Advertisement
dry etching technology for semiconductors: Dry Etching Technology for Semiconductors Kazuo Nojiri, 2014-10-25 This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits. The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes. The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning etc. |
dry etching technology for semiconductors: Atomic Layer Processing Thorsten Lill, 2021-04-21 Learn about fundamental and advanced topics in etching with this practical guide Atomic Layer Processing: Semiconductor Dry Etching Technology delivers a hands-on, one-stop resource for understanding etching technologies and their applications. The distinguished scientist, executive, and author offers readers in-depth information on the various etching technologies used in the semiconductor industry, including thermal, isotropic atomic layer, radical, ion-assisted, and reactive ion etching. The book begins with a brief history of etching technology and the role it has played in the information technology revolution, along with a collection of commonly used terminology in the industry. It then moves on to discuss a variety of different etching techniques, before concluding with discussions of the fundamentals of etching reactor design and newly emerging topics in the field such as the role played by artificial intelligence in the technology. Atomic Layer Processing includes a wide variety of other topics as well, all of which contribute to the author's goal of providing the reader with an atomic-level understanding of dry etching technology sufficient to develop specific solutions for existing and emerging semiconductor technologies. Readers will benefit from: A complete discussion of the fundamentals of how to remove atoms from various surfaces An examination of emerging etching technologies, including laser and electron beam assisted etching A treatment of process control in etching technology and the role played by artificial intelligence Analyses of a wide variety of etching methods, including thermal or vapor etching, isotropic atomic layer etching, radical etching, directional atomic layer etching, and more Perfect for materials scientists, semiconductor physicists, and surface chemists, Atomic Layer Processing will also earn a place in the libraries of engineering scientists in industry and academia, as well as anyone involved with the manufacture of semiconductor technology. The author's close involvement with corporate research & development and academic research allows the book to offer a uniquely multifaceted approach to the subject. |
dry etching technology for semiconductors: Semiconductor IC Plasma Dry Etching Process Kung Linliu, 2020-02-11 Semiconductor market value of 2018 was around 468.8 billion US dollars. It is increased for about 13.7% than year 2017. For 2019, it is estimated decrease about 10% to 13% which is 422 to 408 billion US dollars.This market is in a way winner takes all, for example, TSMC (Taiwan Semiconductor Manufacturing Company) which is the world leading semiconductor foundry company has more than 50% market share. Intel has more than 90% market share of personal computer CPU (Central Process Unit) for many years. However, the semiconductor IC process technology sometimes might change the rule of market. Just recently, AMD (Advanced Micro Devices, Inc.) has more than 17% market share of personal computer CPU because they use foundry of TSMC with 7nm EUV technology node (Extreme Ultraviolet, its wavelength is 13.5 nm, shorter wavelength has better critical dimension (CD) resolution for IC process).For the present time, there are four leading semiconductor companies in the world with EUV technology process node which are as follows: (1)Samsung: the world leading semiconductor IC process company for commodity IC such as DRAM、Flash memory and IC for cell phone. The world leading company in cell phone market share, Samsung has highest volume unit of mobile phone which is 75.1 million unit representing 23% of world market share. Samsung also is the leading company in OLED (organic light emitting diode) process technology and display panel which is more than 90% of world market share.(2)Intel: is the world leading company in personal computer CPU which has more than 90% market share of personal computer CPU (Central Process Unit) for many years. Intel is actually a world leading semiconductor IC technology in DRAM (many years ago) and Flash (at the present time) memory.(3)TSMC: TSMC is brief of Taiwan Semiconductor Manufacturing Company which is the world leading semiconductor foundry company has more than 50% market share. The author worked there for a few years as an R & D manager many years ago.(4)Micron: a world leading in DRAM and Flash memory IC. |
