Advertisement
factor analysis with spss: A Step-by-Step Guide to Exploratory Factor Analysis with R and RStudio Marley Watkins, 2020-12-29 This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using the open source software R. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots of R and RStudio code, and recommends evidence-based best practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon and formula to help facilitate grasp of the key issues users will face while applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper-level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences. |
factor analysis with spss: A Step-By-Step Guide to Exploratory Factor Analysis with R and RStudio Marley W. Watkins, 2021 This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using the open source software R. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots of R and RStudio code and recommends evidence-based best practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon and formula to help facilitate grasp of the key issues users will face when applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences-- |
factor analysis with spss: A Step-by-Step Guide to Exploratory Factor Analysis with SPSS Marley W. Watkins, 2021-06-21 This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using SPSS. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots and code from SPSS and recommends evidence-based best-practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon to help facilitate grasp of the key issues users will face while applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper-level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences. |
factor analysis with spss: Doing Quantitative Research in Education with SPSS Daniel Muijs, 2010-12-31 This accessible and authoritative introduction is essential for education students and researchers needing to use quantitative methods for the first time. Using datasets from real-life educational research and avoiding the use of mathematical formulae, the author guides students through the essential techniques that they will need to know, explaining each procedure using the latest version of SPSS. The datasets can also be downloaded from the book′s website, enabling students to practice the techniques for themselves. This revised and updated second edition now also includes more advanced methods such as log linear analysis, logistic regression, and canonical correlation. Written specifically for those with no prior experience of quantitative research, this book is ideal for education students and researchers in this field. |
factor analysis with spss: Best Practices in Exploratory Factor Analysis Jason W. Osborne, 2014-07-23 Best Practices in Exploratory Factor Analysis (EFA) is a practitioner-oriented look at this popular and often-misunderstood statistical technique. We avoid formulas and matrix algebra, instead focusing on evidence-based best practices so you can focus on getting the most from your data.Each chapter reviews important concepts, uses real-world data to provide authentic examples of analyses, and provides guidance for interpreting the results of these analysis. Not only does this book clarify often-confusing issues like various extraction techniques, what rotation is really rotating, and how to use parallel analysis and MAP criteria to decide how many factors you have, but it also introduces replication statistics and bootstrap analysis so that you can better understand how precisely your data are helping you estimate population parameters. Bootstrap analysis also informs readers of your work as to the likelihood of replication, which can give you more credibility. At the end of each chapter, the author has recommendations as to how to enhance your mastery of the material, including access to the data sets used in the chapter through his web site. Other resources include syntax and macros for easily incorporating these progressive aspects of exploratory factor analysis into your practice. The web site will also include enrichment activities, answer keys to select exercises, and other resources. The fourth best practices book by the author, Best Practices in Exploratory Factor Analysis continues the tradition of clearly-written, accessible guides for those just learning quantitative methods or for those who have been researching for decades.NEW in August 2014! Chapters on factor scores, higher-order factor analysis, and reliability. Chapters: 1 INTRODUCTION TO EXPLORATORY FACTOR ANALYSIS 2 EXTRACTION AND ROTATION 3 SAMPLE SIZE MATTERS 4 REPLICATION STATISTICS IN EFA 5 BOOTSTRAP APPLICATIONS IN EFA 6 DATA CLEANING AND EFA 7 ARE FACTOR SCORES A GOOD IDEA? 8 HIGHER ORDER FACTORS 9 AFTER THE EFA: INTERNAL CONSISTENCY 10 SUMMARY AND CONCLUSIONS |
factor analysis with spss: Exploratory Factor Analysis Leandre R. Fabrigar, Duane T. Wegener, 2012-01-12 This book provides a non-mathematical introduction to the theory and application of Exploratory Factor Analysis. Among the issues discussed are the use of confirmatory versus exploratory factor analysis, the use of principal components analysis versus common factor analysis, and procedures for determining the appropriate number of factors. |
factor analysis with spss: IBM SPSS Statistics Excellent Guide Peter James Kpolovie, 2020-11-24 IBM SPSS Statistics Excellent Guide is an excellent illustrative point-by-point easy to use guide that guarantees everyone the revolutionary skills of data analysis with SPSS Statistics. What if you can personally analyze different sorts of research data accurately without a hand-held calculator? Yes, you can. Each user of the book can with all accuracy, perform data analysis expertly and lucidly interpret the output, even if it is his first day of utilizing SPSS. IBM SPSS Statistics is renowned as a most powerful and widely used software for data analysis in the social and behavioral sciences, particularly, and in other several different fields of endeavor. Currently, practical analytic skills with statistical software as demonstrated in this book are necessarily required to be a researcher or scientist. Peter James Kpolovie has provided a superb guide that thoroughly presents SPSS dialog boxes selection method and SPSS syntax method for myriads of introductory and advanced statistical techniques, including: Descriptive statistics Comparison of means with t Test techniques and Analysis of Variance models General Linear Models Univariate, Repeated measures and Mixed analysis Analysis of Covariance To accurately analyze large complex dataset collected for a given research, has consistently remained a major challenge to the investigator even before the actual problem that he has set out to investigate. Kpolovie has superbly eliminated such challenge as every user can with most exceptional ease, follow the complete procedural steps, famously illustrated in the book, to personally analyze various sorts of data impeccably. Buy a copy now and acquire mastery of the new skills. |
