Advertisement
extensive property definition chemistry: Chemistry 2e Paul Flowers, Richard Langely, William R. Robinson, Klaus Hellmut Theopold, 2019-02-14 Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition. |
extensive property definition chemistry: Quantities, Units and Symbols in Physical Chemistry International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division, 2007 Prepared by the IUPAC Physical Chemistry Division this definitive manual, now in its third edition, is designed to improve the exchange of scientific information among the readers in different disciplines and across different nations. This book has been systematically brought up to date and new sections added to reflect the increasing volume of scientific literature and terminology and expressions being used. The Third Edition reflects the experience of the contributors with the previous editions and the comments and feedback have been integrated into this essential resource. This edition has been compiled in machine-readable form and will be available online. |
extensive property definition chemistry: Chemistry 2e Paul Flowers, Klaus Theopold, Richard Langley, Edward J. Neth, WIlliam R. Robinson, 2019-02-14 Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition. |
extensive property definition chemistry: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Second Edition Donald Mackay, Wan-Ying Shiu, Kuo-Ching Ma, Sum Chi Lee, 2006-03-14 Transport and transformation processes are key for determining how humans and other organisms are exposed to chemicals. These processes are largely controlled by the chemicals’ physical-chemical properties. This new edition of the Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals is a comprehensive series in four volumes that serves as a reference source for environmentally relevant physical-chemical property data of numerous groups of chemical substances. The handbook contains physical-chemical property data from peer-reviewed journals and other valuable sources on over 1200 chemicals of environmental concern. The handbook contains new data on the temperature dependence of selected physical-chemical properties, which allows scientists and engineers to perform better chemical assessments for climatic conditions outside the 20–25-degree range for which property values are generally reported. This second edition of the Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals is an essential reference for university libraries, regulatory agencies, consultants, and industry professionals, particularly those concerned with chemical synthesis, emissions, fate, persistence, long-range transport, bioaccumulation, exposure, and biological effects of chemicals in the environment. This resource is also available on CD-ROM |
extensive property definition chemistry: A Textbook of Physical Chemistry – Volume 1 Mandeep Dalal, 2018-01-01 An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled A Textbook of Physical Chemistry – Volume I, II, III, IV. CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential. |
extensive property definition chemistry: Introductory Chemistry Mark S. Cracolice, Edward I. Peters, 2004 Now available at a new low price as part of Cengage Advantage Books and in two flexible formats--a standard paperbound edition and loose-leaf edition--this best-selling textbook for courses in introductory chemistry allows professors to tailor the order of chapters to accommodate their particular needs. The authors have achieved this modularity not only by carefully writing each topic so it never assumes prior knowledge, but also by including any and all necessary preview or review information needed to learn that topic. New lead author Dr. Mark Cracolice, Director for the Center of Teaching Excellence at the University of Montana and chemical education specialist, has added current and relevant applications and has infused the text with original pedagogical elements. Cracolice has also seamlessly integrated the text with the extensive media-based teaching aids available to create a unified package for this edition. |
extensive property definition chemistry: Chemistry Bruce Averill, Patricia Eldredge, 2007 Emphasises on contemporary applications and an intuitive problem-solving approach that helps students discover the exciting potential of chemical science. This book incorporates fresh applications from the three major areas of modern research: materials, environmental chemistry, and biological science. |
extensive property definition chemistry: A TEXTBOOK OF CHEMICAL ENGINEERING THERMODYNAMICS K. V. NARAYANAN, 2013-01-11 Designed as an undergraduate-level textbook in Chemical Engineering, this student-friendly, thoroughly class-room tested book, now in its second edition, continues to provide an in-depth analysis of chemical engineering thermodynamics. The book has been so organized that it gives comprehensive coverage of basic concepts and applications of the laws of thermodynamics in the initial chapters, while the later chapters focus at length on important areas of study falling under the realm of chemical thermodynamics. The reader is thus introduced to a thorough analysis of the fundamental laws of thermodynamics as well as their applications to practical situations. This is followed by a detailed discussion on relationships among thermodynamic properties and an exhaustive treatment on the thermodynamic properties of solutions. The role of phase equilibrium