dry etching technology for semiconductors: GaN and Related Materials Stephen J. Pearton, 2021-10-08 Presents views on current developments in heat and mass transfer research related to the modern development of heat exchangers. Devotes special attention to the different modes of heat and mass transfer mechanisms in relation to the new development of heat exchangers design. Dedicates particular attention to the future needs and demands for further development in heat and mass transfer. GaN and related materials are attracting tremendous interest for their applications to high-density optical data storage, blue/green diode lasers and LEDs, high-temperature electronics for high-power microwave applications, electronics for aerospace and automobiles, and stable passivation films for semiconductors. In addition, there is great scientific interest in the nitrides, because they appear to form the first semiconductor system in which extended defects do not severely affect the optical properties of devices. This series provides a forum for the latest research in this rapidly-changing field, offering readers a basic understanding of new developments in recent research. Series volumes feature a balance between original theoretical and experimental research in basic physics, device physics, novel materials and quantum structures, processing, and systems. |
dry etching technology for semiconductors: Dry Etching for VLSI A.J. van Roosmalen, J.A.G. Baggerman, S.J.H. Brader, 2013-06-29 This book has been written as part of a series of scientific books being published by Plenum Press. The scope of the series is to review a chosen topic in each volume. To supplement this information, the abstracts to the most important references cited in the text are reprinted, thus allowing the reader to find in-depth material without having to refer to many additional publications. This volume is dedicated to the field of dry (plasma) etching, as applied in silicon semiconductor processing. Although a number of books have appeared dealing with this area of physics and chemistry, these all deal with parts of the field. This book is unique in that it gives a compact, yet complete, in-depth overview of fundamentals, systems, processes, tools, and applications of etching with gas plasmas for VLSI. Examples are given throughout the fundamental sections, in order to give the reader a better insight in the meaning and magnitude of the many parameters relevant to dry etching. Electrical engineering concepts are emphasized to explain the pros and cons of reactor concepts and excitation frequency ranges. In the description of practical applications, extensive use is made of cross-referencing between processes and materials, as well as theory and practice. It is thus intended to provide a total model for understanding dry etching. The book has been written such that no previous knowledge of the subject is required. It is intended as a review of all aspects of dry etching for silicon semiconductor processing. |
dry etching technology for semiconductors: Fabrication of GaAs Devices Albert G. Baca, Carol I.H. Ashby, Institution of Electrical Engineers, 2005-09 This book provides fundamental and practical information on all aspects of GaAs processing and gives pragmatic advice on cleaning and passivation, wet and dry etching and photolithography. Other topics covered include device performance for HBTs (Heterojunction Bipolar Transistors) and FETs (Field Effect Transistors), how these relate to processing choices, and special processing issues such as wet oxidation, which are especially important in optoelectronic devices. This book is suitable for both new and practising engineers. |
dry etching technology for semiconductors: Handbook of Advanced Plasma Processing Techniques R.J. Shul, S.J. Pearton, 2011-06-28 Pattern transfer by dry etching and plasma-enhanced chemical vapor de position are two of the cornerstone techniques for modern integrated cir cuit fabrication. The success of these methods has also sparked interest in their application to other techniques, such as surface-micromachined sen sors, read/write heads for data storage and magnetic random access memory (MRAM). The extremely complex chemistry and physics of plasmas and their interactions with the exposed surfaces of semiconductors and other materi als is often overlooked at the manufacturing stage. In this case, the process is optimized by an informed trial-and-error approach which relies heavily on design-of-experiment techniques and the intuition of the process engineer. The need for regular cleaning of plasma reactors to remove built-up reaction or precursor gas products adds an extra degree of complexity because the interaction of the reactive species in the plasma with the reactor walls can also have a strong effect on the number of these species available for etching or deposition. Since the microelectronics industry depends on having high process yields at each step of the fabrication process, it is imperative that a full understanding of plasma etching and deposition techniques be achieved. |
dry etching technology for semiconductors: Handbook of Compound Semiconductors Paul H. Holloway, Gary E. McGuire, 2008-10-19 This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc. |
dry etching technology for semiconductors: Atomic Layer Deposition for Semiconductors Cheol Seong Hwang, 2013-10-18 Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device. |