factor analysis with spss: Data Analysis with IBM SPSS Statistics Kenneth Stehlik-Barry, Anthony J. Babinec, 2017-09-22 Master data management & analysis techniques with IBM SPSS Statistics 24 About This Book Leverage the power of IBM SPSS Statistics to perform efficient statistical analysis of your data Choose the right statistical technique to analyze different types of data and build efficient models from your data with ease Overcome any hurdle that you might come across while learning the different SPSS Statistics concepts with clear instructions, tips and tricks Who This Book Is For This book is designed for analysts and researchers who need to work with data to discover meaningful patterns but do not have the time (or inclination) to become programmers. We assume a foundational understanding of statistics such as one would learn in a basic course or two on statistical techniques and methods. What You Will Learn Install and set up SPSS to create a working environment for analytics Techniques for exploring data visually and statistically, assessing data quality and addressing issues related to missing data How to import different kinds of data and work with it Organize data for analytical purposes (create new data elements, sampling, weighting, subsetting, and restructure your data) Discover basic relationships among data elements (bivariate data patterns, differences in means, correlations) Explore multivariate relationships Leverage the offerings to draw accurate insights from your research, and benefit your decision-making In Detail SPSS Statistics is a software package used for logical batched and non-batched statistical analysis. Analytical tools such as SPSS can readily provide even a novice user with an overwhelming amount of information and a broad range of options for analyzing patterns in the data. The journey starts with installing and configuring SPSS Statistics for first use and exploring the data to understand its potential (as well as its limitations). Use the right statistical analysis technique such as regression, classification and more, and analyze your data in the best possible manner. Work with graphs and charts to visualize your findings. With this information in hand, the discovery of patterns within the data can be undertaken. Finally, the high level objective of developing predictive models that can be applied to other situations will be addressed. By the end of this book, you will have a firm understanding of the various statistical analysis techniques offered by SPSS Statistics, and be able to master its use for data analysis with ease. Style and approach Provides a practical orientation to understanding a set of data and examining the key relationships among the data elements. Shows useful visualizations to enhance understanding and interpretation. Outlines a roadmap that focuses the process so decision regarding how to proceed can be made easily. |
factor analysis with spss: Factor analysis and principal component analysis Di Franco, Marradi, 2013 |
factor analysis with spss: SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics Daniel J. Denis, 2018-09-25 Enables readers to start doing actual data analysis fast for a truly hands-on learning experience This concise and very easy-to-use primer introduces readers to a host of computational tools useful for making sense out of data, whether that data come from the social, behavioral, or natural sciences. The book places great emphasis on both data analysis and drawing conclusions from empirical observations. It also provides formulas where needed in many places, while always remaining focused on concepts rather than mathematical abstraction. SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics offers a variety of popular statistical analyses and data management tasks using SPSS that readers can immediately apply as needed for their own research, and emphasizes many helpful computational tools used in the discovery of empirical patterns. The book begins with a review of essential statistical principles before introducing readers to SPSS. The book then goes on to offer chapters on: Exploratory Data Analysis, Basic Statistics, and Visual Displays; Data Management in SPSS; Inferential Tests on Correlations, Counts, and Means; Power Analysis and Estimating Sample Size; Analysis of Variance – Fixed and Random Effects; Repeated Measures ANOVA; Simple and Multiple Linear Regression; Logistic Regression; Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis; Principal Components Analysis; Exploratory Factor Analysis; and Non-Parametric Tests. This helpful resource allows readers to: Understand data analysis in practice rather than delving too deeply into abstract mathematical concepts Make use of computational tools used by data analysis professionals. Focus on real-world application to apply concepts from the book to actual research Assuming only minimal, prior knowledge of statistics, SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics is an excellent “how-to” book for undergraduate and graduate students alike. This book is also a welcome resource for researchers and professionals who require a quick, go-to source for performing essential statistical analyses and data management tasks. |
factor analysis with spss: Introduction to Structural Equation Modelling Using SPSS and Amos Niels Blunch, 2012-06-21 Introduction to Structural Equation Modelling using SPSS and AMOS is a complete guide to carrying out your own structural equation modelling project. Assuming no previous experience of the subject, and a minimum of mathematical knowledge, this is the ideal guide for those new to structural equation modelling (SEM). Each chapter begins with learning objectives, and ends with a list of the new concepts introduced and questions to open up further discussion. Exercises for each chapter, incuding the necessary data, can be downloaded from the book′s website. Helpful real life examples are included throughout, drawing from a wide range of disciplines including psychology, political science, marketing and health. Introduction to Structural Equation Modelling using SPSS and AMOS provides engaging and accessible coverage of all the basics necessary for using SEM, making it an invaluable companion for students taking introductory SEM courses in any discipline. |
