Finance And Computer Science

Advertisement



  finance and computer science: Financial Software Engineering Kevin Lano, Howard Haughton, 2019-05-02 In this textbook the authors introduce the important concepts of the financial software domain, and motivate the use of an agile software engineering approach for the development of financial software. They describe the role of software in defining financial models and in computing results from these models. Practical examples from bond pricing, yield curve estimation, share price analysis and valuation of derivative securities are given to illustrate the process of financial software engineering. Financial Software Engineering also includes a number of case studies based on typical financial engineering problems: *Internal rate of return calculation for bonds * Macaulay duration calculation for bonds * Bootstrapping of interest rates * Estimation of share price volatility * Technical analysis of share prices * Re-engineering Matlab to C# * Yield curve estimation * Derivative security pricing * Risk analysis of CDOs The book is suitable for undergraduate and postgraduate study, and for practitioners who wish to extend their knowledge of software engineering techniques for financial applications
  finance and computer science: Computational Finance Argimiro Arratia, 2014-05-08 The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands-on examples for programming models in R. Thus, the first chapter gives an introduction to the Principles of Corporate Finance: the markets of stock and options, valuation and economic theory, framed within Computation and Information Theory (e.g. the famous Efficient Market Hypothesis is stated in terms of computational complexity, a new perspective). Chapters 2 and 3 give the necessary tools of Statistics for analyzing financial time series, it also goes in depth into the concepts of correlation, causality and clustering. Chapters 4 and 5 review the most important discrete and continuous models for financial time series. Each model is provided with an example program in R. Chapter 6 covers the essentials of Technical Analysis (TA) and Fundamental Analysis. This chapter is suitable for people outside academics and into the world of financial investments, as a primer in the methods of charting and analysis of value for stocks, as it is done in the financial industry. Moreover, a mathematical foundation to the seemly ad-hoc methods of TA is given, and this is new in a presentation of TA. Chapter 7 reviews the most important heuristics for optimization: simulated annealing, genetic programming, and ant colonies (swarm intelligence) which is material to feed the computer savvy readers. Chapter 8 gives the basic principles of portfolio management, through the mean-variance model, and optimization under different constraints which is a topic of current research in computation, due to its complexity. One important aspect of this chapter is that it teaches how to use the powerful tools for portfolio analysis from the RMetrics R-package. Chapter 9 is a natural continuation of chapter 8 into the new area of research of online portfolio selection. The basic model of the universal portfolio of Cover and approximate methods to compute are also described.
  finance and computer science: Python for Finance Yves J. Hilpisch, 2018-12-05 The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
  finance and computer science: Machine Learning for Financial Engineering György Ottucsák, Harro Walk, 2012 Preface v 1 On the History of the Growth-Optimal Portfolio M.M. Christensen 1 2 Empirical Log-Optimal Portfolio Selections: A Survey L. Györfi Gy. Ottucsáak A. Urbán 81 3 Log-Optimal Portfolio-Selection Strategies with Proportional Transaction Costs L. Györfi H. Walk 119 4 Growth-Optimal Portfoho Selection with Short Selling and Leverage M. Horváth A. Urbán 153 5 Nonparametric Sequential Prediction of Stationary Time Series L. Györfi Gy. Ottucsák 179 6 Empirical Pricing American Put Options L. Györfi A. Telcs 227 Index 249.
  finance and computer science: High-Performance Computing in Finance M. A. H. Dempster, Juho Kanniainen, John Keane, Erik Vynckier, 2018-02-21 High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.
  finance and computer science: Fintech For Finance Professionals David Kuo Chuen Lee, Joseph Lim, Kok Fai Phoon, Yu Wang, 2021-11-29 As technologies such as artificial intelligence, big data, cloud computing, and blockchain have been applied to various areas in finance, there is an increasing demand for finance professionals with the skills and knowledge related to fintech. Knowledge of the technologies involved and finance concepts is crucial for the finance professional to understand the architecture of technologies as well as how they can be applied to solve various aspects of finance.This book covers the main concepts and theories of the technologies in fintech which consist of big data, data science, artificial intelligence, data structure and algorithm, computer network, network security, and Python programming. Fintech for Finance Professionals is a companion volume to the book on finance that covers the fundamental concepts in the field. Together, these two books form the foundation for a good understanding of finance and fintech applications which will be covered in subsequent volumes.Bundle set: Global Fintech Institute-Chartered Fintech Professional Set I
