  examples of business analytics: Behind Every Good Decision Piyanka Jain, Puneet Sharma, 2014-11-05 There is a misconception in business that the only data that matters is BIG data, and that elaborate tools and data scientists are required to extract any practical information. However, nothing could be further from the truth. If you feel that you can’t understand how to read, let alone implement, these complex software programs that crunch the data and spit out more data, that will no longer be a problem! Authors and analytics experts Piyanka Jain and Puneet Sharma demystify the process of business analytics and demonstrate how professionals at any level can take the information at their disposal and in only five simple steps--using only Excel as a tool--make the decision necessary to increase revenue, decrease costs, improve product, or whatever else is being asked of them at that time. In Behind Every Good Decision, you will learn how to: Clarify the business question Lay out a hypothesis-driven plan Pull relevant data Convert it to insights Make decisions that make an impact Packed with examples and exercises, this refreshingly accessible book explains the four fundamental analytic techniques that can help solve a surprising 80 percent of all business problems. It doesn’t take a numbers person to know that is a formula you need!
  examples of business analytics: Business Intelligence Jerzy Surma, 2011-03-06 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration.
  examples of business analytics: The Value of Business Analytics Evan Stubbs, 2011-07-26 TURN YOUR CHALLENGES INTO SUCCESSES – LEARN HOW AND WHY SOME TEAM STRUGGLE AND SOME SUCCEED This groundbreaking resource defines what business analytics is, the immense value it brings to an organization, and how to harness its power to gain a competitive edge in the marketplace. Author Evan Stubbs provides managers with the tools, knowledge, and strategies to get the organizational commitment you need to get business analytics up and running in your company. Drawing from numerous practical examples, The Value of Business Analytics provides an overview of how business analytics maps to organizational strategy and through examining the mistakes teams commonly make that prevent their success, author Evan Stubbs uncovers a four-step framework which helps improve the odds of success. Built on field-tested experience, The Value of Business Analytics explains the importance of and how to: Define the Value: Link analytics outcomes to business value, thereby helping build a sense of urgency and a need for change. Communicate the Value: Persuade the right people by understanding what motivates them. Deliver the Value: Link tactical outcomes to long-term strategic differentiation. Measure the Value: Validate wins and deliver continuous improvement to help drive ongoing transformation. Translating massive amounts of data into real insight is beyond magic—it’s competitive advantage distilled. Nothing else offers an equivalent level of agility, productivity improvement, or renewable value. Whether you’re looking to quantify the value of your work or generate organizational support, learn how to leverage advanced business analytics with the hands-on guidance found in The Value of Business Analytics. Drawing on the successes and failures of countless organizations, author Evan Stubbs provides a reference rich in content that spans everything from hiring the right people, understanding technical maturity, assessing culture, and structuring strategic planning. A must-read for any business analytics leader and an essential reference in shifting the perspective of business analytics away from algorithms towards outcomes. Learn how to increase the odds of successful value creation with The Value of Business Analytics.
  examples of business analytics: Encyclopedia of Organizational Knowledge, Administration, and Technology Khosrow-Pour D.B.A., Mehdi, 2020-09-29 For any organization to be successful, it must operate in such a manner that knowledge and information, human resources, and technology are continually taken into consideration and managed effectively. Business concepts are always present regardless of the field or industry – in education, government, healthcare, not-for-profit, engineering, hospitality/tourism, among others. Maintaining organizational awareness and a strategic frame of mind is critical to meeting goals, gaining competitive advantage, and ultimately ensuring sustainability. The Encyclopedia of Organizational Knowledge, Administration, and Technology is an inaugural five-volume publication that offers 193 completely new and previously unpublished articles authored by leading experts on the latest concepts, issues, challenges, innovations, and opportunities covering all aspects of modern organizations. Moreover, it is comprised of content that highlights major breakthroughs, discoveries, and authoritative research results as they pertain to all aspects of organizational growth and development including methodologies that can help companies thrive and analytical tools that assess an organization’s internal health and performance. Insights are offered in key topics such as organizational structure, strategic leadership, information technology management, and business analytics, among others. The knowledge compiled in this publication is designed for entrepreneurs, managers, executives, investors, economic analysts, computer engineers, software programmers, human resource departments, and other industry professionals seeking to understand the latest tools to emerge from this field and who are looking to incorporate them in their practice. Additionally, academicians, researchers, and students in fields that include but are not limited to business, management science, organizational development, entrepreneurship, sociology, corporate psychology, computer science, and information technology will benefit from the research compiled within this publication.