factor analysis with spss: SPSS Survival Manual Julie Pallant, 2020-07-16 The SPSS Survival Manual throws a lifeline to students and researchers grappling with this powerful data analysis software. In her bestselling manual, Julie Pallant guides you through the entire research process, helping you choose the right data analysis technique for your project. From the formulation of research questions, to the design of the study and analysis of data, to reporting the results, Julie discusses basic through to advanced statistical techniques. She outlines each technique clearly, providing step by step procedures for performing your analysis, a detailed guide to interpreting data output and examples of how to present your results in a report. For both beginners and experienced users in psychology, sociology, health sciences, medicine, education, business and related disciplines, the SPSS Survival Manual is an essential text. Illustrated with screen grabs, examples of output and tips, it is supported by a website with sample data and guidelines on report writing. This seventh edition is fully revised and updated to accommodate changes to IBM SPSS Statistics procedures, screens and output. 'An excellent introduction to using SPSS for data analysis. It provides a self-contained resource itself, with more than simply (detailed and clear) step-by-step descriptions of statistical procedures in SPSS. There is also a wealth of tips and advice, and for each statistical technique a brief, but consistently reliable, explanation is provided.' - Associate Professor George Dunbar, University of Warwick 'This book is recommended as ESSENTIAL to all students completing research projects - minor and major.' - Dr John Roodenburg, Monash University A website with support materials for students and lecturers is available at www.spss.allenandunwin.com |
factor analysis with spss: Data Analysis in Management with SPSS Software J.P. Verma, 2012-12-13 This book provides readers with a greater understanding of a variety of statistical techniques along with the procedure to use the most popular statistical software package SPSS. It strengthens the intuitive understanding of the material, thereby increasing the ability to successfully analyze data in the future. The book provides more control in the analysis of data so that readers can apply the techniques to a broader spectrum of research problems. This book focuses on providing readers with the knowledge and skills needed to carry out research in management, humanities, social and behavioural sciences by using SPSS. |
factor analysis with spss: Data Analysis with SPSS for Survey-based Research Saiyidi Mat Roni, Hadrian Geri Djajadikerta, 2021-06-21 This book is written for research students and early-career researchers to quickly and easily learn how to analyse data using SPSS. It follows commonly used logical steps in data analysis design for research. The book features SPSS screenshots to assist rapid acquisition of the techniques required to process their research data. Rather than using a conventional writing style to discuss fundamentals of statistics, this book focuses directly on the technical aspects of using SPSS to analyse data. This approach allows researchers and research students to spend more time on interpretations and discussions of SPSS outputs, rather than on the mundane task of actually processing their data. |
factor analysis with spss: Discovering Statistics Using R Andy Field, Jeremy Miles, Zoë Field, 2012-03-07 Keeping the uniquely humorous and self-deprecating style that has made students across the world fall in love with Andy Field′s books, Discovering Statistics Using R takes students on a journey of statistical discovery using R, a free, flexible and dynamically changing software tool for data analysis that is becoming increasingly popular across the social and behavioural sciences throughout the world. The journey begins by explaining basic statistical and research concepts before a guided tour of the R software environment. Next you discover the importance of exploring and graphing data, before moving onto statistical tests that are the foundations of the rest of the book (for example correlation and regression). You will then stride confidently into intermediate level analyses such as ANOVA, before ending your journey with advanced techniques such as MANOVA and multilevel models. Although there is enough theory to help you gain the necessary conceptual understanding of what you′re doing, the emphasis is on applying what you learn to playful and real-world examples that should make the experience more fun than you might expect. Like its sister textbooks, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is augmented by a cast of characters to help the reader on their way, together with hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more. Given this book′s accessibility, fun spirit, and use of bizarre real-world research it should be essential for anyone wanting to learn about statistics using the freely-available R software. |
factor analysis with spss: Using SPSS for Windows Susan B. Gerber, Kristin Voelkl Finn, 2006-01-27 The second edition of this popular guide demonstrates the process of entering and analyzing data using the latest version of SPSS (12.0), and is also appropriate for those using earlier versions of SPSS. The book is easy to follow because all procedures are outlined in a step-by-step format designed for the novice user. Students are introduced to the rationale of statistical tests and detailed explanations of results are given through clearly annotated examples of SPSS output. Topics covered range from descriptive statistics through multiple regression analysis. In addition, this guide includes topics not typically covered in other books such as probability theory, interaction effects in analysis of variance, factor analysis, and scale reliability. Chapter exercises reinforce the text examples and may be performed for further practice, for homework assignments, or in computer laboratory sessions. This book can be used in two ways: as a stand-alone manual for students wishing to learn data analysis techniques using SPSS for Windows, or in research and statistics courses to be used with a basic statistics text. The book provides hands-on experience with actual data sets, helps students choose appropriate statistical tests, illustrates the meaning of results, and provides exercises to be completed for further practice or as homework assignments. Susan B. Gerber, Ph.D. is Research Assistant Professor of Education at State University of New York at Buffalo. She is director of the Educational Technology program and holds degrees in Statistics and Educational Psychology. Kristin Voelkl Finn, Ph.D. is Assistant Professor of Education at Canisius College. She teaches graduate courses in research methodology and conducts research on adolescent problem behavior. |
