Advertisement
excel case studies for data analysis: Data Analysis Using SQL and Excel Gordon S. Linoff, 2010-09-16 Useful business analysis requires you to effectively transform data into actionable information. This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like. |
excel case studies for data analysis: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know. |
excel case studies for data analysis: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder |
excel case studies for data analysis: Case Studies in Neural Data Analysis Mark A. Kramer, Uri T. Eden, 2016-11-04 A practical guide to neural data analysis techniques that presents sample datasets and hands-on methods for analyzing the data. As neural data becomes increasingly complex, neuroscientists now require skills in computer programming, statistics, and data analysis. This book teaches practical neural data analysis techniques by presenting example datasets and developing techniques and tools for analyzing them. Each chapter begins with a specific example of neural data, which motivates mathematical and statistical analysis methods that are then applied to the data. This practical, hands-on approach is unique among data analysis textbooks and guides, and equips the reader with the tools necessary for real-world neural data analysis. The book begins with an introduction to MATLAB, the most common programming platform in neuroscience, which is used in the book. (Readers familiar with MATLAB can skip this chapter and might decide to focus on data type or method type.) The book goes on to cover neural field data and spike train data, spectral analysis, generalized linear models, coherence, and cross-frequency coupling. Each chapter offers a stand-alone case study that can be used separately as part of a targeted investigation. The book includes some mathematical discussion but does not focus on mathematical or statistical theory, emphasizing the practical instead. References are included for readers who want to explore the theoretical more deeply. The data and accompanying MATLAB code are freely available on the authors' website. The book can be used for upper-level undergraduate or graduate courses or as a professional reference. A version of this textbook with all of the examples in Python is available on the MIT Press website. |
excel case studies for data analysis: Health Services Research and Analytics Using Excel Nalin Johri, PhD, MPH, 2020-02-01 Your all-in-one resource for quantitative, qualitative, and spatial analyses in Excel® using current real-world healthcare datasets. Health Services Research and Analytics Using Excel® is a practical resource for graduate and advanced undergraduate students in programs studying healthcare administration, public health, and social work as well as public health workers and healthcare managers entering or working in the field. This book provides one integrated, application-oriented resource for common quantitative, qualitative, and spatial analyses using only Excel. With an easy-to-follow presentation of qualitative and quantitative data, students can foster a balanced decision-making approach to financial data, patient statistical data and utilization information, population health data, and quality metrics while cultivating analytical skills that are necessary in a data-driven healthcare world. Whereas Excel is typically considered limited to quantitative application, this book expands into other Excel applications based on spatial analysis and data visualization represented through 3D Maps as well as text analysis using the free add-in in Excel. Chapters cover the important methods and statistical analysis tools that a practitioner will face when navigating and analyzing data in the public domain or from internal data collection at their health services organization. Topics covered include importing and working with data in Excel; identifying, categorizing, and presenting data; setting bounds and hypothesis testing; testing the mean; checking for patterns; data visualization and spatial analysis; interpreting variance; text analysis; and much more. A concise overview of research design also provides helpful background on how to gather and measure useful data prior to analyzing in Excel. Because Excel is the most common data analysis software used in the workplace setting, all case examples, exercises, and tutorials are provided with the latest updates to the Excel software from Office365 ProPlus® and newer versions, including all important “Add-ins” such as 3D Maps, MeaningCloud, and Power Pivots, among others. With numerous practice problems and over 100 step-by-step videos, Health Services Research and Analytics Using Excel® is an extremely practical tool for students and health service professionals who must know how to work with data, how to analyze it, and how to use it to improve outcomes unique to healthcare settings. Key Features: Provides a competency-based analytical approach to health services research using Excel Includes applications of spatial analysis and data visualization tools based on 3D Maps in Excel Lists select sources of useful national healthcare data with descriptions and website information Chapters contain case examples and practice problems unique to health services All figures and videos are applicable to Office365 ProPlus Excel and newer versions Contains over 100 step-by-step videos of Excel applications covered in the chapters and provides concise video tutorials demonstrating solutions to all end-of-chapter practice problems Robust Instructor ancillary package that includes Instructor’s Manual, PowerPoints, and Test Bank |