dry etching technology for semiconductors: Fundamentals of Semiconductor Manufacturing and Process Control Gary S. May, Costas J. Spanos, 2006-05-26 A practical guide to semiconductor manufacturing from processcontrol to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Controlcovers all issues involved in manufacturing microelectronic devicesand circuits, including fabrication sequences, process control,experimental design, process modeling, yield modeling, and CIM/CAMsystems. Readers are introduced to both the theory and practice ofall basic manufacturing concepts. Following an overview of manufacturing and technology, the textexplores process monitoring methods, including those that focus onproduct wafers and those that focus on the equipment used toproduce wafers. Next, the text sets forth some fundamentals ofstatistics and yield modeling, which set the foundation for adetailed discussion of how statistical process control is used toanalyze quality and improve yields. The discussion of statistical experimental design offers readers apowerful approach for systematically varying controllable processconditions and determining their impact on output parameters thatmeasure quality. The authors introduce process modeling concepts,including several advanced process control topics such asrun-by-run, supervisory control, and process and equipmentdiagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and managementof overall manufacturing systems * Chapters include case studies, sample problems, and suggestedexercises * Instructor support includes electronic copies of the figures andan instructor's manual Graduate-level students and industrial practitioners will benefitfrom the detailed exami?nation of how electronic materials andsupplies are converted into finished integrated circuits andelectronic products in a high-volume manufacturingenvironment. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment. An Instructor Support FTP site is also available. |
dry etching technology for semiconductors: Plasma Processing of Semiconductors Paul Williams, 1997-05-31 Plasma Processing of Semiconductors contains 28 contributions from 18 experts and covers plasma etching, plasma deposition, plasma-surface interactions, numerical modelling, plasma diagnostics, less conventional processing applications of plasmas, and industrial applications. Audience: Coverage ranges from introductory to state of the art, thus the book is suitable for graduate-level students seeking an introduction to the field as well as established workers wishing to broaden or update their knowledge. |
dry etching technology for semiconductors: Process Technology for Silicon Carbide Devices Carl-Mikael Zetterling, 2002 This book explains why SiC is so useful in electronics, gives clear guidance on the various processing steps (growth, doping, etching, contact formation, dielectrics etc) and describes how these are integrated in device manufacture. |
dry etching technology for semiconductors: III-V Integrated Circuit Fabrication Technology Shiban Tiku, Dhrubes Biswas, 2016-04-27 GaAs processing has reached a mature stage. New semiconductor compounds are emerging that will dominate future materials and device research, although the processing techniques used for GaAs will still remain relevant. This book covers all aspects of the current state of the art of III-V processing, with emphasis on HBTs. It is aimed at practicing |
dry etching technology for semiconductors: Topics in Growth and Device Processing of III-V Semiconductors S. J. Pearton, C. R. Abernathy, F. Ren, 1996 This book describes advanced epitaxial growth and self-aligned processing techniques for the fabrication of III-V semiconductor devices such as heterojunction bipolar transistors and high electron mobility transistors. It is the first book to describe the use of carbon-doping and low damage dry etching techniques that have proved indispensable in making reliable, high performance devices. These devices are used in many applications such as cordless telephones and high speed lightwave communication systems. |
dry etching technology for semiconductors: Lecture Notes on Principles of Plasma Processing Francis F. Chen, Jane P. Chang, 2012-12-06 Plasma processing of semiconductors is an interdisciplinary field requiring knowledge of both plasma physics and chemical engineering. The two authors are experts in each of these fields, and their collaboration results in the merging of these fields with a common terminology. Basic plasma concepts are introduced painlessly to those who have studied undergraduate electromagnetics but have had no previous exposure to plasmas. Unnecessarily detailed derivations are omitted; yet the reader is led to understand in some depth those concepts, such as the structure of sheaths, that are important in the design and operation of plasma processing reactors. Physicists not accustomed to low-temperature plasmas are introduced to chemical kinetics, surface science, and molecular spectroscopy. The material has been condensed to suit a nine-week graduate course, but it is sufficient to bring the reader up to date on current problems such as copper interconnects, low-k and high-k dielectrics, and oxide damage. Students will appreciate the web-style layout with ample color illustrations opposite the text, with ample room for notes. This short book is ideal for new workers in the semiconductor industry who want to be brought up to speed with minimum effort. It is also suitable for Chemical Engineering students studying plasma processing of materials; Engineers, physicists, and technicians entering the semiconductor industry who want a quick overview of the use of plasmas in the industry. |