thermodynamics in design, analysis, and operation of chemical separation methods is also deftly dealt with. Finally, the chemical reaction equilibria are skillfully explained. Besides numerous illustrations, the book contains over 200 worked examples, over 400 exercise problems (all with answers) and several objective-type questions, which enable students to gain an in-depth understanding of the concepts and theory discussed. The book will also be a useful text for students pursuing courses in chemical engineering-related branches such as polymer engineering, petroleum engineering, and safety and environmental engineering. New to This Edition • More Example Problems and Exercise Questions in each chapter • Updated section on Vapour–Liquid Equilibrium in Chapter 8 to highlight the significance of equations of state approach • GATE Questions up to 2012 with answers |
extensive property definition chemistry: Physics of the Atmosphere and Climate Murry L. Salby, 2012-01-16 Murry Salby's new book provides an integrated treatment of the processes controlling the Earth-atmosphere system, developed from first principles through a balance of theory and applications. This book builds on Salby's previous book, Fundamentals of Atmospheric Physics. The scope has been expanded into climate, with the presentation streamlined for undergraduates in science, mathematics and engineering. Advanced material, suitable for graduate students and as a resource for researchers, has been retained but distinguished from the basic development. The book provides a conceptual yet quantitative understanding of the controlling influences, integrated through theory and major applications. It leads readers through a methodical development of the diverse physical processes that shape weather, global energetics and climate. End-of-chapter problems of varying difficulty develop student knowledge and its quantitative application, supported by answers and detailed solutions online for instructors. |
extensive property definition chemistry: Reflections on the Motive Power of Heat and on Machines Fitted to Develop that Power Sadi Carnot, 1890 |
extensive property definition chemistry: Drug-like Properties: Concepts, Structure Design and Methods Li Di, Edward H Kerns, 2010-07-26 Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint |
extensive property definition chemistry: Physical Chemistry for the Biosciences Raymond Chang, 2005-02-11 This book is ideal for use in a one-semester introductory course in physical chemistry for students of life sciences. The author's aim is to emphasize the understanding of physical concepts rather than focus on precise mathematical development or on actual experimental details. Subsequently, only basic skills of differential and integral calculus are required for understanding the equations. The end-of-chapter problems have both physiochemical and biological applications. |
extensive property definition chemistry: The NBS Tables of Chemical Thermodynamic Properties Donald D. Wagman, 1982 |
extensive property definition chemistry: Chemical Graph Theory Nenad Trinajstic, 2018-05-11 New Edition! Completely Revised and Updated Chemical Graph Theory, 2nd Edition is a completely revised and updated edition of a highly regarded book that has been widely used since its publication in 1983. This unique book offers a basic introduction to the handling of molecular graphs - mathematical diagrams representing molecular structures. Using mathematics well within the vocabulary of most chemists, this volume elucidates the structural aspects of chemical graph theory: (1) the relationship between chemical and graph-theoretical terminology, elements of graph theory, and graph-theoretical matrices; (2) the topological aspects of the Hückel theory, resonance theory, and theories of aromaticity; and (3) the applications of chemical graph theory to structure-property and structure-activity relationships and to isomer enumeration. An extensive bibliography covering the most relevant advances in theory and applications is one of the book's most valuable features. This volume is intended to introduce the entire chemistry community to the applications of graph theory and will be of particular interest to theoretical organic and inorganic chemists, physical scientists, computational chemists, and those already involved in mathematical chemistry. |
extensive property definition chemistry: Random Heterogeneous Materials Salvatore Torquato, 2013-04-17 This accessible text presents a unified approach of treating the microstructure and effective properties of heterogeneous media. Part I deals with the quantitative characterization of the microstructure of heterogeneous via theoretical methods; Part II treats a wide variety of effective properties of heterogeneous materials and how they are linked to the microstructure, accomplished by using rigorous methods. |
extensive property definition chemistry: An Introduction to Chemistry Michael Mosher, Paul Kelter, 2023-03-18 This textbook is written to thoroughly cover the topic of introductory chemistry in detail—with specific references to examples of topics in common or everyday life. It provides a major overview of topics typically found in first-year chemistry courses in the USA. The textbook is written in a conversational question-based format with a well-defined problem solving strategy and presented in a way to encourage readers to “think like a chemist” and to “think outside of the box.” Numerous examples are presented in every chapter to aid students and provide helpful self-learning tools. The topics are arranged throughout the textbook in a traditional approach to the subject with the primary audience being undergraduate students and advanced high school students of chemistry. |