  finance and computer science: Computational Finance 1999 Yaser S. Abu-Mostafa, 2000 This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. Computational finance, an exciting new cross-disciplinary research area, draws extensively on the tools and techniques of computer science, statistics, information systems, and financial economics. This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. These methods are applied to a wide range of problems in finance, including risk management, asset allocation, style analysis, dynamic trading and hedging, forecasting, and option pricing. The book is based on the sixth annual international conference Computational Finance 1999, held at New York University's Stern School of Business.
  finance and computer science: A Primer for the Mathematics of Financial Engineering Dan Stefanica, 2011
  finance and computer science: Data Science for Economics and Finance Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana, 2021 This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
  finance and computer science: Practical C++ Financial Programming Carlos Oliveira, 2015-03-12 Practical C++ Financial Programming is a hands-on book for programmers wanting to apply C++ to programming problems in the financial industry. The book explains those aspects of the language that are more frequently used in writing financial software, including the STL, templates, and various numerical libraries. The book also describes many of the important problems in financial engineering that are part of the day-to-day work of financial programmers in large investment banks and hedge funds. The author has extensive experience in the New York City financial industry that is now distilled into this handy guide. Focus is on providing working solutions for common programming problems. Examples are plentiful and provide value in the form of ready-to-use solutions that you can immediately apply in your day-to-day work. You’ll learn to design efficient, numerical classes for use in finance, as well as to use those classes provided by Boost and other libraries. You’ll see examples of matrix manipulations, curve fitting, histogram generation, numerical integration, and differential equation analysis, and you’ll learn how all these techniques can be applied to some of the most common areas of financial software development. These areas include performance price forecasting, optimizing investment portfolios, and more. The book style is quick and to-the-point, delivering a refreshing view of what one needs to master in order to thrive as a C++ programmer in the financial industry. Covers aspects of C++ especially relevant to financial programming. Provides working solutions to commonly-encountered problems in finance. Delivers in a refreshing and easy style with a strong focus on the practical.
  finance and computer science: Python for Finance Yves Hilpisch, 2014-12-11 The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies
  finance and computer science: Stochastic Processes in Science, Engineering and Finance Frank Beichelt, 2006-02-22 This book presents a self-contained introduction to stochastic processes with emphasis on their applications in science, engineering, finance, computer science, and operations research. It provides theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates their application by analyzing numerous practical examples. The treatment assumes few prerequisites, requiring only the standard mathematical maturity acquired by undergraduate applied science students. It includes an introductory chapter that summarizes the basic probability theory needed as background. Numerous exercises reinforce the concepts and techniques discussed and allow readers to assess their grasp of the subject. Solutions to most of the exercises are provided in an appendix. While focused primarily on practical aspects, the presentation includes some important proofs along with more challenging examples and exercises for those more theoretically inclined. Mastering the contents of this book prepares readers to apply stochastic modeling in their own fields and enables them to work more creatively with software designed for dealing with the data analysis aspects of stochastic processes.
  finance and computer science: Data Science and Intelligent Systems Radek Silhavy, Petr Silhavy, Zdenka Prokopova, 2021-11-16 This book constitutes the second part of refereed proceedings of the 5th Computational Methods in Systems and Software 2021 (CoMeSySo 2021) proceedings. The real-world problems related to data science and algorithm design related to systems and software engineering are presented in this papers. Furthermore, the basic research’ papers that describe novel approaches in the data science, algorithm design and in systems and software engineering are included. The CoMeSySo 2021 conference is breaking the barriers, being held online. CoMeSySo 2021 intends to provide an international forum for the discussion of the latest high-quality research results
  finance and computer science: Financial Engineering and Computation Yuh-Dauh Lyuu, 2002 A comprehensive text and reference, first published in 2002, on the theory of financial engineering with numerous algorithms for pricing, risk management, and portfolio management.
  finance and computer science: Information And Complexity Mark Burgin, Cristian S Calude, 2016-11-28 The book is a collection of papers of experts in the fields of information and complexity. Information is a basic structure of the world, while complexity is a fundamental property of systems and processes. There are intrinsic relations between information and complexity.The research in information theory, the theory of complexity and their interrelations is very active. The book will expand knowledge on information, complexity and their relations representing the most recent and advanced studies and achievements in this area.The goal of the book is to present the topic from different perspectives — mathematical, informational, philosophical, methodological, etc.