dry etching technology for semiconductors: Semiconductor Material and Device Characterization Dieter K. Schroder, 2015-06-29 This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department. |
dry etching technology for semiconductors: MEMS Materials and Processes Handbook Reza Ghodssi, Pinyen Lin, 2011-03-18 MEMs Materials and Processes Handbook is a comprehensive reference for researchers searching for new materials, properties of known materials, or specific processes available for MEMS fabrication. The content is separated into distinct sections on Materials and Processes. The extensive Material Selection Guide and a Material Database guides the reader through the selection of appropriate materials for the required task at hand. The Processes section of the book is organized as a catalog of various microfabrication processes, each with a brief introduction to the technology, as well as examples of common uses in MEMs. |
dry etching technology for semiconductors: CRC Handbook of Metal Etchants Perrin Walker, William H. Tarn, 1990-12-11 This publication presents cleaning and etching solutions, their applications, and results on inorganic materials. It is a comprehensive collection of etching and cleaning solutions in a single source. Chemical formulas are presented in one of three standard formats - general, electrolytic or ionized gas formats - to insure inclusion of all necessary operational data as shown in references that accompany each numbered formula. The book describes other applications of specific solutions, including their use on other metals or metallic compounds. Physical properties, association of natural and man-made minerals, and materials are shown in relationship to crystal structure, special processing techniques and solid state devices and assemblies fabricated. This publication also presents a number of organic materials which are widely used in handling and general processing...waxes, plastics, and lacquers for example. It is useful to individuals involved in study, development, and processing of metals and metallic compounds. It is invaluable for readers from the college level to industrial R & D and full-scale device fabrication, testing and sales. Scientific disciplines, work areas and individuals with great interest include: chemistry, physics, metallurgy, geology, solid state, ceramic and glass, research libraries, individuals dealing with chemical processing of inorganic materials, societies and schools. |
dry etching technology for semiconductors: The Essential Guide to Semiconductors James L. Turley, 2003 The Essential Guide to Semiconductorsis a complete guide to thebusiness and technology of semiconductor design and manufacturing.Conceptual enough for laypeople and nontechnical investors, yet detailedenough for technical professionals, Jim Turley explains exactly howsilicon chips are designed and built, illuminates key markets andopportunities, and shows how the entire industry fits together. |
dry etching technology for semiconductors: Advancing Silicon Carbide Electronics Technology II Konstantinos Zekentes, Konstantin Vasilevskiy, 2020-03-15 The book presents an in-depth review and analysis of Silicon Carbide device processing. The main topics are: (1) Silicon Carbide Discovery, Properties and Technology, (2) Processing and Application of Dielectrics in Silicon Carbide Devices, (3) Doping by Ion Implantation, (4) Plasma Etching and (5) Fabrication of Silicon Carbide Nanostructures and Related Devices. The book is also suited as supplementary textbook for graduate courses. Keywords: Silicon Carbide, SiC, Technology, Processing, Semiconductor Devices, Material Properties, Polytypism, Thermal Oxidation, Post Oxidation Annealing, Surface Passivation, Dielectric Deposition, Field Effect Mobility, Ion Implantation, Post Implantation Annealing, Channeling, Surface Roughness, Dry Etching, Plasma Etching, Ion Etching, Sputtering, Chemical Etching, Plasma Chemistry, Micromasking, Microtrenching, Nanocrystal, Nanowire, Nanotube, Nanopillar, Nanoelectromechanical Systems (NEMS). |