extensive property definition chemistry: An Introduction to Chemical Kinetics Michel Soustelle, 2013-02-07 This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental results and how to calculate the kinetic laws in both homogeneous and heterogeneous systems. The following two chapters describe the main approximation modes to calculate these laws. Three chapters are devoted to elementary steps with the various classes, the principles used to write them and their modeling using the theory of the activated complex in gas and condensed phases. Three chapters are devoted to the particular areas of chemical reactions, chain reactions, catalysis and the stoichiometric heterogeneous reactions. Finally the non-steady-state processes of combustion and explosion are treated in the final chapter. |
extensive property definition chemistry: FUNDAMENTALS OF CHEMISTRY - Volume II Sergio Carrà, 2009-05-05 Fundamentals of Chemistry theme in two volumes, is a component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme is organized into six different topics which represent the main scientific areas : History and Fundamentals of Chemistry; Chemical Experimentation and Instrumentation; Theoretical Approach to Chemistry; Chemical Thermodynamics; Rates of Chemical Reactions; Chemical Synthesis of Substances. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs |
extensive property definition chemistry: Principles of Chemical Nomenclature G. J. Leigh, 2011 Aimed at pre-university and undergraduate students, this volume surveys the current IUPAC nomenclature recommendations in organic, inorganic and macromolecular chemistry. |
extensive property definition chemistry: Advanced Physical Chemistry Mehra Harish C, 1978 |
extensive property definition chemistry: Properties of Polymers D.W. van Krevelen, 2012-12-02 Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions summarizes the latest developments regarding polymers, their properties in relation to chemical structure, and methods for estimating and predicting numerical properties from chemical structure. In particular, it examines polymer electrical properties, magnetic properties, and mechanical properties, as well as their crystallization and environmental behavior and failure. The rheological properties of polymer melts and polymer solutions are also considered. Organized into seven parts encompassing 27 chapters, this book begins with an overview of polymer science and engineering, including the typology of polymers and their properties. It then turns to a discussion of thermophysical properties, from transition temperatures to volumetric and calorimetric properties, along with the cohesive aspects and conformation statistics. It also introduces the reader to the behavior of polymers in electromagnetic and mechanical fields of force. The book covers the quantities that influence the transport of heat, momentum, and matter, particularly heat conductivity, viscosity, and diffusivity; properties that control the chemical stability and breakdown of polymers; and polymer properties as an integral concept, with emphasis on processing and product properties. Readers will find tables that give valuable (numerical) data on polymers and include a survey of the group contributions (increments) of almost every additive function considered. This book is a valuable resource for anyone working on practical problems in the field of polymers, including organic chemists, chemical engineers, polymer processers, polymer technologists, and both graduate and PhD students. |
extensive property definition chemistry: Fundamentals of Physical Chemistry Ananya Ganguly, 2011 Fundamentals of Physical Chemistry is the signature compilation of the class tested notes of iconic chemistry coach Ananya Ganguly. Her unique teaching methodology and authoritative approach in teaching of concepts, their application and strategy is ideal for preparing for the IITJEE examinations. The author’s impeccable command and the authority on each foray of chemistry teaching are visible in each chapter and the chapter ending exercises. Each chapter unfolds the structured, systematic and patterned chemistry concepts in lucid and student friendly approach. The book is without those unnecessary frills that make the bulk in other popular books in the market for the IITJEE. An indispensible must have for in-depth comprehension of Chemistry for the coveted IITJEE. |
extensive property definition chemistry: Physical Chemistry An Advanced Treatise Wilhelm Jost, 2012-12-02 Physical Chemistry: An Advanced Treatise, Volume I: Thermodynamics deals with the applications of thermodynamics to mixtures, fluids, and solid systems at high pressures and temperatures, critical phenomena, practical handling of coupled gas equilibriums, and matter in electric, magnetic, and gravitational fields. This book begins with a survey of basic laws, followed by discussions on questions of stability, irreversible processes, surfaces, the third law, and a short introduction to Caratheodory's axiomatic foundation. The zeroth law of thermodynamics, gaseous mixtures, internal equilibrium in solids, thermodynamic properties of the mixture, and theory of linear differential forms are also elaborated. This publication presents a comprehensive treatment of physical chemistry for advanced students and researchers. |