  finance and computer science: Big Data Science in Finance Irene Aldridge, Marco Avellaneda, 2021-01-08 Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) Covers vital topics in the field in a clear, straightforward manner Compares, contrasts, and discusses Big Data and Small Data Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.
  finance and computer science: The Ultimate Algorithmic Trading System Toolbox + Website George Pruitt, 2016-06-20 The accessible, beneficial guide to developing algorithmic trading solutions The Ultimate Algorithmic Trading System Toolbox is the complete package savvy investors have been looking for. An integration of explanation and tutorial, this guide takes you from utter novice to out-the-door trading solution as you learn the tools and techniques of the trade. You'll explore the broad spectrum of today's technological offerings, and use several to develop trading ideas using the provided source code and the author's own library, and get practical advice on popular software packages including TradeStation, TradersStudio, MultiCharts, Excel, and more. You'll stop making repetitive mistakes as you learn to recognize which paths you should not go down, and you'll discover that you don't need to be a programmer to take advantage of the latest technology. The companion website provides up-to-date TradeStation code, Excel spreadsheets, and instructional video, and gives you access to the author himself to help you interpret and implement the included algorithms. Algorithmic system trading isn't really all that new, but the technology that lets you program, evaluate, and implement trading ideas is rapidly evolving. This book helps you take advantage of these new capabilities to develop the trading solution you've been looking for. Exploit trading technology without a computer science degree Evaluate different trading systems' strengths and weaknesses Stop making the same trading mistakes over and over again Develop a complete trading solution using provided source code and libraries New technology has enabled the average trader to easily implement their ideas at very low cost, breathing new life into systems that were once not viable. If you're ready to take advantage of the new trading environment but don't know where to start, The Ultimate Algorithmic Trading System Toolbox will help you get on board quickly and easily.
  finance and computer science: Introduction to C++ for Financial Engineers Daniel J. Duffy, 2013-10-24 This book introduces the reader to the C++ programming language and how to use it to write applications in quantitative finance (QF) and related areas. No previous knowledge of C or C++ is required -- experience with VBA, Matlab or other programming language is sufficient. The book adopts an incremental approach; starting from basic principles then moving on to advanced complex techniques and then to real-life applications in financial engineering. There are five major parts in the book: C++ fundamentals and object-oriented thinking in QF Advanced object-oriented features such as inheritance and polymorphism Template programming and the Standard Template Library (STL) An introduction to GOF design patterns and their applications in QF Applications The kinds of applications include binomial and trinomial methods, Monte Carlo simulation, advanced trees, partial differential equations and finite difference methods. This book includes a companion website with all source code and many useful C++ classes that you can use in your own applications. Examples, test cases and applications are directly relevant to QF. This book is the perfect companion to Daniel J. Duffy’s book Financial Instrument Pricing using C++ (Wiley 2004, 0470855096 / 9780470021620)
  finance and computer science: Modern Computational Finance Antoine Savine, 2018-11-20 Arguably the strongest addition to numerical finance of the past decade, Algorithmic Adjoint Differentiation (AAD) is the technology implemented in modern financial software to produce thousands of accurate risk sensitivities, within seconds, on light hardware. AAD recently became a centerpiece of modern financial systems and a key skill for all quantitative analysts, developers, risk professionals or anyone involved with derivatives. It is increasingly taught in Masters and PhD programs in finance. Danske Bank's wide scale implementation of AAD in its production and regulatory systems won the In-House System of the Year 2015 Risk award. The Modern Computational Finance books, written by three of the very people who designed Danske Bank's systems, offer a unique insight into the modern implementation of financial models. The volumes combine financial modelling, mathematics and programming to resolve real life financial problems and produce effective derivatives software. This volume is a complete, self-contained learning reference for AAD, and its application in finance. AAD is explained in deep detail throughout chapters that gently lead readers from the theoretical foundations to the most delicate areas of an efficient implementation, such as memory management, parallel implementation and acceleration with expression templates. The book comes with professional source code in C++, including an efficient, up to date implementation of AAD and a generic parallel simulation library. Modern C++, high performance parallel programming and interfacing C++ with Excel are also covered. The book builds the code step-by-step, while the code illustrates the concepts and notions developed in the book.
  finance and computer science: Data Science for Financial Econometrics Nguyen Ngoc Thach, Vladik Kreinovich, Nguyen Duc Trung, 2020-11-13 This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models – based on researchers’ insights – can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques.