excel case studies for data analysis: Excel Data Analysis Hector Guerrero, 2018-12-14 This book offers a comprehensive and readable introduction to modern business and data analytics. It is based on the use of Excel, a tool that virtually all students and professionals have access to. The explanations are focused on understanding the techniques and their proper application, and are supplemented by a wealth of in-chapter and end-of-chapter exercises. In addition to the general statistical methods, the book also includes Monte Carlo simulation and optimization. The second edition has been thoroughly revised: new topics, exercises and examples have been added, and the readability has been further improved. The book is primarily intended for students in business, economics and government, as well as professionals, who need a more rigorous introduction to business and data analytics – yet also need to learn the topic quickly and without overly academic explanations. |
excel case studies for data analysis: DATA ANALYSIS AND BUSINESS MODELLING USING MICROSOFT EXCEL Hansa Lysander Manohar, 2017-03-30 |
excel case studies for data analysis: Data Analysis with Excel® Les Kirkup, 2002-03-07 An essential introduction to data analysis techniques using spreadsheets, for undergraduate and graduate students. |
excel case studies for data analysis: Data Visualization with Excel Dashboards and Reports Dick Kusleika, 2021-02-05 Large corporations like IBM and Oracle are using Excel dashboards and reports as a Business Intelligence tool, and many other smaller businesses are looking to these tools in order to cut costs for budgetary reasons. An effective analyst not only has to have the technical skills to use Excel in a productive manner but must be able to synthesize data into a story, and then present that story in the most impactful way. Microsoft shows its recognition of this with Excel. In Excel, there is a major focus on business intelligence and visualization. Data Visualization with Excel Dashboards and Reports fills the gap between handling data and synthesizing data into meaningful reports. This title will show readers how to think about their data in ways other than columns and rows. Most Excel books do a nice job discussing the individual functions and tools that can be used to create an Excel Report. Titles on Excel charts, Excel pivot tables, and other books that focus on Tips and Tricks are useful in their own right; however they don't hit the mark for most data analysts. The primary reason these titles miss the mark is they are too focused on the mechanical aspects of building a chart, creating a pivot table, or other functionality. They don't offer these topics in the broader picture by showing how to present and report data in the most effective way. What are the most meaningful ways to show trending? How do you show relationships in data? When is showing variances more valuable than showing actual data values? How do you deal with outliers? How do you bucket data in the most meaningful way? How do you show impossible amounts of data without inundating your audience? In Data Visualization with Excel Reports and Dashboards, readers will get answers to all of these questions. Part technical manual, part analytical guidebook; this title will help Excel users go from reporting data with simple tables full of dull numbers, to creating hi-impact reports and dashboards that will wow management both visually and substantively. This book offers a comprehensive review of a wide array of technical and analytical concepts that will help users create meaningful reports and dashboards. After reading this book, the reader will be able to: Analyze large amounts of data and report their data in a meaningful way Get better visibility into data from different perspectives Quickly slice data into various views on the fly Automate redundant reporting and analyses Create impressive dashboards and What-If analyses Understand the fundamentals of effective visualization Visualize performance comparisons Visualize changes and trends over time |
excel case studies for data analysis: Guerrilla Data Analysis Using Microsoft Excel MrExcel's Holy Macro! Books, Oz du Soleil, Bill Jelen, 2024-09-26 Master Excel data analysis with this hands-on guide. Learn efficient techniques, advanced functions, and best practices for real-world scenarios. Key Features Hands-on techniques for efficient Excel data analysis Advanced functions and best practices for real-world scenarios Step-by-step guidance on complex tasks like data validation and dynamic arrays Book DescriptionUnlock Microsoft Excel's hidden potential with this dynamic guide designed for data professionals and enthusiasts. You'll start by reviewing Excel basics before advancing to powerful tools like Excel Tables, Pivot Tables, and Power Query. Each chapter enhances your ability to analyze and visualize data efficiently, from complex lookups and dynamic arrays to essential data validation techniques that ensure accuracy and integrity in your spreadsheets. As you progress, you'll learn how to protect your work with advanced sheet protection methods and collaboration tools for seamless teamwork. The book also covers sophisticated functions like INDIRECT, OFFSET, and LET, preparing you to tackle complex data challenges. Additionally, you'll receive critical advice on avoiding the pitfalls of machine learning-driven features and maintaining clean, organized data. By the end of the guide, you'll have mastered Excel's advanced capabilities, empowering you to streamline workflows, optimize data processes, and make confident, data-driven decisions. This guide is your comprehensive resource for transforming your approach to data analysis with Excel.What you will learn Master Excel tables and dynamic spreadsheets Use VLOOKUP and XLOOKUP effectively Create and manipulate PivotTables Clean and validate data with Excel tools Apply conditional formatting and de-duping techniques Implement data models and relationships in Excel Who this book is for This book is ideal for data analysts, business professionals, and Excel users who need to enhance their data analysis skills. Readers should have a basic understanding of Excel and be familiar with its interface. No advanced Excel knowledge is required, but a willingness to learn and apply new techniques is essential. |