factor analysis with spss: Interpreting Quantitative Data with SPSS Rachad Antonius, 2003-01-22 This is a textbook for introductory courses in quantitative research methods across the social sciences. It offers a detailed explanation of introductory statistical techniques and presents an overview of the contexts in which they should be applied. |
factor analysis with spss: Exploratory Factor Analysis W. Holmes Finch, 2019-09-05 A firm knowledge of factor analysis is key to understanding much published research in the social and behavioral sciences. Exploratory Factor Analysis by W. Holmes Finch provides a solid foundation in exploratory factor analysis (EFA), which along with confirmatory factor analysis, represents one of the two major strands in this field. The book lays out the mathematical foundations of EFA; explores the range of methods for extracting the initial factor structure; explains factor rotation; and outlines the methods for determining the number of factors to retain in EFA. The concluding chapter addresses a number of other key issues in EFA, such as determining the appropriate sample size for a given research problem, and the handling of missing data. It also offers brief introductions to exploratory structural equation modeling, and multilevel models for EFA. Example computer code, and the annotated output for all of the examples included in the text are available on an accompanying website. |
factor analysis with spss: Discovering Statistics Using IBM SPSS Statistics Andy Field, 2017-11-03 With an exciting new look, math diagnostic tool, and a research roadmap to navigate projects, this new edition of Andy Field’s award-winning text offers a unique combination of humor and step-by-step instruction to make learning statistics compelling and accessible to even the most anxious of students. The Fifth Edition takes students from initial theory to regression, factor analysis, and multilevel modeling, fully incorporating IBM SPSS Statistics© version 25 and fascinating examples throughout. SAGE edge offers a robust online environment featuring an impressive array of free tools and resources for review, study, and further exploration, keeping both instructors and students on the cutting edge of teaching and learning. Course cartridges available for Blackboard, Canvas, and Moodle. Andy Field is the award winning author of An Adventure in Statistics: The Reality Enigma and is the recipient of the UK National Teaching Fellowship (2010), British Psychological Society book award (2006), and has been recognized with local and national teaching awards (University of Sussex, 2015, 2016). |
factor analysis with spss: SPSS 12 Made Simple Paul Kinnear, Colin Gray, 2006-02-06 SPSS 12 Made Simple provides a step-by-step coverage of every aspect of data analysis with SPSS from data entry to interpretation of the output. As well as advice on data entry and checking, there is guidance on the best ways of describing a data set and the choice of an appropriate statistical technique. Finally, the output is fully explained, with reference to fully annotated SPSS output. Extensive illustrations show exactly what is on the screen at every stage of the process, helping the reader to avoid common pitfalls and check their progress along the way. Most chapters end with practical exercises to illustrate the main points raised and allow the reader to test their understanding; but there is a final general revision section with further exercises on a range of topics. In view of the recommendations of the American Psychological Association, the book now contains advice on strength of effect, power and sample size. There is also guidance on how to report the results of statistical tests in journal articles. This new edition is written with the same clarity that has made the book such a success in the past. The initial chapters provide an introduction to the basics of SPSS, such as data entry, followed by more advanced techniques, such as sorting, case selection, aggregation and file merging. In these early chapters, the emphasis is upon checking the accuracy of data entry and exploring the data thoroughly before making any formal statistical tests. There is also extensive coverage of the powerful new graphics capabilities of SPSS 12. Each of the later chapters is devoted to a particular statistical technique. SPSS 12 Made Simple: *Covers a wide range of statistical tests including t-tests, ANOVA, correlation, regression, multi-way frequency analysis, discriminant analysis, logistic regression and factor analysis. *Shows you how to get as much out of your data as possible. *Gives advice (with appropriate cautions and caveats) on choosing a statistical test. *Makes extensive use of annotated screen snapshots of SPSS output, windows and dialog boxes. *Includes both chapter-specific and general exercises. *Has a comprehensive index. |
factor analysis with spss: Levine's Guide to SPSS for Analysis of Variance Gustav Levine, Melanie C. Page, Sanford L. Braver, David Peter MacKinnon, 2003 Accompanying CD-ROM contains ... all of the book's data sets as well as exercises for each chapter.--Page 4 of cover. |
factor analysis with spss: A Concise Guide to Market Research Marko Sarstedt, Erik Mooi, 2014-08-07 This accessible, practice-oriented and compact text provides a hands-on introduction to market research. Using the market research process as a framework, it explains how to collect and describe data and presents the most important and frequently used quantitative analysis techniques, such as ANOVA, regression analysis, factor analysis and cluster analysis. The book describes the theoretical choices a market researcher has to make with regard to each technique, discusses how these are converted into actions in IBM SPSS version 22 and how to interpret the output. Each chapter concludes with a case study that illustrates the process using real-world data. A comprehensive Web appendix includes additional analysis techniques, datasets, video files and case studies. Tags in the text allow readers to quickly access Web content with their mobile device. The new edition features: Stronger emphasis on the gathering and analysis of secondary data (e.g., internet and social networking data) New material on data description (e.g., outlier detection and missing value analysis) Improved use of educational elements such as learning objectives, keywords, self-assessment tests, case studies, and much more Streamlined and simplified coverage of the data analysis techniques with more rules-of-thumb Uses IBM SPSS version 22 |