  finance and computer science: The 2009 What Color is Your Parachute? Richard Nelson Bolles, 2009 A guide to discovering personal goals and interests explains how to apply that information toward obtaining satisfying employment
  finance and computer science: Differential Equations and Numerical Analysis Valarmathi Sigamani, John J. H. Miller, Ramanujam Narasimhan, Paramasivam Mathiazhagan, Franklin Victor, 2016-08-18 This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.
  finance and computer science: Natural Language Processing: Concepts, Methodologies, Tools, and Applications Management Association, Information Resources, 2019-11-01 As technology continues to become more sophisticated, a computer’s ability to understand, interpret, and manipulate natural language is also accelerating. Persistent research in the field of natural language processing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror natural language processes that have existed for centuries. Natural Language Processing: Concepts, Methodologies, Tools, and Applications is a vital reference source on the latest concepts, processes, and techniques for communication between computers and humans. Highlighting a range of topics such as machine learning, computational linguistics, and semantic analysis, this multi-volume book is ideally designed for computer engineers, computer and software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of natural language processing.
  finance and computer science: Data Mining in Finance Boris Kovalerchuk, Evgenii Vityaev, 2005-12-11 Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is a learning method able to learn more expressive rules than other symbolic approaches. RDM is thus better suited for financial mining, because it is able to make greater use of underlying domain knowledge. Relational data mining also has a better ability to explain the discovered rules - an ability critical for avoiding spurious patterns which inevitably arise when the number of variables examined is very large. The earlier algorithms for relational data mining, also known as inductive logic programming (ILP), suffer from a relative computational inefficiency and have rather limited tools for processing numerical data. Data Mining in Finance introduces a new approach, combining relational data mining with the analysis of statistical significance of discovered rules. This reduces the search space and speeds up the algorithms. The book also presents interactive and fuzzy-logic tools for `mining' the knowledge from the experts, further reducing the search space. Data Mining in Finance contains a number of practical examples of forecasting S&P 500, exchange rates, stock directions, and rating stocks for portfolio, allowing interested readers to start building their own models. This book is an excellent reference for researchers and professionals in the fields of artificial intelligence, machine learning, data mining, knowledge discovery, and applied mathematics.
  finance and computer science: Practical Finance for Operations and Supply Chain Management Alejandro Serrano, Spyros D. Lekkakos, 2020-03-10 An introduction to financial tools and concepts from an operations perspective, addressing finance/operations trade-offs and explaining financial accounting, working capital, investment analysis, and more. Students and practitioners in engineering and related areas often lack the basic understanding of financial tools and concepts necessary for a career in operations or supply chain management. This book offers an introduction to finance fundamentals from an operations perspective, enabling operations and supply chain professionals to develop the skills necessary for interacting with finance people at a practical level and for making sound decisions when confronted by tradeoffs between operations and finance. Readers will learn about the essentials of financial statements, valuation tools, and managerial accounting. The book first discusses financial accounting, explaining how to create and interpret balance sheets, income statements, and cash flow statements, and introduces the idea of operating working capital—a key concept developed in subsequent chapters. The book then covers financial forecasting, addressing such topics as sustainable growth and the liquidity/profitability tradeoff; concepts in managerial accounting, including variable versus fixed costs, direct versus indirect costs, and contribution margin; tools for investment analysis, including net present value and internal rate of return; creation of value through operating working capital, inventory management, payables, receivables, and cash; and such strategic and tactical tradeoffs as offshoring versus local and centralizing versus decentralizing. The book can be used in undergraduate and graduate courses and as a reference for professionals. No previous knowledge of finance or accounting is required.
  finance and computer science: Just Money Katrin Kaufer, Lillian Steponaitis, 2021-02-02 How to use finance as a tool to build a more equitable and sustainable society. Money defines our present and will shape our future. Every investment decision we make adds a chapter to the story of what our world will look like. Although the idea of mission-based finance has been around for decades, there is a gap between organizations' stated intention to do good and meaningful impact. Still, some are succeeding. In Just Money, Katrin Kaufer and Lillian Steponaitis take readers on a global tour of financial institutions that use finance as a force for good.