excel case studies for data analysis: Marketing Analytics Wayne L. Winston, 2014-01-08 Helping tech-savvy marketers and data analysts solve real-world business problems with Excel Using data-driven business analytics to understand customers and improve results is a great idea in theory, but in today's busy offices, marketers and analysts need simple, low-cost ways to process and make the most of all that data. This expert book offers the perfect solution. Written by data analysis expert Wayne L. Winston, this practical resource shows you how to tap a simple and cost-effective tool, Microsoft Excel, to solve specific business problems using powerful analytic techniques—and achieve optimum results. Practical exercises in each chapter help you apply and reinforce techniques as you learn. Shows you how to perform sophisticated business analyses using the cost-effective and widely available Microsoft Excel instead of expensive, proprietary analytical tools Reveals how to target and retain profitable customers and avoid high-risk customers Helps you forecast sales and improve response rates for marketing campaigns Explores how to optimize price points for products and services, optimize store layouts, and improve online advertising Covers social media, viral marketing, and how to exploit both effectively Improve your marketing results with Microsoft Excel and the invaluable techniques and ideas in Marketing Analytics: Data-Driven Techniques with Microsoft Excel. |
excel case studies for data analysis: Guerilla Data Analysis Using Microsoft Excel Bill Jelen, 2002-09-30 This book includes step-by-step examples and case studies that teach users the many power tricks for analyzing data in Excel. These are tips honed by Bill Jelen, &“MrExcel,&” during his 10-year run as a financial analyst charged with taking mainframe data and turning it into useful information quickly. Topics include perfectly sorting with one click every time, matching lists of data, data consolidation, data subtotals, pivot tables, and much more. |
excel case studies for data analysis: R and Data Mining Yanchang Zhao, 2012-12-31 R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work |
excel case studies for data analysis: Introductory Business Statistics 2e Alexander Holmes, Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
excel case studies for data analysis: Beginning Excel, First Edition Barbara Lave, Diane Shingledecker, Julie Romey, Noreen Brown, Mary Schatz, 2020 This is the first edition of a textbook written for a community college introductory course in spreadsheets utilizing Microsoft Excel; second edition available: https://openoregon.pressbooks.pub/beginningexcel19/. While the figures shown utilize Excel 2016, the textbook was written to be applicable to other versions of Excel as well. The book introduces new users to the basics of spreadsheets and is appropriate for students in any major who have not used Excel before. |
excel case studies for data analysis: Scientific Data Analysis Graham Currell, 2015 Drawing on the author's extensive experience of supporting students undertaking projects, Scientific Data Analysis is a guide for any science undergraduate or beginning graduate who needs to analyse their own data, and wants a clear, step-by-step description of how to carry out their analysis in a robust, error-free way. |
excel case studies for data analysis: Data Analytics for Organisational Development Uwe H. Kaufmann, Amy B. C. Tan, 2021-07-26 A practical guide for anyone who aspires to become data analytics–savvy Data analytics has become central to the operation of most businesses, making it an increasingly necessary skill for every manager and for all functions across an organisation. Data Analytics for Organisational Development: Unleashing the Potential of Your Data introduces a methodical process for gathering, screening, transforming, and analysing the correct datasets to ensure that they are reliable tools for business decision-making. Written by a Six Sigma Master Black Belt and a Lean Six Sigma Black Belt, this accessible guide explains and illustrates the application of data analytics for organizational development and design, with particular focus on Customer and Strategy Analytics, Operations Analytics and Workforce Analytics. Designed as both a handbook and workbook, Data Analytics for Organisational Development presents the application of data analytics for organizational design and development using case studies and practical examples. It aims to help build a bridge between data scientists, who have less exposure to actual business issues, and the non-data scientists. With this guide, anyone can learn to perform data analytics tasks from translating a business question into a data science hypothesis to understanding the data science results and making the appropriate decisions. From data acquisition, cleaning, and transformation to analysis and decision making, this book covers it all. It also helps you avoid the pitfalls of unsound decision making, no matter where in the value chain you work. Follow the “Five Steps of a Data Analytics Case” to arrive at the correct business decision based on sound data analysis Become more proficient in effectively communicating and working with the data experts, even if you have no background in data science Learn from cases and practical examples that demonstrate a systematic method for gathering and processing data accurately Work through end-of-chapter exercises to review key concepts and apply methods using sample data sets Data Analytics for Organisational Development includes downloadable tools for learning enrichment, including spreadsheets, Power BI slides, datasets, R analysis steps and more. Regardless of your level in your organisation, this book will help you become savvy with data analytics, one of today’s top business tools. |