factor analysis with spss: Data Analysis Using SPSS for Windows - Version 6 Jeremy J Foster, 1998 This text is designed to teach beginners how to use SPSS for Windows. The author explains the basics of SPSS, including: the input of data; data manipulation; descriptive analyses; and inferential techniques. T-tests, analysis of variance, and factor analysis are also covered. |
factor analysis with spss: IBM SPSS for Introductory Statistics George A. Morgan, Nancy L. Leech, Gene W. Gloeckner, Karen C. Barrett, 2012-09-10 Designed to help students analyze and interpret research data using IBM SPSS, this user-friendly book, written in easy-to-understand language, shows readers how to choose the appropriate statistic based on the design, and to interpret outputs appropriately. The authors prepare readers for all of the steps in the research process: design, entering and checking data, testing assumptions, assessing reliability and validity, computing descriptive and inferential parametric and nonparametric statistics, and writing about outputs. Dialog windows and SPSS syntax, along with the output, are provided. Three realistic data sets, available on the Internet, are used to solve the chapter problems. The new edition features: Updated to IBM SPSS version 20 but the book can also be used with older and newer versions of SPSS. A new chapter (7) including an introduction to Cronbach’s alpha and factor analysis. Updated Web Resources with PowerPoint slides, additional activities/suggestions, and the answers to even-numbered interpretation questions for the instructors, and chapter study guides and outlines and extra SPSS problems for the students. The web resource is located www.routledge.com/9781848729827 . Students, instructors, and individual purchasers can access the data files to accompany the book at www.routledge.com/9781848729827 . IBM SPSS for Introductory Statistics, Fifth Edition provides helpful teaching tools: All of the key IBM SPSS windows needed to perform the analyses. Complete outputs with call-out boxes to highlight key points. Flowcharts and tables to help select appropriate statistics and interpret effect sizes. Interpretation sections and questions help students better understand and interpret the output. Assignments organized the way students proceed when they conduct a research project. Examples of how to write about outputs and make tables in APA format. Helpful appendices on how to get started with SPSS and write research questions. An ideal supplement for courses in either statistics, research methods, or any course in which SPSS is used, such as in departments of psychology, education, and other social and health sciences. This book is also appreciated by researchers interested in using SPSS for their data analysis. |
factor analysis with spss: Confirmatory Factor Analysis for Applied Research, Second Edition Timothy A. Brown, 2015-01-07 This accessible book has established itself as the go-to resource on confirmatory factor analysis (CFA) for its emphasis on practical and conceptual aspects rather than mathematics or formulas. Detailed, worked-through examples drawn from psychology, management, and sociology studies illustrate the procedures, pitfalls, and extensions of CFA methodology. The text shows how to formulate, program, and interpret CFA models using popular latent variable software packages (LISREL, Mplus, EQS, SAS/CALIS); understand the similarities ... |
factor analysis with spss: Making Sense of Factor Analysis Marjorie A. Pett, Nancy R. Lackey, John J. Sullivan, 2003-03-21 Many health care practitioners and researchers are aware of the need to employ factor analysis in order to develop more sensitive instruments for data collection. Unfortunately, factor analysis is not a unidimensional approach that is easily understood by even the most experienced of researchers. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research presents a straightforward explanation of the complex statistical procedures involved in factor analysis. Authors Marjorie A. Pett, Nancy M. Lackey, and John J. Sullivan provide a step-by-step approach to analyzing data using statistical computer packages like SPSS and SAS. Emphasizing the interrelationship between factor analysis and test construction, the authors examine numerous practical and theoretical decisions that must be made to efficiently run and accurately interpret the outcomes of these sophisticated computer programs. This accessible volume will help both novice and experienced health care professionals to Increase their knowledge of the use of factor analysis in health care research Understand journal articles that report the use of factor analysis in test construction and instrument development Create new data collection instruments Examine the reliability and structure of existing health care instruments Interpret and report computer-generated output from a factor analysis run Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research offers a practical method for developing tests, validating instruments, and reporting outcomes through the use of factor analysis. To facilitate learning, the authors provide concrete testing examples, three appendices of additional information, and a glossary of key terms. Ideal for graduate level nursing students, this book is also an invaluable resource for health care researchers. |
factor analysis with spss: Using IBM SPSS Statistics James O. Aldrich, 2018-08-29 Now with a new companion website! Using IBM® SPSS® Statistics: An Interactive Hands-On Approach, Third Edition gives readers an accessible and comprehensive guide to walking through SPSS®, providing them with step-by-step knowledge for effectively analyzing their data. From entering data to working with existing databases, and working with the help menu through performing factor analysis, Using IBM® SPSS® Statistics covers every aspect of SPSS® from introductory through intermediate statistics. The book is divided into parts that focus on mastering SPSS® basics, dealing with univariate statistics and graphing, inferential statistics, relational statistics, and more. Written using IBM® SPSS® version 25 and 24, and compatible with the earlier releases, this book is one of the most comprehensive SPSS® guides available. Bundle Using IBM® SPSS® Statistics: An Interactive Hands-On Approach with SAGE IBM® SPSS® Statistics v24.0 Student Version and SAVE! – Bundle ISBN: 978-1-5443-5071-4 |