  finance and computer science: The Essentials of Machine Learning in Finance and Accounting Mohammad Zoynul Abedin, M. Kabir Hassan, Petr Hajek, Mohammed Mohi Uddin, 2021-06-20 This book introduces machine learning in finance and illustrates how we can use computational tools in numerical finance in real-world context. These computational techniques are particularly useful in financial risk management, corporate bankruptcy prediction, stock price prediction, and portfolio management. The book also offers practical and managerial implications of financial and managerial decision support systems and how these systems capture vast amount of financial data. Business risk and uncertainty are two of the toughest challenges in the financial industry. This book will be a useful guide to the use of machine learning in forecasting, modeling, trading, risk management, economics, credit risk, and portfolio management.
  finance and computer science: Python for Finance Cookbook Eryk Lewinson, 2020-01-31 Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas Key FeaturesUse powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial dataExplore unique recipes for financial data analysis and processing with PythonEstimate popular financial models such as CAPM and GARCH using a problem-solution approachBook Description Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach. What you will learnDownload and preprocess financial data from different sourcesBacktest the performance of automatic trading strategies in a real-world settingEstimate financial econometrics models in Python and interpret their resultsUse Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessmentImprove the performance of financial models with the latest Python librariesApply machine learning and deep learning techniques to solve different financial problemsUnderstand the different approaches used to model financial time series dataWho this book is for This book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.
  finance and computer science: Financial Signal Processing and Machine Learning Ali N. Akansu, Sanjeev R. Kulkarni, Dmitry M. Malioutov, 2016-04-21 The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
  finance and computer science: Mathematical Programming and Game Theory for Decision Making S. K. Neogy, 2008 This edited book presents recent developments and state-of-the-art review in various areas of mathematical programming and game theory. It is a peer-reviewed research monograph under the ISI Platinum Jubilee Series on Statistical Science and Interdisciplinary Research. This volume provides a panoramic view of theory and the applications of the methods of mathematical programming to problems in statistics, finance, games and electrical networks. It also provides an important as well as timely overview of research trends and focuses on the exciting areas like support vector machines, bilevel programming, interior point method for convex quadratic programming, cooperative games, non-cooperative games and stochastic games. Researchers, professionals and advanced graduates will find the book an essential resource for current work in mathematical programming, game theory and their applications. Sample Chapter(s). Foreword (45 KB). Chapter 1: Mathematical Programming and its Applications in Finance (177 KB). Contents: Mathematical Programming and Its Applications in Finance (L C Thomas); Anti-Stalling Pivot Rule for Linear Programs with Totally Unimodular Coefficient Matrix (S N Kabadi & A P Punnen); A New Practically Efficient Interior Point Method for Convex Quadratic Programming (K G Murty); A General Framework for the Analysis of Sets of Constraints (R Caron & T Traynor), Tolerance-Based Algorithms for the Traveling Salesman Problem (D Ghosh et al.); On the Membership Problem of the Pedigree Polytope (T S Arthanari); Exact Algorithms for a One-Defective Vertex Colouring Problem (N Achuthan et al.); Complementarity Problem Involving a Vertical Block Matrix and Its Solution Using Neural Network Model (S K Neogy et al.); Fuzzy Twin Support Vector Machines for Pattern Classification (R Khemchandani et al.); An Overview of the Minimum Sum of Absolute Errors Regression (S C Narula & J F Wellington); Hedging Against the Market with No Short Selling (S A Clark & C Srinivasan); Mathematical Programming and Electrical Network Analysis II: Computational Linear Algebra Through Network Analysis (H Narayanan); Dynamic Optimal Control Policy in Price and Quality for High Technology Product (A K Bardhan & U Chanda); Forecasting for Supply Chain and Portfolio Management (K G Murty); Variational Analysis in Bilevel Programming (S Dempe et al.); Game Engineering (R J Aumann); Games of Connectivity (P Dubey & R Garg); A Robust Feedback Nash Equilibrium in a Climate Change Policy Game (M Hennlock); De Facto Delegation and Proposer Rules (H Imai & K Yonezaki); The Bargaining Set in Effectivity Function (D Razafimahatolotra); Dynamic Oligopoly as a Mixed Large Game OCo Toy Market (A Wiszniewska-Matyszkiel); On Some Classes of Balanced Games (R B Bapat); Market Equilibrium for Combinatorial Auctions and the Matching Core of Nonnegative TU Games (S Lahiri); Continuity, Manifolds, and Arrow''s Social Choice Problem (K Saukkonen); On a Mixture Class of Stochastic Games with Ordered Field Property (S K Neogy). Readership: Researchers, professionals and advanced students in mathematical programming, game theory, management sciences and computational mathematics.