extensive property definition chemistry: Essentials of Physical Chemistry 28th Edition Bahl Arun/ Bahl B.S. & Tuli G.D., 2022 Essentials of Physical Chemistry is a classic textbook on the subject explaining fundamentals concepts with discussions, illustrations and exercises. With clear explanation, systematic presentation, and scientific accuracy, the book not only helps the students clear misconceptions about the basic concepts but also enhances students' ability to analyse and systematically solve problems. This bestseller is primarily designed for B.Sc. students and would equally be useful for the aspirants of medical and engineering entrance examinations. |
extensive property definition chemistry: Essentials of Computational Chemistry Christopher J. Cramer, 2013-04-29 Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context. |
extensive property definition chemistry: General Chemistry Ralph H. Petrucci, Ralph Petrucci, F. Geoffrey Herring, Jeffry Madura, Carey Bissonnette, 2017 The most trusted general chemistry text in Canada is back in a thoroughly revised 11th edition. General Chemistry: Principles and Modern Applications, is the most trusted book on the market recognized for its superior problems, lucid writing, and precision of argument and precise and detailed and treatment of the subject. The 11th edition offers enhanced hallmark features, new innovations and revised discussions that that respond to key market needs for detailed and modern treatment of organic chemistry, embracing the power of visual learning and conquering the challenges of effective problem solving and assessment. Note: You are purchasing a standalone product; MasteringChemistry does not come packaged with this content. Students, if interested in purchasing this title with MasteringChemistry, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MasteringChemistry, search for: 0134097327 / 9780134097329 General Chemistry: Principles and Modern Applications Plus MasteringChemistry with Pearson eText -- Access Card Package, 11/e Package consists of: 0132931281 / 9780132931281 General Chemistry: Principles and Modern Applications 0133387917 / 9780133387919 Study Card for General Chemistry: Principles and Modern Applications 0133387801 / 9780133387803 MasteringChemistry with Pearson eText -- Valuepack Access Card -- for General Chemistry: Principles and Modern Applications |
extensive property definition chemistry: Chemistry Steven S. Zumdahl, Susan A. Zumdahl, 2012 Steve and Susan Zumdahl's texts focus on helping students build critical thinking skills through the process of becoming independent problem-solvers. They help students learn to think like a chemists so they can apply the problem solving process to all aspects of their lives. In CHEMISTRY: AN ATOMS FIRST APPROACH, 1e, International Edition the Zumdahls use a meaningful approach that begins with the atom and proceeds through the concept of molecules, structure, and bonding, to more complex materials and their properties. Because this approach differs from what most students have experienced in high school courses, it encourages them to focus on conceptual learning early in the course, rather than relying on memorization and a plug and chug method of problem solving that even the best students can fall back on when confronted with familiar material. The atoms first organization provides an opportunity for students to use the tools of critical thinkers: to ask questions, to apply rules and models and to |
extensive property definition chemistry: Principles of Modern Chemistry David W. Oxtoby, 1998-07-01 PRINCIPLES OF MODERN CHEMISTRY has dominated the honors and high mainstream general chemistry courses and is considered the standard for the course. The fifth edition is a substantial revision that maintains the rigor of previous editions but reflects the exciting modern developments taking place in chemistry today. Authors David W. Oxtoby and H. P. Gillis provide a unique approach to learning chemical principles that emphasizes the total scientific process'from observation to application'placing general chemistry into a complete perspective for serious-minded science and engineering students. Chemical principles are illustrated by the use of modern materials, comparable to equipment found in the scientific industry. Students are therefore exposed to chemistry and its applications beyond the classroom. This text is perfect for those instructors who are looking for a more advanced general chemistry textbook. |
extensive property definition chemistry: Elements of Physical Chemistry Peter Atkins, Julio de Paula, 2013 Elements of Physical Chemistry has been carefully crafted to help students increase their confidence when using physics and mathematics to answer fundamental questions about the structure of molecules, how chemical reactions take place, and why materials behave the way they do. |