factor analysis with spss: A Step-by-Step Guide to Exploratory Factor Analysis with SPSS Marley W. Watkins, 2021-06-21 This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using SPSS. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots and code from SPSS and recommends evidence-based best-practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon to help facilitate grasp of the key issues users will face while applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper-level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences. |
factor analysis with spss: A Conceptual Guide to Statistics Using SPSS Elliot T. Berkman, Steven P. Reise, 2012 This book helps students develop a conceptual understanding of a variety of statistical tests by linking the statistics with the computational steps and output from SPSS. Learning how statistical ideas map onto computation in SPSS will help students build a better understanding of both. For example, seeing exactly how the concept of variance is used in SPSS-how it is converted into a number based on real data, which other concepts it is associated with, and where it appears in various statistical tests-will not only help students understand how to use statistical tests in SPSS and how to interpret their output, but will also teach them about the concept of variance itself. Each chapter begins with a student-friendly explanation of the concept behind each statistical test and how the test relates to that concept. The authors then walk through the steps to compute the test in SPSS and the output, pointing out wherever possible how the SPSS procedure and output connects back to the conceptual underpinnings of the test. Each of the steps is accompanied by annotated screen shots from SPSS, and relevant components of output are highlighted in both the text and in the figures. Sections explain the conceptual machinery underlying the statistical tests. In contrast to merely presenting the equations for computing the statistic, these sections describe the idea behind each test in plain language and help students make the connection between the ideas and SPSS procedures. These include extensive treatment of custom hypothesis testing in ANOVA, MANOVA, ANCOVA, and regression, and an entire chapter on the advanced matrix algebra functions available only through syntax in SPSS. The book will be appropriate for both advanced undergraduate and graduate level courses in statistics. |
factor analysis with spss: MULTIVARIATE DATA ANALYSIS R. Shanthi, 2019-06-10 Multivariate Data Analysis Introduction to SPSS Outliers Normality Test of Linearity Data Transformation Bootstrapping Homoscedasticity Introduction to IBM SPSS – AMOS Multivariate Analysis of Variance (MANOVA) One Way Manova in SPSS Multiple Regression Analysis Binary Logistic Regression Factor Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Cluster Analysis K - Mean Cluster Analysis Hierarchical Cluster Analysis Discriminant Analysis Correspondence Analysis Multidimensional Scaling Example - Multidimensional Scaling (ALSCAL) Neural Network Decision Trees Path Analysis Structural Equation Modeling Canonical Correlation |
factor analysis with spss: SPSS Statistics for Data Analysis and Visualization Keith McCormick, Jesus Salcedo, 2017-05-01 Dive deeper into SPSS Statistics for more efficient, accurate, and sophisticated data analysis and visualization SPSS Statistics for Data Analysis and Visualization goes beyond the basics of SPSS Statistics to show you advanced techniques that exploit the full capabilities of SPSS. The authors explain when and why to use each technique, and then walk you through the execution with a pragmatic, nuts and bolts example. Coverage includes extensive, in-depth discussion of advanced statistical techniques, data visualization, predictive analytics, and SPSS programming, including automation and integration with other languages like R and Python. You'll learn the best methods to power through an analysis, with more efficient, elegant, and accurate code. IBM SPSS Statistics is complex: true mastery requires a deep understanding of statistical theory, the user interface, and programming. Most users don't encounter all of the methods SPSS offers, leaving many little-known modules undiscovered. This book walks you through tools you may have never noticed, and shows you how they can be used to streamline your workflow and enable you to produce more accurate results. Conduct a more efficient and accurate analysis Display complex relationships and create better visualizations Model complex interactions and master predictive analytics Integrate R and Python with SPSS Statistics for more efficient, more powerful code These hidden tools can help you produce charts that simply wouldn't be possible any other way, and the support for other programming languages gives you better options for solving complex problems. If you're ready to take advantage of everything this powerful software package has to offer, SPSS Statistics for Data Analysis and Visualization is the expert-led training you need. |
factor analysis with spss: Performing Data Analysis Using IBM SPSS Lawrence S. Meyers, Glenn C. Gamst, A. J. Guarino, 2013-08-12 Features easy-to-follow insight and clear guidelines to perform data analysis using IBM SPSS® Performing Data Analysis Using IBM SPSS® uniquely addresses the presented statistical procedures with an example problem, detailed analysis, and the related data sets. Data entry procedures, variable naming, and step-by-step instructions for all analyses are provided in addition to IBM SPSS point-and-click methods, including details on how to view and manipulate output. Designed as a user’s guide for students and other interested readers to perform statistical data analysis with IBM SPSS, this book addresses the needs, level of sophistication, and interest in introductory statistical methodology on the part of readers in social and behavioral science, business, health-related, and education programs. Each chapter of Performing Data Analysis Using IBM SPSS covers a particular statistical procedure and offers the following: an example problem or analysis goal, together with a data set; IBM