  finance and computer science: Codes of Finance Vincent Antonin Lépinay, 2011-08-08 A behind-the-scenes account of the derivatives business at a major investment bank The financial industry's invention of complex products such as credit default swaps and other derivatives has been widely blamed for triggering the global financial crisis of 2008. In Codes of Finance, Vincent Antonin Lépinay, a former employee of one of the world’s leading investment banks, takes readers behind the scenes of the equity derivatives business at the bank before the crisis, providing a detailed firsthand account of the creation, marketing, selling, accounting, and management of these financial instruments—and of how they ultimately created havoc inside and outside the bank.
  finance and computer science: Computational Finance and Its Applications II M. Costantino, C. A. Brebbia, 2006 Featuring papers from the Second International Conference on Computational Finance and its Applications, the text includes papers that encompass a wide range of topics such as risk management, derivatives pricing, credit risk, trading strategies, portfolio management and asset allocation, and market analysis.
  finance and computer science: Entrepreneurial Finance and Accounting for High-Tech Companies Frank J. Fabozzi, 2016-11-10 Financial aspects of launching and operating a high-tech company, including risk analysis, business models, U.S. securities law, financial accounting, tax issues, and stock options, explained accessibly. This book offers an accessible guide to the financial aspects of launching and operating a high-tech business in such areas as engineering, computing, and science. It explains a range of subjects—from risk analysis to stock incentive programs for founders and key employees—for students and aspiring entrepreneurs who have no prior training in finance or accounting. The book begins with the rigorous analysis any prospective entrepreneur should undertake before launching a business, covering risks associated with a new venture, the reasons startup companies fail, and the stages of financing. It goes on to discuss business models and their components, business plans, and exit planning; forms of business organization, and factors to consider in choosing one; equity allocation to founders and employees; applicable U.S. securities law; and sources of equity capital. The book describes principles of financial accounting, the four basic financial statements, and financial ratios useful in assessing management performance. It also explains financial planning and the use of budgets; profit planning; stock options and other option-type awards; methodologies for valuing a private company; economic assessment of a potential investment project; and the real options approach to risk and managerial flexibility. Appendixes offer case studies of Uber and of the valuation of Tentex.
  finance and computer science: Writing Idiomatic Python 3.3 Jeff Knupp, 2013-02-10 The Writing Idiomatic Python book is finally here! Chock full of code samples, you'll learn the Pythonic way to accomplish common tasks. Each idiom comes with a detailed description, example code showing the wrong way to do it, and code for the idiomatic, Pythonic alternative. *This version of the book is for Python 3. There is also a Python 2.7+ version available.* Writing Idiomatic Python contains the most common and important Python idioms in a format that maximizes identification and understanding. Each idiom is presented as a recommendation to write some commonly used piece of code. It is followed by an explanation of why the idiom is important. It also contains two code samples: the Harmful way to write it and the Idiomatic way. * The Harmful way helps you identify the idiom in your own code. * The Idiomatic way shows you how to easily translate that code into idiomatic Python. This book is perfect for you: * If you're coming to Python from another programming language * If you're learning Python as a first programming language * If you're looking to increase the readability, maintainability, and correctness of your Python code What is Idiomatic Python? Every programming language has its own idioms. Programming language idioms are nothing more than the generally accepted way of writing a certain piece of code. Consistently writing idiomatic code has a number of important benefits: * Others can read and understand your code easily * Others can maintain and enhance your code with minimal effort * Your code will contain fewer bugs * Your code will teach others to write correct code without any effort on your part
  finance and computer science: The Quants Scott Patterson, 2011-01-25 With the immediacy of today’s NASDAQ close and the timeless power of a Greek tragedy, The Quants is at once a masterpiece of explanatory journalism, a gripping tale of ambition and hubris, and an ominous warning about Wall Street’s future. In March of 2006, four of the world’s richest men sipped champagne in an opulent New York hotel. They were preparing to compete in a poker tournament with million-dollar stakes, but those numbers meant nothing to them. They were accustomed to risking billions. On that night, these four men and their cohorts were the new kings of Wall Street. Muller, Griffin, Asness, and Weinstein were among the best and brightest of a new breed, the quants. Over the prior twenty years, this species of math whiz--technocrats who make billions not with gut calls or fundamental analysis but with formulas and high-speed computers--had usurped the testosterone-fueled, kill-or-be-killed risk-takers who’d long been the alpha males the world’s largest casino. The quants helped create a digitized money-trading machine that could shift billions around the globe with the click of a mouse. Few realized, though, that in creating this unprecedented machine, men like Muller, Griffin, Asness and Weinstein had sowed the seeds for history’s greatest financial disaster. Drawing on unprecedented access to these four number-crunching titans, The Quants tells the inside story of what they thought and felt in the days and weeks when they helplessly watched much of their net worth vaporize--and wondered just how their mind-bending formulas and genius-level IQ’s had led them so wrong, so fast.