excel case studies for data analysis: Case Study Research for Business Jillian Dawes Farquhar, 2012-02-21 The only case study research textbook written exclusively for students of Business and related disciplines. Using a step-by-step approach, Case Study Research for Business takes you right through the case study research process from research design and data collection using qualitative and quantitative methods, to research analysis, writing up and presenting your work. Key features: - Takes a multidisciplinary approach to case study research design by drawing on research philosophies to improve student understanding of these critical research traditions and hence provide firmer theoretical foundations for their research - Coverage of contemporary topics such as research ethics and access - Packed with practical examples from all areas of business - Pedagogical features include vignettes, exercises and ′cases′ which directly relate to business research Case Study Research for Business will prove a valuable resource for undergraduate, postgraduate and research students of business and related disciplines. |
excel case studies for data analysis: Data Mining for Business Analytics Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel, 2019-10-14 Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R |
excel case studies for data analysis: Bayesian Analysis Made Simple Phil Woodward, 2011-08-26 Although the popularity of the Bayesian approach to statistics has been growing for years, many still think of it as somewhat esoteric, not focused on practical issues, or generally too difficult to understand. Bayesian Analysis Made Simple is aimed at those who wish to apply Bayesian methods but either are not experts or do not have the time to create WinBUGS code and ancillary files for every analysis they undertake. Accessible to even those who would not routinely use Excel, this book provides a custom-made Excel GUI, immediately useful to those users who want to be able to quickly apply Bayesian methods without being distracted by computing or mathematical issues. From simple NLMs to complex GLMMs and beyond, Bayesian Analysis Made Simple describes how to use Excel for a vast range of Bayesian models in an intuitive manner accessible to the statistically savvy user. Packed with relevant case studies, this book is for any data analyst wishing to apply Bayesian methods to analyze their data, from professional statisticians to statistically aware scientists. |
excel case studies for data analysis: Storytelling with Data Cole Nussbaumer Knaflic, 2015-10-09 Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it! |
excel case studies for data analysis: Excel 2019 Project Book Gary Bronson, Jeffrey Hsu, 2021-09-29 Designed as a project and case-oriented approach to learning Excel, the emphasis of this book is on learning by doing. The book presents a series of progressively reinforcing problem sets, which allow the exploration of real-life business problems. First, the background, theory, formulas, and calculations are discussed, followed by the design of Excel spreadsheets, which support the creation of effective spreadsheets for these applications. Finally, the proper solution and other related aspects are discussed, forming a cohesive set of practical application problems. Some of the topics explored include amortization tables, weighted averages, cash flows, payroll calculations, break even analysis, and spreadsheet databases. Excel techniques include formulas and functions, cell addressing, conditional and lookup functions, graphs, sorting, and filtering. FEATURES: Provides 30 projects, several How-to Guides, and Application Types to learn Excel skills using problems, applications, and case studies featuring practical business problems Explores formulas and functions, financial functions, cell addressing, conditional functions, lookup functions, graphs, sorting, and filtering, amortization tables, future values of an investment, weighted averages, cash flows, payroll calculations, break even analysis, economic order quantity, spreadsheet databases, and more Instructor resources available with four Excel video tutorials and images from the text. |
excel case studies for data analysis: Data Analytics for Pandemics Gitanjali Rahul Shinde, Asmita Balasaheb Kalamkar, Parikshit N. Mahalle, Nilanjan Dey, 2020-08-30 Epidemic trend analysis, timeline progression, prediction, and recommendation are critical for initiating effective public health control strategies, and AI and data analytics play an important role in epidemiology, diagnostic, and clinical fronts. The focus of this book is data analytics for COVID-19, which includes an overview of COVID-19 in terms of epidemic/pandemic, data processing and knowledge extraction. Data sources, storage and platforms are discussed along with discussions on data models, their performance, different big data techniques, tools and technologies. This book also addresses the challenges in applying analytics to pandemic scenarios, case studies and control strategies. Aimed at Data Analysts, Epidemiologists and associated researchers, this book: discusses challenges of AI model for big data analytics in pandemic scenarios; explains how different big data analytics techniques can be implemented; provides a set of recommendations to minimize infection rate of COVID-19; summarizes various techniques of data processing and knowledge extraction; enables users to understand big data analytics techniques required for prediction purposes. |