extensive property definition chemistry: Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology National Research Council, Division on Engineering and Physical Sciences, Commission on Physical Sciences, Mathematics, and Applications, Chemical Sciences Roundtable, 1999-08-31 The Chemical Sciences Roundtable provides a forum for discussing chemically related issues affecting government, industry and government. The goal is to strengthen the chemical sciences by foster communication among all the important stakeholders. At a recent Roundtable meeting, information technology was identified as an issue of increasing importance to all sectors of the chemical enterprise. This book is the result of a workshop convened to explore this topic. |
extensive property definition chemistry: Density Functional Theory David S. Sholl, Janice A. Steckel, 2011-09-20 Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to students from a variety of backgrounds. The book therefore offers several features that have proven to be helpful in enabling students to master the subject, including: Problem sets in each chapter that give readers the opportunity to test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are used to solve real-world problems Further readings listed in each chapter enabling readers to investigate specific topics in greater depth This text is written at a level suitable for individuals from a variety of scientific, mathematical, and engineering backgrounds. No previous experience working with DFT calculations is needed. |
extensive property definition chemistry: How Tobacco Smoke Causes Disease United States. Public Health Service. Office of the Surgeon General, 2010 This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products. |
extensive property definition chemistry: Chemistry in Context AMERICAN CHEMICAL SOCIETY., 2024-04-11 |
extensive property definition chemistry: A Problem-Solving Approach to Aquatic Chemistry James N. Jensen, 2023-01-12 A Problem-Solving Approach to Aquatic Chemistry Enables civil and environmental engineers to understand the theory and application of aquatic equilibrium chemistry The second edition of A Problem-Solving Approach to Aquatic Chemistry provides a detailed introduction to aquatic equilibrium chemistry, calculation methods for systems at equilibrium, applications of aquatic chemistry, and chemical kinetics. The text directly addresses two required ABET program outcomes in environmental engineering: “… chemistry (including stoichiometry, equilibrium, and kinetics)” and “material and energy balances, fate and transport of substances in and between air, water, and soil phases.” The book is very student-centered, with each chapter beginning with an introduction and ending with a summary that reviews the chapter’s main points. To aid in reader comprehension, important terms are defined in context and key ideas are summarized. Many thought-provoking discussion questions, worked examples, and end of chapter problems are also included. Each part of the text begins with a case study, a portion of which is addressed in each subsequent chapter, illustrating the principles of that chapter. In addition, each chapter has an Historical Note exploring connections with the people and cultures connected to topics in the text. A Problem-Solving Approach to Aquatic Chemistry includes: Fundamental concepts, such as concentration units, thermodynamic basis of equilibrium, and manipulating equilibria Solutions of chemical equilibrium problems, including setting up the problems and algebraic, graphical, and computer solution techniques Acid–base equilibria, including the concepts of acids and bases, titrations, and alkalinity and acidity Complexation, including metals, ligands, equilibrium calculations with complexes, and applications of complexation chemistry Oxidation-reduction equilibria, including equilibrium calculations, graphical approaches, and applications Gas–liquid and solid–liquid equilibrium, with expanded coverage of the effects of global climate change Other topics, including chemical kinetics of aquatic systems, surface chemistry, and integrative case studies For advanced/senior undergraduates and first-year graduate students in environmental engineering courses, A Problem-Solving Approach to Aquatic Chemistry serves as an invaluable learning resource on the topic, with a variety of helpful learning elements included throughout to ensure information retention and the ability to apply covered concepts in practical settings. |
extensive property definition chemistry: Atkins' Physical Chemistry 11e Peter Atkins, Julio De Paula, James Keeler, 2019-09-06 Atkins' Physical Chemistry: Molecular Thermodynamics and Kinetics is designed for use on the second semester of a quantum-first physical chemistry course. Based on the hugely popular Atkins' Physical Chemistry, this volume approaches molecular thermodynamics with the assumption that students will have studied quantum mechanics in their first semester. The exceptional quality of previous editions has been built upon to make this new edition of Atkins' Physical Chemistry even more closely suited to the needs of both lecturers and students. Re-organised into discrete 'topics', the text is more flexible to teach from and more readable for students. Now in its eleventh edition, the text has been enhanced with additional learning features and maths support to demonstrate the absolute centrality of mathematics to physical chemistry. Increasing the digestibility of the text in this new approach, the reader is brought to a question, then the math is used to show how it can be answered and progress made. The expanded and redistributed maths support also includes new 'Chemist's toolkits' which provide students with succinct reminders of mathematical concepts and techniques right where they need them. Checklists of key concepts at the end of each topic add to the extensive learning support provided throughout the book, to reinforce the main take-home messages in each section. The coupling of the broad coverage of the subject with a structure and use of pedagogy that is even more innovative will ensure Atkins' Physical Chemistry remains the textbook of choice for studying physical chemistry. |