dry etching technology for semiconductors: Ultraclean Surface Processing of Silicon Wafers Takeshi Hattori, 2013-03-09 A totally new concept for clean surface processing of Si wafers is introduced in this book. Some fifty distinguished researchers and engineers from the leading Japanese semiconductor companies, such as NEC, Hitachi, Toshiba, Sony and Panasonic as well as from several universities reveal to us for the first time the secrets of these highly productive institutions. They describe the techniques and equipment necessary for the preparation of clean high-quality semiconductor surfaces as a first step in high-yield/high-quality device production. This book thus opens the door to the manufacturing of reliable nanoscale devices and will be extremely useful for every engineer, physicist and technician involved in the production of silicon semiconductor devices. |
dry etching technology for semiconductors: Handbook of Semiconductor Manufacturing Technology Yoshio Nishi, Robert Doering, 2017-12-19 Retaining the comprehensive and in-depth approach that cemented the bestselling first edition's place as a standard reference in the field, the Handbook of Semiconductor Manufacturing Technology, Second Edition features new and updated material that keeps it at the vanguard of today's most dynamic and rapidly growing field. Iconic experts Robert Doering and Yoshio Nishi have again assembled a team of the world's leading specialists in every area of semiconductor manufacturing to provide the most reliable, authoritative, and industry-leading information available. Stay Current with the Latest Technologies In addition to updates to nearly every existing chapter, this edition features five entirely new contributions on... Silicon-on-insulator (SOI) materials and devices Supercritical CO2 in semiconductor cleaning Low-κ dielectrics Atomic-layer deposition Damascene copper electroplating Effects of terrestrial radiation on integrated circuits (ICs) Reflecting rapid progress in many areas, several chapters were heavily revised and updated, and in some cases, rewritten to reflect rapid advances in such areas as interconnect technologies, gate dielectrics, photomask fabrication, IC packaging, and 300 mm wafer fabrication. While no book can be up-to-the-minute with the advances in the semiconductor field, the Handbook of Semiconductor Manufacturing Technology keeps the most important data, methods, tools, and techniques close at hand. |
dry etching technology for semiconductors: Silicon Micromachining Miko Elwenspoek, M. Elwenspoek, H. V. Jansen, 2004-08-19 A comprehensive overview of the key techniques used in the fabrication of micron-scale structures in silicon; for graduate students and researchers. |
dry etching technology for semiconductors: Plasma Charging Damage Kin P. Cheung, 2000-10-04 In the 50 years since the invention of transistor, silicon integrated circuit (IC) technology has made astonishing advances. A key factor that makes these advances possible is the ability to have precise control on material properties and physical dimensions. The introduction of plasma processing in pattern transfer and in thin film deposition is a critical enabling advance among other things. In state of the art silicon Ie manufacturing process, plasma is used in more than 20 different critical steps. Plasma is sometimes called the fourth state of matter (other than gas, liquid and solid). It is a mixture of ions (positive and negative), electrons and neutrals in a quasi-neutral gaseous steady state very far from equilibrium, sustained by an energy source that balances the loss of charged particles. It is a very harsh environment for the delicate ICs. Highly energetic particles such as ions, electrons and photons bombard the surface of the wafer continuously. These bombardments can cause all kinds of damage to the silicon devices that make up the integrated circuits. |
dry etching technology for semiconductors: Semiconductor Manufacturing Handbook Hwaiyu Geng, 2005-05-18 WORLD-CLASS SEMICONDUCTOR MANUFACTURING EXPERTISE AT YOUR FINGERTIPS This is a comprehensive reference to the semiconductor manufacturing process and ancillary facilities -- from raw material preparation to packaging and testing, applying basics to emerging technologies. Readers charged with optimizing the design and performance of manufacturing processes will find all the information necessary to produce the highest quality chips at the lowest price in the shortest time possible. The Semiconductor Manufacturing Handbook provides leading-edge information on semiconductor wafer processes, MEMS, nanotechnology, and FPD, plus the latest manufacturing and automation technologies, including: Yield Management Automated Material Handling System Fab and Cleanroom Design and Operation Gas Abatement and Waste Treatment Management And much more Written by 60 international experts, and peer reviewed by a seasoned advisory board, this handbook covers the fundamentals of relevant technology and its real-life application and operational considerations for planning, implementing, and controlling manufacturing processes. It includes hundreds of detailed illustrations and a list of relevant books, technical papers, and websites for further research. This inclusive, wide-ranging coverage makes the Semiconductor Manufacturing Handbook the most comprehensive single-volume reference ever published in the field. STATE-OF-THE-ART SEMICONDUCTOR