excel case studies for data analysis: Development Research in Practice Kristoffer Bjärkefur, Luíza Cardoso de Andrade, Benjamin Daniels, Maria Ruth Jones, 2021-07-16 Development Research in Practice leads the reader through a complete empirical research project, providing links to continuously updated resources on the DIME Wiki as well as illustrative examples from the Demand for Safe Spaces study. The handbook is intended to train users of development data how to handle data effectively, efficiently, and ethically. “In the DIME Analytics Data Handbook, the DIME team has produced an extraordinary public good: a detailed, comprehensive, yet easy-to-read manual for how to manage a data-oriented research project from beginning to end. It offers everything from big-picture guidance on the determinants of high-quality empirical research, to specific practical guidance on how to implement specific workflows—and includes computer code! I think it will prove durably useful to a broad range of researchers in international development and beyond, and I learned new practices that I plan on adopting in my own research group.†? —Marshall Burke, Associate Professor, Department of Earth System Science, and Deputy Director, Center on Food Security and the Environment, Stanford University “Data are the essential ingredient in any research or evaluation project, yet there has been too little attention to standardized practices to ensure high-quality data collection, handling, documentation, and exchange. Development Research in Practice: The DIME Analytics Data Handbook seeks to fill that gap with practical guidance and tools, grounded in ethics and efficiency, for data management at every stage in a research project. This excellent resource sets a new standard for the field and is an essential reference for all empirical researchers.†? —Ruth E. Levine, PhD, CEO, IDinsight “Development Research in Practice: The DIME Analytics Data Handbook is an important resource and a must-read for all development economists, empirical social scientists, and public policy analysts. Based on decades of pioneering work at the World Bank on data collection, measurement, and analysis, the handbook provides valuable tools to allow research teams to more efficiently and transparently manage their work flows—yielding more credible analytical conclusions as a result.†? —Edward Miguel, Oxfam Professor in Environmental and Resource Economics and Faculty Director of the Center for Effective Global Action, University of California, Berkeley “The DIME Analytics Data Handbook is a must-read for any data-driven researcher looking to create credible research outcomes and policy advice. By meticulously describing detailed steps, from project planning via ethical and responsible code and data practices to the publication of research papers and associated replication packages, the DIME handbook makes the complexities of transparent and credible research easier.†? —Lars Vilhuber, Data Editor, American Economic Association, and Executive Director, Labor Dynamics Institute, Cornell University |
excel case studies for data analysis: Data Analysis for Business Decision Making Andres Fortino, 2020 Teaching the statistical analysis skills needed to support business decisions, this book provides projects ranging from the most basic descriptive analytical techniques to more advanced techniques such as linear regression, forecasting, inferential statistics, and more. -- |
excel case studies for data analysis: Analysis of Neural Data Robert E. Kass, Uri T. Eden, Emery N. Brown, 2014-07-08 Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work. |
excel case studies for data analysis: HBR Guide to Data Analytics Basics for Managers (HBR Guide Series) Harvard Business Review, 2018-03-13 Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes |
excel case studies for data analysis: Data Analysis for Business Decisions Andres Fortino, 2020-08-05 This laboratory manual is intended for business analysts who wish to increase their skills in the use of statistical analysis to support business decisions. Most of the case studies use Excel, today's most common analysis tool. They range from the most basic descriptive analytical techniques to more advanced techniques such as linear regression and forecasting. Advanced projects cover inferential statistics for continuous variables (t-Test) and categorical variables (chi-square), as well as A/B testing. The manual ends with techniques to deal with the analysis of text data and tools to manage the analysis of large data sets (Big Data) using Excel. Includes companion files with solution spreadsheets, sample files, data sets, etc. from the book. Features: Teaches the statistical analysis skills needed to support business decisions Provides projects ranging from the most basic descriptive analytical techniques to more advanced techniques such as linear regression, forecasting, inferential statistics, and analyzing big data sets Includes companion files with solution spreadsheets, sample files, data sets, etc. used in the book's case studies The companion files are available online by emailing the publisher with proof of purchase at info@merclearning.com. |
excel case studies for data analysis: Analytics Stories Wayne L. Winston, 2020-09-02 Inform your own analyses by seeing how one of the best data analysts in the world approaches analytics problems Analytics Stories: How to Make Good Things Happen is a thoughtful, incisive, and entertaining exploration of the application of analytics to real-world problems and situations. Covering fields as diverse as sports, finance, politics, healthcare, and business, Analytics Stories bridges the gap between the oft inscrutable world of data analytics and the concrete problems it solves. Distinguished professor and author Wayne L. Winston answers questions like: Was Liverpool over Barcelona the greatest upset in sports history? Was Derek Jeter a great infielder What's wrong with the NFL QB rating? How did Madoff keep his fund going? Does a mutual fund’s past performance predict future performance? What caused the Crash of 2008? Can we predict where crimes are likely to occur? Is the lot of the American worker improving? How can analytics save the US Republic? The birth of evidence-based medicine: How did James Lind know citrus fruits cured scurvy? How can I objectively compare hospitals? How can we predict heart attacks in real time? How does a retail store know if you're pregnant? How can I use A/B testing to improve sales from my website? How can analytics help me write a hit song? Perfect for anyone with the word “analyst” in their job title, Analytics Stories illuminates the process of applying analytic principles to practical problems and highlights the potential pitfalls that await careless analysts. |