  finance and computer science: Hands-On Python for Finance Krish Naik, 2019-03-29 Learn and implement quantitative finance using popular Python libraries like NumPy, pandas, and Keras Key Features Understand Python data structure fundamentals and work with time series data Use popular Python libraries including TensorFlow, Keras, and SciPy to deploy key concepts in quantitative finance Explore various Python programs and learn finance paradigms Book Description Python is one of the most popular languages used for quantitative finance. With this book, you'll explore the key characteristics of Python for finance, solve problems in finance, and understand risk management. The book starts with major concepts and techniques related to quantitative finance, and an introduction to some key Python libraries. Next, you'll implement time series analysis using pandas and DataFrames. The following chapters will help you gain an understanding of how to measure the diversifiable and non-diversifiable security risk of a portfolio and optimize your portfolio by implementing Markowitz Portfolio Optimization. Sections on regression analysis methodology will help you to value assets and understand the relationship between commodity prices and business stocks. In addition to this, you'll be able to forecast stock prices using Monte Carlo simulation. The book will also highlight forecast models that will show you how to determine the price of a call option by analyzing price variation. You'll also use deep learning for financial data analysis and forecasting. In the concluding chapters, you will create neural networks with TensorFlow and Keras for forecasting and prediction. By the end of this book, you will be equipped with the skills you need to perform different financial analysis tasks using Python What you will learn Clean financial data with data preprocessing Visualize financial data using histograms, color plots, and graphs Perform time series analysis with pandas for forecasting Estimate covariance and the correlation between securities and stocks Optimize your portfolio to understand risks when there is a possibility of higher returns Calculate expected returns of a stock to measure the performance of a portfolio manager Create a prediction model using recurrent neural networks (RNN) with Keras and TensorFlow Who this book is for This book is ideal for aspiring data scientists, Python developers and anyone who wants to start performing quantitative finance using Python. You can also make this beginner-level guide your first choice if you're looking to pursue a career as a financial analyst or a data analyst. Working knowledge of Python programming language is necessary.
  finance and computer science: Python for Algorithmic Trading Yves Hilpisch, 2020-11-12 Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
  finance and computer science: Computational Finance and Financial Econometrics Eric Zivot, 2017-01-15 This book presents mathematical, programming and statistical tools used in the real world analysis and modeling of financial data. The tools are used to model asset returns, measure risk, and construct optimized portfolios using the open source R programming language and Microsoft Excel. The author explains how to build probability models for asset returns, to apply statistical techniques to evaluate if asset returns are normally distributed, to use Monte Carlo simulation and bootstrapping techniques to evaluate statistical models, and to use optimization methods to construct efficient portfolios.
  finance and computer science: Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes Cornelis W Oosterlee, Lech A Grzelak, 2019-10-29 This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.
  finance and computer science: Valuation McKinsey & Company Inc., Tim Koller, Marc Goedhart, David Wessels, 2020-05-21 McKinsey & Company's bestselling guide to teaching corporate valuation - the fully updated seventh edition Valuation: Measuring and Managing the Value of Companies, University Edition is filled with the expert guidance from McKinsey & Company that students and professors have come to rely on for over nearly three decades. Now in its seventh edition, this acclaimed volume continues to help financial professionals and students around the world gain a deep understanding of valuation and help their companies create, manage, and maximize economic value for their shareholders. This latest edition has been carefully revised and updated throughout, and includes new insights on topics such as digital, ESG (environmental, social and governance), and long-term investing, as well as fresh case studies. For thirty years, Valuation has remained true to its basic principles and continues to offer a step-by-step approach to teaching valuation fundamentals, including: Analyzing historical performance Forecasting performance Estimating the cost of capital Interpreting the results of a valuation in context Linking a company's valuation multiples to core performance drivers The University Edition contains end-of-chapter review questions to help students master key concepts from the book. Wiley also offers an Online Instructor's Manual with a full suite of learning resources to complement valuation classroom instruction.
Finance - City of New Albany
The 2023 Annual Comprehensive Finance Report (ACFR) is available for review and has been certified by the State. New Albany’s 2022 ACFR has …