extensive property definition chemistry: PHYSICAL CHEMISTRY R.C. SARASWAT, S.R. CHIKTE, M.P. SINGH, Unit-I : Thermodynamics -I (A) Recapitulation of thermodynamic terms : System, surrounding types of system (closed, open & isolated), Thermodynamic, variables, intensive & extensive properties, thermodynamic processes (isothermal, adiabatic, isobaric, cyclic, reversible & irreversible) State function & path functions, properties of state functions (exact differential, cyclic rule), integrating factor, concept of heat & work. [3L] (B) Statements of first law of thermodynamics : Definition of internal energy & enthalpy, heat capacity at constant volume & at constant pressure, Joule-Thomson experiment, Joule Thomson coefficient & Inversion temperature, calculations of W,Q,ΔE & ΔH for expansion of gases for isothermal & adiabatic conditions for reversible process, carnot's cycle & its efficiency, thermodynamic scale of temperature. [5L] (C) Thermochemistry : Heat of reaction, standard states, relation between heat of reaction at constant volume & at constant pressure, Hess's law of constant heat of summation & its applications, bond dissociation energy & its calculations from thermochemical data, variation of heat of reaction with temperature (Kirchoff's equation). [4L] Unit-II : Thermodynamics-II (A) Second law of thermodynamics : Need for second law of thermodynamics, statements of second law of thermodynamics, concept of entropy, entropy as a state function of V & T, P&T, entropy change in phase change for ideal gas, entropy as criteria of spontaneity & equilibrium. [4L] (B) Free energy functions : Helmholtz free energy (A) & Gibb's free energy (G) & their properties, standard free energies, effect of temperature on free energy (Gibb's-Helmholtz equation) & its applications, A&G as criteria for thermodynamic equilibrium. [4L] (C) System of variable composition : Partial molar quantities, chemical potential, Van't-Hoff's reaction isotherm, relation between standard free energy change & equilibrium constant (thermodynamic derivation of law of mass action), effect of temperature on equilibrium constant (reaction isochore) [4L] Unit-III : Phase Equilibria (A) Phase rule : Statement of phase rule, definition of phase, component and degree of freedom, derivation of phase rule, Clapeyron equation & its application in deciding slopes of line for two phase equilibria, applications of phase rule to two phase equilibria of i) water system, ii) sulphur system & iii) Pb-Ag system. [6L] (B) Liquid-Liquid mixtures : Ideal liquid mixtures, Raoults law of ideal solutions, Henry's law, non-ideal systems, azeotropes: HCl -H2O & ethanol-water system. Partial miscible liquids : Phenol-water system, trimethylamine-water, nicotine-water system, lower & upper consolute temperature, effect of impurity. Immiscible liquids : Steam distillation, Nernst distribution law, Limitations, deviations & applications. [6L] Unit-IV : Solid State Laws of crystallography : (i) Law of constancy of interfacial angles, (ii) Law of rationality of indices, (iii) Law of symmetry, symmetry of elements in crystals. Unit cell, space lattice, orientation of lattice plane (Miller indices). Bravais lattices, crystal systems, X-ray diffraction by crystal, derivation of Braggs' equation. |
extensive property definition chemistry: Physical Chemistry for Engineering and Applied Sciences Frank R. Foulkes, 2012-09-12 Physical Chemistry for Engineering and Applied Sciences is the product of over 30 years of teaching first-year Physical Chemistry as part of the Faculty of Applied Science and Engineering at the University of Toronto. Designed to be as rigorous as compatible with a first-year student’s ability to understand, the text presents detailed step-by-step derivations of the equations that permit the student to follow the underlying logic and, of equal importance, to appreciate any simplifying assumptions made or mathematical tricks employed. In addition to the 600 exercises and end-of-chapter problems, the text is rich in worked non-trivial examples, many of which are designed to be inspiring and thought-provoking. Step-by-step derivation of all equations enables the student to smoothly follow the derivation by sight, and can be understood relatively easily by students with moderate skills and backgrounds in mathematics. Clear and accessible, Physical Chemistry for Engineering and Applied Sciences includes: The answers to all of the 112 worked examples, 99 exercises following many of the worked examples, and 496 end-of-chapter problems Topics not normally seen in introductory physical chemistry textbooks (ionic reaction rates, activities and activity coefficients) or not regularly explained in much detail (electrochemistry, chemical kinetics), with an eye on industrial applications Special appendices that provide detailed explanations of basic integration and natural logarithms for students lacking a background in integral calculus An in-depth chapter on electrochemistry, in which activities and activity coefficients are used extensively, as required for accurate calculations |