excel case studies for data analysis: Beginning Excel What-If Data Analysis Tools Paul Cornell, 2006-11-09 * The only book on the market dedicated to the What-If functions and tools built into Excel, which are key to many business analysis scenarios. * Focused and to the point – where other Excel books force the reader to wade through 100’s of pages of related information and commit hours of reading, this book gets straight to the topic of teaching the reader about What-If scenario tools in Excel. * Offers the deepest tutorial treatment of the Solver add-in, the Goal Seeker and the other What-If scenario analysis tools, in a practical, hands-on exercises approach to using Excel to get business results. |
excel case studies for data analysis: Microsoft Excel 2010 Wayne L. Winston, 2011 An award-winning business professor and corporate consultant shares the best of his real-world experience in this practical, scenario-focused guide--fully updated for Excel 2010. |
excel case studies for data analysis: Python for Excel Felix Zumstein, 2021-03-04 While Excel remains ubiquitous in the business world, recent Microsoft feedback forums are full of requests to include Python as an Excel scripting language. In fact, it's the top feature requested. What makes this combination so compelling? In this hands-on guide, Felix Zumstein--creator of xlwings, a popular open source package for automating Excel with Python--shows experienced Excel users how to integrate these two worlds efficiently. Excel has added quite a few new capabilities over the past couple of years, but its automation language, VBA, stopped evolving a long time ago. Many Excel power users have already adopted Python for daily automation tasks. This guide gets you started. Use Python without extensive programming knowledge Get started with modern tools, including Jupyter notebooks and Visual Studio code Use pandas to acquire, clean, and analyze data and replace typical Excel calculations Automate tedious tasks like consolidation of Excel workbooks and production of Excel reports Use xlwings to build interactive Excel tools that use Python as a calculation engine Connect Excel to databases and CSV files and fetch data from the internet using Python code Use Python as a single tool to replace VBA, Power Query, and Power Pivot |
excel case studies for data analysis: The Power of People Nigel Guenole, Jonathan Ferrar, Sheri Feinzig, 2017-05-19 Learn from Today’s Most Successful Workforce Analytics Leaders Transforming the immense potential of workforce analytics into reality isn’t easy. Pioneering practitioners have learned crucial lessons that can help you succeed. The Power of People shares their journeys—and their indispensable insights. Drawing on incisive case studies and vignettes, three experts help you bring purpose and clarity to any workforce analytics project, with robust research design and analysis to get reliable insights. They reveal where to start, where to find stakeholder support, and how to earn “quick wins” to build upon. You’ll learn how to sustain success through best-practice data management, technology usage, partnering, and skill building. Finally, you’ll discover how to earn even more value by establishing an analytical mindset throughout HR, and building two key skills: storytelling and visualization. The Power of People will be invaluable to HR executives establishing or leading analytics functions; HR professionals planning analytics projects; and any business executive who wants more value from HR. |
excel case studies for data analysis: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
excel case studies for data analysis: Improving the User Experience through Practical Data Analytics Mike Fritz, Paul D. Berger, 2015-03-03 Improving the User Experience through Practical Data Analytics shows you how to make UX design decisions based on data—not hunches. Authors Fritz and Berger help the UX professional recognize the enormous potential of user data that is collected as a natural by-product of routine UX research methods, including moderated usability tests, unmoderated usability tests, surveys, and contextual inquiries. Then, step-by-step, they explain how to utilize both descriptive and predictive statistical techniques to gain meaningful insight with that data. By mastering the use of these techniques, you'll delight your users, increase your bottom line and gain a powerful competitive advantage for your company—and yourself. Key features include: - Practical advise on choosing the right data analysis technique for each project. - A step-by-step methodology for applying each technique, including examples and scenarios drawn from the UX field. - Detailed screen shots and instructions for performing the techniques using Excel (both for PC and Mac) and SPSS. - Clear and concise guidance on interpreting the data output. - Exercises to practice the techniques - Practical guidance on choosing the right data analysis technique for each project. - Real-world examples to build a theoretical and practical understanding of key concepts from consumer and financial verticals. - A step-by-step methodology for applying each predictive technique, including detailed examples. - A detailed guide to interpreting the data output and examples of how to effectively present the findings in a report. - Exercises to learn the techniques |