  examples of business analytics: Computational Business Analytics Subrata Das, 2013-12-14 Learn How to Properly Use the Latest Analytics Approaches in Your Organization Computational Business Analytics presents tools and techniques for descriptive, predictive, and prescriptive analytics applicable across multiple domains. Through many examples and challenging case studies from a variety of fields, practitioners easily see the connections to their own problems and can then formulate their own solution strategies. The book first covers core descriptive and inferential statistics for analytics. The author then enhances numerical statistical techniques with symbolic artificial intelligence (AI) and machine learning (ML) techniques for richer predictive and prescriptive analytics. With a special emphasis on methods that handle time and textual data, the text: Enriches principal component and factor analyses with subspace methods, such as latent semantic analyses Combines regression analyses with probabilistic graphical modeling, such as Bayesian networks Extends autoregression and survival analysis techniques with the Kalman filter, hidden Markov models, and dynamic Bayesian networks Embeds decision trees within influence diagrams Augments nearest-neighbor and k-means clustering techniques with support vector machines and neural networks These approaches are not replacements of traditional statistics-based analytics; rather, in most cases, a generalized technique can be reduced to the underlying traditional base technique under very restrictive conditions. The book shows how these enriched techniques offer efficient solutions in areas, including customer segmentation, churn prediction, credit risk assessment, fraud detection, and advertising campaigns.
  examples of business analytics: Business Analytics Richard Vidgen, Sam Kirshner, Felix Tan, 2019-10-09 This exciting new textbook offers an accessible, business-focused overview of the key theoretical concepts underpinning modern data analytics. It provides engaging and practical advice on using the key software tools, including SAS Visual Analytics, R and DataRobot, that are used in organisations to help make effective data-driven decisions. Combining theory with hands-on practical examples, this essential text includes cutting edge coverage of new areas of interest including social media analytics, design thinking and the ethical implications of using big data. A wealth of learning features including exercises, cases, online resources and data sets help students to develop analytic problem-solving skills. With its management perspective on analytics and its coverage of a range of popular software tools, this is an ideal essential text for upper-level undergraduate, postgraduate and MBA students. It is also ideal for practitioners wanting to understand the broader organisational context of big data analysis and to engage critically with the tools and techniques of business analytics.
  examples of business analytics: Business Analytics Richard Vidgen, Sam Kirshner, Felix Tan, 2019-09-28 This exciting new textbook offers an accessible, business-focused overview of the key theoretical concepts underpinning modern data analytics. It provides engaging and practical advice on using the key software tools, including SAS Visual Analytics, R and DataRobot, that are used in organisations to help make effective data-driven decisions. Combining theory with hands-on practical examples, this essential text includes cutting edge coverage of new areas of interest including social media analytics, design thinking and the ethical implications of using big data. A wealth of learning features including exercises, cases, online resources and data sets help students to develop analytic problem-solving skills. With its management perspective on analytics and its coverage of a range of popular software tools, this is an ideal essential text for upper-level undergraduate, postgraduate and MBA students. It is also ideal for practitioners wanting to understand the broader organisational context of big data analysis and to engage critically with the tools and techniques of business analytics. Accompanying online resources for this title can be found at bloomsburyonlineresources.com/business-analytics. These resources are designed to support teaching and learning when using this textbook and are available at no extra cost.
  examples of business analytics: A Users Guide to Business Analytics Ayanendranath Basu, Srabashi Basu, 2016-03-15 This book provides a comprehensive discussion of statistical methods that are useful to the business analyst. The book includes a substantial number of case studies and numerical illustrations using the R software. A collection of basic techniques that analytics personnel require with detailed case studies, the book can help motivated young personnel to get a head-start in analytics, and serve as a comprehensive reference book for the experts on the job.
  examples of business analytics: Essentials of Business Analytics Bhimasankaram Pochiraju, Sridhar Seshadri, 2019-07-10 This comprehensive edited volume is the first of its kind, designed to serve as a textbook for long-duration business analytics programs. It can also be used as a guide to the field by practitioners. The book has contributions from experts in top universities and industry. The editors have taken extreme care to ensure continuity across the chapters. The material is organized into three parts: A) Tools, B) Models and C) Applications. In Part A, the tools used by business analysts are described in detail. In Part B, these tools are applied to construct models used to solve business problems. Part C contains detailed applications in various functional areas of business and several case studies. Supporting material can be found in the appendices that develop the pre-requisites for the main text. Every chapter has a business orientation. Typically, each chapter begins with the description of business problems that are transformed into data questions; and methodology is developed to solve these questions. Data analysis is conducted using widely used software, the output and results are clearly explained at each stage of development. These are finally transformed into a business solution. The companion website provides examples, data sets and sample code for each chapter.
  examples of business analytics: Business Analytics and Statistics, 2nd Edition Ken Black, John Asafu-Adjaye, Paul Burke, Nazim Khan, Gerard King, Nelson Perera, Andrew Papadimos, Carl Sherwood, Saleh Wasimi, 2024-04-08 Written for the Australian and New Zealand markets, the second edition of Business Analytics & Statistics (Black et al.) presents statistics in a cutting-edge interactive digital format designed to motivate students by taking the road blocks out of self-study and to facilitate master through drill-and-skill practice.