TECHNOLOGIES AND MANUFACTURING PROCESSES: SEMICONDUCTOR FUNDAMENTALS How Chips Are Designed and Made * Substrates * Copper and Low-k Dielectrics * Silicide Formation * Plasma * Vacuum * Photomask WAFER PROCESSING TECHNOLOGIES Microlithography * Ion Implantation * Etch * PVD/ALD * CVD * ECD * Epitaxy * CMP * Wet Cleaning FINAL MANUFACTURING Packaging * Grinding, Stress Relief, Dicing * Inspection, Measurement, and Testing NANOTECHNOLOGY, MEMS, AND FPD GAS AND CHEMICALS Specialty Gas System and DCA * Gas Abatement Systems * Chemical and Slurries Delivery System * Ultra Pure Water FAB YIELD, OPERATIONS, AND FACILITIES Yield Management * Automated Materials Handling System * Metrology * Six Sigma * Advanced Process Control * EHS * Fab Design and Construction * Cleanroom * Vibration and Acoustic Control * ESD * Airborne Molecular Control * Particle Monitoring * Wastewater Neutralization Systems |
dry etching technology for semiconductors: Electronic Processes in Organic Semiconductors Anna Köhler, Heinz Bässler, 2015-06-08 The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices. |
dry etching technology for semiconductors: Fundamentals of Silicon Carbide Technology Tsunenobu Kimoto, James A. Cooper, 2014-11-24 A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology. |
dry etching technology for semiconductors: Hydrogen in Crystalline Semiconductors Stephen J. Pearton, James W. Corbett, Michael Stavola, 2013-03-08 vgl. Hardcoverausgabe. |
dry etching technology for semiconductors: Green Photocatalytic Semiconductors Seema Garg, Amrish Chandra, 2021-09-20 This book comprises a detailed overview on the role of photocatalysts for environmental remediation, hydrogen production and carbon dioxide reduction. Effective ways to enhance the photocatalytic activity of the material via doping, hybrid material, laser light and nanocomposites have been discussed in this book. The book also further elaborates the role of metal nanoparticles, rare earth doping, sensitizers, surface oxygen vacancy, interface engineering and band gap engineering for enhancing the photocatalytic activity. An approach to recover the photocatalytic material via immobilization is also presented. This book brings to light much of the recent research in the development of such semiconductor photocatalytic systems. The book will thus be of relevance to researchers in the field of: material science, environmental science & technology, photocatalytic applications, newer methods of energy generation & conversion and industrial applications. |
dry etching technology for semiconductors: Human Organs-on-a-Chip Technology P.V. Mohanan, 2024-06-18 Human Organs-on-a-Chip Technology focuses on the technology advancement from organ-on-a-chip to multi organs-on-a-chip to the newest stage of human organs-on-a-chip. Chapters investigate the design, simulation studies, device development and application of microfluidic systems. They also offer expert perspectives on the development of an alternative test system in the biological evaluation of drugs, cosmetics, chemicals, medical devices and many others. Lastly, the book addresses issues related to the development of microfluidic devices and alternative test systems in biological and biomedical research. - Explores organs-on-a-chip technology, from the basics, to advanced developments and existing challenges and recent research trends and applications - Reviews every aspect of microfluidic devices, including biological evaluation and targeted delivery - Includes the latest information on regulatory updates |
dry etching technology for semiconductors: Principles of Plasma Discharges and Materials Processing Michael A. Lieberman, Allan J. Lichtenberg, 2024-10-15 A new edition of this industry classic on the principles of plasma processing Plasma-based technology and materials processes have been central to the revolution of the last half-century in micro- and nano-electronics. From anisotropic plasma etching on microprocessors, memory, and analog chips, to plasma deposition for creating solar panels and flat-panel displays, plasma-based materials processes have reached huge areas of technology. As key technologies scale down in size from the nano- to the atomic level, further developments in plasma materials processing will only become more essential. Principles of Plasma Discharges and Materials Processing is the foundational introduction to the subject. It offers detailed information and procedures for designing plasma-based equipment and analyzing plasma-based processes, with an emphasis on the abiding fundamentals. Now fully updated to reflect the latest research and data, it promises to continue as an indispensable resource for graduate students and industry professionals in a myriad of technological fields. Readers of the third edition of Principles of Plasma Discharges and Materials Processing will also find: Extensive figures and tables to facilitate understanding A new chapter covering the recent development of processes involving high-pressure capacitive discharges New subsections on discharge and processing chemistry, physics, and diagnostics Principles of Plasma Discharges and Materials Processing is ideal for professionals and process engineers in the field of plasma-assisted materials processing with experience in the field of science or engineering. It is the premiere world-wide basic text for graduate courses in the field. |