excel case studies for data analysis: Quantitative Methods for Decision Making Using Excel Glyn Davis, Branko Pecar, 2012-11-22 Quantitative Methods for Decision Making is a comprehensive guide that provides students with the key techniques and methodology they will need to successfully engage with all aspects of quantitative analysis and decision making; both on their undergraduate course, and in the larger context of their future business environments. Organized in accordance with the enterprise functional structure where the decision making takes place, the textbook encompasses a broad range of functions, each detailed with clear examples illustrated through the single application tool Microsoft Excel. The authors approach a range of methods which are divided into major enterprise functions such as marketing, sales, business development, manufacturing, quality control and finance; illustrating how the methods can be applied in practice and translated into a working environment. Each chapter is packed with short case studies to exemplify the practical use of techniques, and contains a wealth of exercises after key sections and concepts, giving students the opportunity to monitor their own progress using the solutions at the back of the book. An Online Resource Centre accompanies the text and includes: For students: - Numerical skills workbook with additional exercises, questions and content - Data from the examples and exercises in the book - Online glossary of terms - Revision tips - Visual walkthrough videos covering the application of a range of quantitative methods - Appendices to the book For lecturers: - Instructor's manual including solutions from the text and a guide to structuring lectures and seminars - PowerPoint presentations - Test bank with questions for each chapter - Suggested assignment and examination questions |
excel case studies for data analysis: The Art of Data Analysis Kristin H. Jarman, 2013-04-17 A friendly and accessible approach to applying statistics in the real world With an emphasis on critical thinking, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics presents fun and unique examples, guides readers through the entire data collection and analysis process, and introduces basic statistical concepts along the way. Leaving proofs and complicated mathematics behind, the author portrays the more engaging side of statistics and emphasizes its role as a problem-solving tool. In addition, light-hearted case studies illustrate the application of statistics to real data analyses, highlighting the strengths and weaknesses of commonly used techniques. Written for the growing academic and industrial population that uses statistics in everyday life, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics highlights important issues that often arise when collecting and sifting through data. Featured concepts include: • Descriptive statistics • Analysis of variance • Probability and sample distributions • Confidence intervals • Hypothesis tests • Regression • Statistical correlation • Data collection • Statistical analysis with graphs Fun and inviting from beginning to end, The Art of Data Analysis is an ideal book for students as well as managers and researchers in industry, medicine, or government who face statistical questions and are in need of an intuitive understanding of basic statistical reasoning. |
excel case studies for data analysis: Microsoft Excel Data Analysis and Business Modeling (Office 2021 and Microsoft 365) Wayne Winston, 2021-12-17 Master business modeling and analysis techniques with Microsoft Excel and transform data into bottom-line results. Award-winning educator Wayne Winston's hands-on, scenario-focused guide helps you use today's Excel to ask the right questions and get accurate, actionable answers. More extensively updated than any previous edition, new coverage ranges from one-click data analysis to STOCKHISTORY, dynamic arrays to Power Query, and includes six new chapters. Practice with over 900 problems, many based on real challenges faced by working analysts. Solve real problems with Microsoft Excel—and build your competitive advantage Quickly transition from Excel basics to sophisticated analytics Use recent Power Query enhancements to connect, combine, and transform data sources more effectively Use the LAMBDA and LAMBDA helper functions to create Custom Functions without VBA Use New Data Types to import data including stock prices, weather, information on geographic areas, universities, movies, and music Build more sophisticated and compelling charts Use the new XLOOKUP function to revolutionize your lookup formulas Master new Dynamic Array formulas that allow you to sort and filter data with formulas and find all UNIQUE entries Illuminate insights from geographic and temporal data with 3D Maps Improve decision-making with probability, Bayes' theorem, and Monte Carlo simulation and scenarios Use Excel trend curves, multiple regression, and exponential smoothing for predictive analytics Use Data Model and Power Pivot to effectively build and use relational data sources inside an Excel workbook |
excel case studies for data analysis: Creating and Verifying Data Sets with Excel Robert E. McGrath, 2014-01-21 Accurate data entry and analysis can be deceptively labor-intensive and time-consuming. Creating and Verifying Data Sets with Excel is a focused, easy-to-read guide that gives readers the wherewithal to make use of a remarkable set of data tools tucked within Excel—tools most researchers are entirely unaware of. Robert E. McGrath’s book is the first to focus exclusively on Excel as a data entry system. It incorporates a number of learning tools such as screenshots, text boxes that summarize key points, examples from across the social sciences, tips for creating professional-looking tables, and questions at the end of each chapter. Providing practical strategies to improve and ease the processes of data entry, creation and analysis, this step-by-step guide is a brief, but invaluable resource for both students and researchers. |