SPSS analysis with step-by-step analysis setup and accompanying screen shots; and IBM SPSS output with screen shots and narrative on how to read or interpret the results of the analysis. The book provides in-depth chapter coverage of: IBM SPSS statistical output Descriptive statistics procedures Score distribution assumption evaluations Bivariate correlation Regressing (predicting) quantitative and categorical variables Survival analysis t Test ANOVA and ANCOVA Multivariate group differences Multidimensional scaling Cluster analysis Nonparametric procedures for frequency data Performing Data Analysis Using IBM SPSS is an excellent text for upper-undergraduate and graduate-level students in courses on social, behavioral, and health sciences as well as secondary education, research design, and statistics. Also an excellent reference, the book is ideal for professionals and researchers in the social, behavioral, and health sciences; applied statisticians; and practitioners working in industry. |
factor analysis with spss: Quantitative Data Analysis with IBM SPSS 17, 18 & 19 Alan Bryman, Duncan Cramer, 2012-08-21 This latest edition has been fully updated to accommodate the needs of users of SPSS Releases 17, 18 and 19 while still being applicable to users of SPSS Releases 15 and 16. As with previous editions, Alan Bryman and Duncan Cramer continue to offer a comprehensive and user-friendly introduction to the widely used IBM SPSS Statistics. The simple, non-technical approach to quantitative data analysis enables the reader to quickly become familiar with SPSS and with the tests available to them. No previous experience of statistics or computing is required as this book provides a step-by-step guide to statistical techniques, including: Non-parametric tests Correlation Simple and multiple regression Analysis of variance and covariance Factor analysis. This book comes equipped with a comprehensive range of exercises for further practice, and it covers key issues such as sampling, statistical inference, conceptualization and measurement and selection of appropriate tests. The authors have also included a helpful glossary of key terms. The data sets used in Quantitative Data Analysis with IBM SPSS 17, 18 and 19 are available online at http://www.routledgetextbooks.com/textbooks/_author/bryman-9780415579193/; in addition, a set of multiple-choice questions and a chapter-by-chapter PowerPoint lecture course are available free of charge to lecturers who adopt the book. |
factor analysis with spss: IBM SPSS Statistics 25 Step by Step Darren George, Paul Mallery, 2018-10-16 IBM SPSS Statistics 25 Step by Step: A Simple Guide and Reference, fifteenth edition, takes a straightforward, step-by-step approach that makes SPSS software clear to beginners and experienced researchers alike. Extensive use of four-color screen shots, clear writing, and step-by-step boxes guide readers through the program. Exercises at the end of each chapter support students by providing additional opportunities to practice using SPSS. This book covers both the basics of descriptive statistical analysis using SPSS through to more advanced topics such as multiple regression, multidimensional scaling and MANOVA, including instructions for Windows and Mac. This makes it ideal for both undergraduate statistics courses and for postgraduates looking to further develop their statistics and SPSS knowledge. New to this edition: Updated throughout to SPSS 25 Updated / restructured material on: Chart Builder; Univariate ANOVA; moderation on two- and three-way ANOVA; and Factor Analytic Techniques (formerly Factor Analysis structure) New material on computing z and T scores, and on computing z scores within descriptive statistics Clearer in-chapter links between the type of data and type of research question that the procedure can answer Updated / additional datasets, exercises, and expanded Companion Website material, including Powerpoint slides for instructors |
factor analysis with spss: Handbook of Univariate and Multivariate Data Analysis with IBM SPSS Robert Ho, 2013-10-25 Using the same accessible, hands-on approach as its best-selling predecessor, the Handbook of Univariate and Multivariate Data Analysis with IBM SPSS, Second Edition explains how to apply statistical tests to experimental findings, identify the assumptions underlying the tests, and interpret the findings. This second edition now covers more topics |
factor analysis with spss: Factor Analysis as a Statistical Method D. N. Lawley, Albert Ernest Maxwell, 1971 |
factor analysis with spss: SPSS for Applied Sciences Cole Davis, 2013-08-15 This book offers a quick and basic guide to using SPSS and provides a general approach to solving problems using statistical tests. It is both comprehensive in terms of the tests covered and the applied settings it refers to, and yet is short and easy to understand. Whether you are a beginner or an intermediate level test user, this book will help you to analyse different types of data in applied settings. It will also give you the confidence to use other statistical software and to extend your expertise to more specific scientific settings as required. The author does not use mathematical formulae and leaves out arcane statistical concepts. Instead, he provides a very practical, easy and speedy introduction to data analysis, offering examples from a range of scenarios from applied science, handling both continuous and rough-hewn data sets. Examples are given from agriculture, arboriculture, biology, computer science, ecology, engineering, farming and farm management, hydrology, medicine, ophthalmology, pharmacology, physiotherapy, spectroscopy, sports science, audiology and epidemiology. |
factor analysis with spss: SPSS Explained Perry R. Hinton, Isabella McMurray, Charlotte Brownlow, 2014-03-21 SPSS Explained provides the student with all that they need to undertake statistical analysis using SPSS. It combines a step-by-step approach to each procedure with easy to follow screenshots at each stage of the process. A number of other helpful features are provided: regular advice boxes with tips specific to each test explanations divided into ‘essential’ and ‘advanced’ sections to suit readers at different levels frequently asked questions at the end of each chapter. The first edition of this popular book has been fully updated for IBM SPSS version 21 and also includes: chapters that explain bootstrapping and how this is used an introduction to binary logistic regression coverage of new features such as Chart Builder. Presented in full colour and with a fresh, reader-friendly layout, this fully updated new edition also comes with a companion website featuring an array of supplementary resources for students. The authors have many years of experience in teaching SPSS to students from a wide range of disciplines. Their understanding of SPSS users’ concerns, as well as a knowledge of the type of questions students ask, form the foundation of this book. Minimal prior knowledge is assumed, so the book is well designed for the novice user, but it will also be a useful reference source for those developing their own expertise in SPSS. It is suitable for all students who need to do statistical analysis using SPSS in various departments including Psychology, Social Science, Business Studies, Nursing, Education, Health and Sport Science, Communication and Media, Geography, and Biology. |