extensive property definition chemistry: Molecular Biology of the Cell , 2002 |
extensive property definition chemistry: Chemical Periodicity Robert Thomas Sanderson, 2013-04-20 |
extensive property definition chemistry: Elements of Physical Chemistry Peter William Atkins, Julio De Paula, 2017 This revision of the introductory textbook of physical chemistry has been designed to broaden its appeal, particularly to students with an interest in biological applications. |
2.4: Extensive and Intensive Properties - Chemistry LibreTexts
Mar 21, 2025 · An extensive property is a property that depends on the amount of matter in a sample. Mass and volume are examples of extensive properties. An intensive property is a …
The Difference Between Intensive and Extensive Properties
Extensive properties, on the other hand, do depend on the amount of substance present. Examples include mass, volume, and energy. These properties change as the quantity of the …
Intensive and extensive properties - Wikipedia
An extensive property is a physical quantity whose value is proportional to the size of the system it describes, [8] or to the quantity of matter in the system. For example, the mass of a sample is …
Difference Between Intensive and Extensive Properties of Matter
Mar 18, 2020 · Extensive properties depend on the amount of matter in a sample. Examples include mass, length, and volume. Intensive properties are also called bulk properties of …
Extensive and Intensive Properties | CHEM101 ONLINE: General Chemistry
An extensive property is a property that depends on the amount of matter in a sample. Mass and volume are examples of extensive properties. An intensive property is a property of matter that …
What are intensive and extensive properties in chemistry?
Jan 3, 2025 · When it comes to describing the properties of a system, it’s essential to distinguish between intensive and extensive properties. In this article, we’ll delve into the world of …
Extensive Property - (Physical Chemistry I) - Vocab, Definition ...
An extensive property is a physical quantity that depends on the amount of substance or system present. These properties change when the size or extent of the system changes, making …
Intensive and Extensive Properties of Matter - GeeksforGeeks
Jan 15, 2024 · Extensive property of any matter is that physical property of matter that depend on mass of the substance or system, and changes as mass changes. These properties are …
What Is an Extensive Property? - ThoughtCo
Aug 2, 2022 · Here is the definition of an extensive property in chemistry. An extensive property is a property of matter that changes as the amount of matter changes. Like other physical …
Extensive Property vs. Intensive Property - What's the Difference ...
In chemistry, extensive properties are often used to describe the amount of a substance present in a reaction. For example, the total mass of reactants and products in a chemical reaction is …
2.4: Extensive and Intensive Properties - Chemistry LibreTexts
Mar 21, 2025 · An extensive property is a property that depends on the amount of matter in a sample. Mass and volume are examples of extensive properties. An intensive property is a …
The Difference Between Intensive and Extensive Properties
Extensive properties, on the other hand, do depend on the amount of substance present. Examples include mass, volume, and energy. These properties change as the quantity of the …
Intensive and extensive properties - Wikipedia
An extensive property is a physical quantity whose value is proportional to the size of the system it describes, [8] or to the quantity of matter in the system. For example, the mass of a sample is …
Difference Between Intensive and Extensive Properties of Matter
Mar 18, 2020 · Extensive properties depend on the amount of matter in a sample. Examples include mass, length, and volume. Intensive properties are also called bulk properties of …
Extensive and Intensive Properties | CHEM101 ONLINE: General Chemistry
An extensive property is a property that depends on the amount of matter in a sample. Mass and volume are examples of extensive properties. An intensive property is a property of matter that …
What are intensive and extensive properties in chemistry?
Jan 3, 2025 · When it comes to describing the properties of a system, it’s essential to distinguish between intensive and extensive properties. In this article, we’ll delve into the world of …
Extensive Property - (Physical Chemistry I) - Vocab, Definition ...
An extensive property is a physical quantity that depends on the amount of substance or system present. These properties change when the size or extent of the system changes, making …
Intensive and Extensive Properties of Matter - GeeksforGeeks
Jan 15, 2024 · Extensive property of any matter is that physical property of matter that depend on mass of the substance or system, and changes as mass changes. These properties are …
What Is an Extensive Property? - ThoughtCo
Aug 2, 2022 · Here is the definition of an extensive property in chemistry. An extensive property is a property of matter that changes as the amount of matter changes. Like other physical …
Extensive Property vs. Intensive Property - What's the Difference ...
In chemistry, extensive properties are often used to describe the amount of a substance present in a reaction. For example, the total mass of reactants and products in a chemical reaction is …