excel case studies for data analysis: Advanced Excel for Scientific Data Analysis Robert De Levie, 2004 This guide to Excel focuses on three areas--least squares, Fourier transformation, and digital simulation. It illustrates the techniques with detailed examples, many drawn from the scientific literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. De Levie is affiliated with Bowdoin College. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com). |
What does the "@" symbol mean in Excel formula (outside a table)
Oct 24, 2021 · Excel has recently introduced a huge feature called Dynamic arrays. And along with that, Excel also started to make a " substantial upgrade " to their formula language. One …
excel - How to show current user name in a cell? - Stack Overflow
if you don't want to create a UDF in VBA or you can't, this could be an alternative. =Cell("Filename",A1) this will give you the full file name, and from this you could get the user …
How to represent a DateTime in Excel - Stack Overflow
The underlying data type of a datetime in Excel is a 64-bit floating point number where the length of a day equals 1 and 1st Jan 1900 00:00 equals 1. So 11th June 2009 17:30 is about …
excel - Check whether a cell contains a substring - Stack Overflow
Sep 4, 2013 · Is there an in-built function to check if a cell contains a given character/substring? It would mean you can apply textual functions like Left/Right/Mid on a conditional basis without …
How to keep one variable constant with other one changing with …
The $ tells excel not to adjust that address while pasting the formula into new cells. Since you are dragging across rows, you really only need to freeze the row part: =(B0+4)/A$0
Excel: Searching for multiple terms in a cell - Stack Overflow
Feb 11, 2013 · In addition to the answer of @teylyn, I would like to add that you can put the string of multiple search terms inside a SINGLE cell (as opposed to using a different cell for each …
How to freeze the =today() function once data has been entered
Aug 2, 2015 · Excel's default format handling doesn't know to format this as date - so you would need to do this separately. More work than Ctrl + ; , but there might be some other use-cases …
excel - Return values from the row above to the current row
Jun 15, 2012 · To solve this problem in Excel, usually I would just type in the literal row number of the cell above, e.g., if I'm typing in Cell A7, I would use the formula =A6. Then if I copied that …
Assign a value to a cell depending on content of another cell
Jan 16, 2020 · I am trying to use the IF function to assign a value to a cell depending on another cells value So, if the value in column 'E' is 1, then the value in column G should be the same …
excel - Remove leading or trailing spaces in an entire column of …
Mar 6, 2012 · I've found that the best (and easiest) way to delete leading, trailing (and excessive) spaces in Excel is to use a third-party plugin. I've been using ASAP Utilities for Excel and it …
What does the "@" symbol mean in Excel formula (outside a table)
Oct 24, 2021 · Excel has recently introduced a huge feature called Dynamic arrays. And along with that, Excel also started to make a " substantial upgrade " to their formula language. One …
excel - How to show current user name in a cell? - Stack Overflow
if you don't want to create a UDF in VBA or you can't, this could be an alternative. =Cell("Filename",A1) this will give you the full file name, and from this you could get the user …
How to represent a DateTime in Excel - Stack Overflow
The underlying data type of a datetime in Excel is a 64-bit floating point number where the length of a day equals 1 and 1st Jan 1900 00:00 equals 1. So 11th June 2009 17:30 is about …
excel - Check whether a cell contains a substring - Stack Overflow
Sep 4, 2013 · Is there an in-built function to check if a cell contains a given character/substring? It would mean you can apply textual functions like Left/Right/Mid on a conditional basis without …
How to keep one variable constant with other one changing with …
The $ tells excel not to adjust that address while pasting the formula into new cells. Since you are dragging across rows, you really only need to freeze the row part: =(B0+4)/A$0
Excel: Searching for multiple terms in a cell - Stack Overflow
Feb 11, 2013 · In addition to the answer of @teylyn, I would like to add that you can put the string of multiple search terms inside a SINGLE cell (as opposed to using a different cell for each …
How to freeze the =today() function once data has been entered
Aug 2, 2015 · Excel's default format handling doesn't know to format this as date - so you would need to do this separately. More work than Ctrl + ; , but there might be some other use-cases …
excel - Return values from the row above to the current row
Jun 15, 2012 · To solve this problem in Excel, usually I would just type in the literal row number of the cell above, e.g., if I'm typing in Cell A7, I would use the formula =A6. Then if I copied that …
Assign a value to a cell depending on content of another cell
Jan 16, 2020 · I am trying to use the IF function to assign a value to a cell depending on another cells value So, if the value in column 'E' is 1, then the value in column G should be the same as …
excel - Remove leading or trailing spaces in an entire column of …
Mar 6, 2012 · I've found that the best (and easiest) way to delete leading, trailing (and excessive) spaces in Excel is to use a third-party plugin. I've been using ASAP Utilities for Excel and it …