factor analysis with spss: Applied Statistics Using SPSS, STATISTICA and MATLAB Joaquim P. Marques de Sá, 2013-03-09 Assuming no previous statistics education, this practical reference provides a comprehensive introduction and tutorial on the main statistical analysis topics, demonstrating their solution with the most common software package. Intended for anyone needing to apply statistical analysis to a large variety of science and enigineering problems, the book explains and shows how to use SPSS, MATLAB, STATISTICA and R for analysis such as data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. It concisely explains key concepts and methods, illustrated by practical examples using real data, and includes a CD-ROM with software tools and data sets used in the examples and exercises. Readers learn which software tools to apply and also gain insights into the comparative capabilities of the primary software packages. |
factor analysis with spss: Modern Psychometrics with R Patrick Mair, 2018-09-20 This textbook describes the broadening methodology spectrum of psychological measurement in order to meet the statistical needs of a modern psychologist. The way statistics is used, and maybe even perceived, in psychology has drastically changed over the last few years; computationally as well as methodologically. R has taken the field of psychology by storm, to the point that it can now safely be considered the lingua franca for statistical data analysis in psychology. The goal of this book is to give the reader a starting point when analyzing data using a particular method, including advanced versions, and to hopefully motivate him or her to delve deeper into additional literature on the method. Beginning with one of the oldest psychometric model formulations, the true score model, Mair devotes the early chapters to exploring confirmatory factor analysis, modern test theory, and a sequence of multivariate exploratory method. Subsequent chapters present special techniques useful for modern psychological applications including correlation networks, sophisticated parametric clustering techniques, longitudinal measurements on a single participant, and functional magnetic resonance imaging (fMRI) data. In addition to using real-life data sets to demonstrate each method, the book also reports each method in three parts-- first describing when and why to apply it, then how to compute the method in R, and finally how to present, visualize, and interpret the results. Requiring a basic knowledge of statistical methods and R software, but written in a casual tone, this text is ideal for graduate students in psychology. Relevant courses include methods of scaling, latent variable modeling, psychometrics for graduate students in Psychology, and multivariate methods in the social sciences. |
FACTOR - LinkedIn
Since our inception in 1979, FACTOR® has been committed to providing companies in the petroleum marketing and convenience store industries with proven industry-leading software, process ...
FACTOR, INC. - LinkedIn
Formerly named Visual Risk Technologies, FACTOR has been solving challenging risk management problems in the transportation, energy, chemical, insurance, and public sectors since 1997.
Factor Corp - LinkedIn
Developing Futures, Building Today | Factor Corp is at the forefront of property development and construction, crafting innovative spaces that elevate lifestyles and set new benchmarks in quality.
FACTOR GROUP LLC - LinkedIn
Factor Group is proud to have been named one of Florida’s Best Companies to Work For in 2009. We have a team of over 150 employees and offices in the United States and Latin America.
Factor - LinkedIn
Factor | 1,416 followers on LinkedIn. Unlocking the hidden insights that enable marketing leaders to make trusted decisions and drive success. | Factor is your go-to data librarian.
Factor Fellowship - LinkedIn
The Factor Fellowship connects New York’s diverse high-performing emerging leaders to careers in startups. | Built by NYC VCs and startups, Factor connects top talent to startup careers.
Factor San Francisco - LinkedIn
Factor makes the internet beautiful. And businesses more profitable. We're a results-driven creative agency, with fully-remote talent working across the US and Canada.
FACTOR - LinkedIn
Since our inception in 1979, FACTOR® has been committed to providing companies in the petroleum marketing and convenience store industries with proven industry-leading software, process ...
FACTOR, INC. - LinkedIn
Formerly named Visual Risk Technologies, FACTOR has been solving challenging risk management problems in the transportation, energy, chemical, insurance, and public sectors since 1997.
Factor Corp - LinkedIn
Developing Futures, Building Today | Factor Corp is at the forefront of property development and construction, crafting innovative spaces that elevate lifestyles and set new benchmarks in quality.
FACTOR GROUP LLC - LinkedIn
Factor Group is proud to have been named one of Florida’s Best Companies to Work For in 2009. We have a team of over 150 employees and offices in the United States and Latin America.
Factor - LinkedIn
Factor | 1,416 followers on LinkedIn. Unlocking the hidden insights that enable marketing leaders to make trusted decisions and drive success. | Factor is your go-to data librarian.
Factor Fellowship - LinkedIn
The Factor Fellowship connects New York’s diverse high-performing emerging leaders to careers in startups. | Built by NYC VCs and startups, Factor connects top talent to startup careers.
Factor San Francisco - LinkedIn
Factor makes the internet beautiful. And businesses more profitable. We're a results-driven creative agency, with fully-remote talent working across the US and Canada.