dry etching technology for semiconductors: Porous Silicon in Practice M. J. Sailor, 2012-01-09 By means of electrochemical treatment, crystalline silicon can be permeated with tiny, nanostructured pores that entirely change the characteristics and properties of the material. One prominent example of this can be seen in the interaction of porous silicon with living cells, which can be totally unwilling to settle on smooth silicon surfaces but readily adhere to porous silicon, giving rise to great hopes for such future applications as programmable drug delivery or advanced, braincontrolled prosthetics. Porous silicon research is active in the fields of sensors, tissue engineering, medical therapeutics and diagnostics, photovoltaics, rechargeable batteries, energetic materials, photonics, and MEMS (Micro Electro Mechanical Systems). Written by an outstanding, well-recognized expert in the field, this book provides detailed, step-by-step instructions to prepare and characterize the major types of porous silicon. It is intended for those new to the fi eld. Sampling of topics covered: * Principles of Etching Porous Silicon * Etch Cell Construction and Considerations * Photonic Crystals, Microcavities, and Bragg Stacks Etched in Silicon * Preparation of Free-standing Films and Particles of Porous Silicon * Preparation of Photoluminescent Nanoparticles from Porous Silicon * Preparation of Silicon Nanowires by Electrochemical Etch of Silicon * Surface Modifi cation Chemistry and Biochemistry * Measurement of Optical Properties * Measurement of Pore Size, Porosity, Thickness, Surface Area The whole is backed by a generous use of color photographs to illustrate the described procedures in detail, plus a bibliography of further literature pertinent to a wide range of application fi elds. For materials scientists, chemists, physicists, optical physicists, biomaterials scientists, neurobiologists, bioengineers, and graduate students in those fields, as well as those working in the semiconductor industry. |
dry etching technology for semiconductors: Etching of III-V Semiconductors Peter H. L. Notten, John J. Kelly, 1991 |
dry etching technology for semiconductors: Introduction to Microelectronic Fabrication Richard C. Jaeger, 2002 For courses in Theory and Fabrication of Integrated Circuits. The author's goal in writing this text was to present a concise survey of the most up-to-date techniques in the field. It is devoted exclusively to processing, and is highlighted by careful explanations, clear, simple language, and numerous fully-solved example problems. This work assumes a minimal knowledge of integrated circuits and of terminal behavior of electronic components such as resistors, diodes, and MOS and bipolar transistors. |
dry etching technology for semiconductors: Etching in Microsystem Technology Michael Köhler, 2008-07-11 Microcomponents and microdevices are increasingly finding application in everyday life. The specific functions of all modern microdevices depend strongly on the selection and combination of the materials used in their construction, i.e., the chemical and physical solid-state properties of these materials, and their treatment. The precise patterning of various materials, which is normally performed by lithographic etching processes, is a prerequisite for the fabrication of microdevices. The microtechnical etching of functional patterns is a multidisciplinary area, the basis for the etching processes coming from chemistry, physics, and engineering. The book is divided into two sections: the wet and dry etching processes are presented in the first, general, section, which provides the scientific fundamentals, while a catalog of etching bath composition, etching instructions, and parameters can be found in the second section. This section will enhance the comprehension of the general section and also give an overview of data that are essential in practice. |
dry etching technology for semiconductors: 21st Century Innovation Systems for Japan and the United States National Research Council, Policy and Global Affairs, Board on Science, Technology, and Economic Policy, Committee on Comparative Innovation Policy: Best Practice for the 21st Century, 2009-05-15 Recognizing that a capacity to innovate and commercialize new high-technology products is increasingly a key for the economic growth in the environment of tighter environmental and resource constraints, governments around the world have taken active steps to strengthen their national innovation systems. These steps underscore the belief of these governments that the rising costs and risks associated with new potentially high-payoff technologies, their spillover or externality-generating effects and the growing global competition, require