Careers - City of New Albany
New Albany Finance functions include overseeing fiscal operations, debt issuance, providing an accurate accounting of receipts and …

Bethany Staats, CPA - City of New Albany
Bethany Staats, CPA Director of Finance 614-939-2243 bstaats@newalbanyohio.org Bethany Staats, CPA, began her duties as New …

Finance Department Receives Award - City of New Albany
Nov 22, 2022 · This award is the benchmark and banner for public entities that are earning and saving at the highest levels on their taxpayers’ …

Government Records Archivist5/11/2023 - newal…
Finance Department (Date) (Unit) Megan Thomas (Name) See ORC 149.38 - Records Commission Administrative Assistant (Title) ORC 149.412 for …

Finance - City of New Albany
The 2023 Annual Comprehensive Finance Report (ACFR) is available for review and has been certified by the State. New Albany’s 2022 ACFR has received the Certificate of Achievement for …

Careers - City of New Albany
New Albany Finance functions include overseeing fiscal operations, debt issuance, providing an accurate accounting of receipts and disbursements, managing financial investments and …

Bethany Staats, CPA - City of New Albany
Bethany Staats, CPA Director of Finance 614-939-2243 bstaats@newalbanyohio.org Bethany Staats, CPA, began her duties as New Albany’s finance director in July 2017 and oversees a …

Finance Department Receives Award - City of New Albany
Nov 22, 2022 · This award is the benchmark and banner for public entities that are earning and saving at the highest levels on their taxpayers’ resources, resulting in new revenue streams for …

Government Records Archivist5/11/2023 - newalbanyohio.org
Finance Department (Date) (Unit) Megan Thomas (Name) See ORC 149.38 - Records Commission Administrative Assistant (Title) ORC 149.412 for Records Commission information (614) 939 …

New Albany Earns Excellence in Financial Reporting Award
Mar 6, 2025 · Once again, congratulations to the finance department for this outstanding achievement! Looking Ahead. Lastly, as New Albany continues to grow and thrive, the City …

Title: Deputy Director (Finance) Exempt Classification Grade …
Accountant (CPA) is preferred. Suitable majors include public finance and budgeting, accounting, public administration, or similar major coursework. The incumbent must also have at least five (5) …

City Earns Distinguished Budget Presentation Award
Oct 28, 2024 · The City of New Albany is pleased to announce that it has received the Government Finance Officers Association’s Distinguished Budget Presentation Award. The award represents a …

Finance Department Receives Highest Award - City of New Albany
Apr 12, 2021 · The Government Finance Officers Association awarded its Certificate of Achievement for Excellence in Financial Reporting to the City of New Albany for its 2019 Comprehensive …

Taxes - City of New Albany
Essential tax information for New Albany residents! Explore details on income tax rates, filing procedures, payment options, and deadlines.