  examples of business analytics: Business Analytics Jay Liebowitz, 2013-12-19 Together, Big Data, high-performance computing, and complex environments create unprecedented opportunities for organizations to generate game-changing insights that are based on hard data. Business Analytics: An Introduction explains how to use business analytics to sort through an ever-increasing amount of data and improve the decision-making capabilities of an organization. Covering the key areas of business analytics, the book explores the concepts, techniques, applications, and emerging trends that professionals across a wide range of industries need to be aware of. Better detection of fraud through visual analytics or better prediction of the likelihood of someone getting an infection while in the hospital are just a few examples of where analytics can play a positive role. As the field of business analytics continues to emerge rapidly, there is a need for a reliable textbook and reference on the subject. Filling this need, this book is suitable for graduate-level students and undergraduate seniors. It maintains a focus on only the key areas so the material can be covered adequately in a one-semester or one-quarter course. Each chapter includes software-generic exercises, labs, and associated answers to the exercises/labs. Author Jay Liebowitz recently had an article published in The World Financial Review. www.worldfinancialreview.com/?p=1904
  examples of business analytics: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  examples of business analytics: A Business Analyst's Introduction to Business Analytics Adam Fleischhacker, 2020-07-20 This up-to-date business analytics textbook (published in July 2020) will get you harnessing the power of the R programming language to: manipulate and model data, discover and communicate insight, to visually communicate that insight, and successfully advocate for change within an organization. Book Description A frequent teaching-award winning professor with an analytics-industry background shares his hands-on guide to learning business analytics. It is the first textbook addressing a complete and modern business analytics workflow that includes data manipulation, data visualization, modelling business problems with graphical models, translating graphical models into code, and presenting insights back to stakeholders. Book Highlights Content that is accessible to anyone, even most analytics beginners. If you have taken a stats course, you are good to go. Assumes no knowledge of the R programming language. Provides introduction to R, RStudio, and the Tidyverse. Provides a solid foundation and an implementable workflow for anyone wading into the Bayesian inference waters. Provides a complete workflow within the R-ecosystem; there is no need to learn several programming languages or work through clunky interfaces between software tools. First book introducing two powerful R-packages - `causact` for visual modelling of business problems and `greta` which is an R interface to `TensorFlow` used for Bayesian inference. Uses the intuitive coding practices of the `tidyverse` including using `dplyr` for data manipulation and `ggplot2` for data visualization. Datasets that are freely and easily accessible. Code for generating all results and almost every visualization used in the textbook. Do not learn statistical computation or fancy math in a vacuum, learn it through this guide within the context of solving business problems.
  examples of business analytics: Business Analytics Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, 2020-03-10 Present the full range of analytics -- from descriptive and predictive to prescriptive analytics -- with Camm/Cochran/Fry/Ohlmann's market-leading BUSINESS ANALYTICS, 4E. Clear, step-by-step instructions teach students how to use Excel, Tableau, R and JMP Pro to solve more advanced analytics concepts. As instructor, you have the flexibility to choose your preferred software for teaching concepts. Extensive solutions to problems and cases save grading time, while providing students with critical practice. This edition covers topics beyond the traditional quantitative concepts, such as data visualization and data mining, which are increasingly important in today's analytical problem solving. In addition, MindTap and WebAssign customizable digital course solutions offer an interactive eBook, auto-graded exercises from the printed book, algorithmic practice problems with solutions and Exploring Analytics visualizations to strengthen students' understanding of course concepts.
  examples of business analytics: Applying Predictive Analytics Richard V. McCarthy, Mary M. McCarthy, Wendy Ceccucci, Leila Halawi, 2019-03-12 This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life example of how business analytics have been used in various aspects of organizations to solve issue or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes.
  examples of business analytics: Business Analytics for Effective Decision Making Sumi K. V., R. Vasanthagopal, 2024-07-03 Business Analytics for Effective Decision Making is a comprehensive reference that explores the role of business analytics in driving informed decision-making. The book begins with an introduction to business analytics, highlighting its significance in today's dynamic business landscape. The subsequent chapters review various tools and software available for data analytics, addressing both the opportunities and challenges for professionals in different sectors. Readers will find practical insights and real-world case studies across diverse industries, including banking, retail, marketing, and supply chain management. Each chapter provides actionable insights and concludes with implications for implementing data-driven strategies. Key Features: Practical Examples: Real-world case studies and examples make complex concepts easy to understand. Ethical Considerations: Guidance on responsible data usage and addressing ethical implications. Comprehensive Coverage: From data collection to analysis and interpretation, the book covers all aspects of business analytics. Diverse Perspectives: Contributions from industry experts offer diverse insights into data analytics applications in business research, marketing, supply chain and the retail industry. Actionable Insights: Each chapter concludes with practical implications for implementing data-driven strategies.
Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。

Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …

Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。

Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …

Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …



Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。

Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …

Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Examples - Apache ECharts
Apache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。

Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Examples - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …

Apache ECharts
ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization. 如果您在科研项目、产品、学术论文、技术报告、新闻报告、教育、专利以及其他相关活动中使用了 …

Events - Apache ECharts
Examples; Resources. Spread Sheet Tool; Theme Builder; Cheat Sheet; More Resources; Community. Events; Committers; Mailing List; How to Contribute; Dependencies; Code …