national R&D programs to support the innovations by new and existing high-technology firms within their borders. The National Research Council's Board on Science, Technology, and Economic Policy (STEP) has embarked on a study of selected foreign innovation programs in comparison with major U.S. programs. The 21st Century Innovation Systems for the United States and Japan: Lessons from a Decade of Change symposium reviewed government programs and initiatives to support the development of small- and medium-sized enterprises, government-university- industry collaboration and consortia, and the impact of the intellectual property regime on innovation. This book brings together the papers presented at the conference and provides a historical context of the issues discussed at the symposium. |
dry etching technology for semiconductors: Semiconductor Devices, Physics and Technology S. M. Sze, 2013 |
dry etching technology for semiconductors: Semiconductor Packaging Andrea Chen, Randy Hsiao-Yu Lo, 2016-04-19 In semiconductor manufacturing, understanding how various materials behave and interact is critical to making a reliable and robust semiconductor package. Semiconductor Packaging: Materials Interaction and Reliability provides a fundamental understanding of the underlying physical properties of the materials used in a semiconductor package. By tying together the disparate elements essential to a semiconductor package, the authors show how all the parts fit and work together to provide durable protection for the integrated circuit chip within as well as a means for the chip to communicate with the outside world. The text also covers packaging materials for MEMS, solar technology, and LEDs and explores future trends in semiconductor packages. |
dry etching technology for semiconductors: Iii-nitride Semiconductor Materials Zhe Chuan Feng, 2006-03-20 III-Nitride semiconductor materials — (Al, In, Ga)N — are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory or experiment.The III-Nitride-based industry is building up and new economic developments from these materials are promising. It is expected that III-Nitride-based LEDs may replace traditional light bulbs to realize a revolution in lighting. This book is a valuable source of information for engineers, scientists and students working towards such goals./a |
dry etching technology for semiconductors: Dry Etching for Microelectronics R.A. Powell, 2012-12-02 This volume collects together for the first time a series of in-depth, critical reviews of important topics in dry etching, such as dry processing of III-V compound semiconductors, dry etching of refractory metal silicides and dry etching aluminium and aluminium alloys. This topical format provides the reader with more specialised information and references than found in a general review article. In addition, it presents a broad perspective which would otherwise have to be gained by reading a large number of individual research papers. An additional important and unique feature of this book is the inclusion of an extensive literature review of dry processing, compiled by search of computerized data bases. A subject index allows ready access to the key points raised in each of the chapters. |
DRY Definition & Meaning - Merriam-Webster
The meaning of DRY is free or relatively free from a liquid and especially water. How to use dry in a sentence.
DRY | English meaning - Cambridge Dictionary
DRY definition: 1. used to describe something that has no water or other liquid in, on, or around it: 2. used …
DRY Definition & Meaning | Dictionary.com
Dry is the general word indicating absence of water or freedom from moisture: a dry well; dry clothes. …
DRY - Definition & Translations | Collins English Dictionary
Discover everything about the word "DRY" in English: meanings, translations, synonyms, pronunciations, examples, and grammar insights - all in one …
Dry Definition & Meaning - YourDictionary
Having lost liquid or moisture. Having all the water or liquid drained away, evaporated, or exhausted. A dry river. To remove the moisture from; make dry. Laundry dried by the sun. To …
DRY Definition & Meaning - Merriam-Webster
The meaning of DRY is free or relatively free from a liquid and especially water. How to use dry in a sentence.
DRY | English meaning - Cambridge Dictionary
DRY definition: 1. used to describe something that has no water or other liquid in, on, or around it: 2. used to…. Learn more.
DRY Definition & Meaning | Dictionary.com
Dry is the general word indicating absence of water or freedom from moisture: a dry well; dry clothes. Arid suggests great or intense dryness in a region or climate, especially such as …
DRY - Definition & Translations | Collins English Dictionary
Discover everything about the word "DRY" in English: meanings, translations, synonyms, pronunciations, examples, and grammar insights - all in one comprehensive guide.
Dry Definition & Meaning - YourDictionary
Having lost liquid or moisture. Having all the water or liquid drained away, evaporated, or exhausted. A dry river. To remove the moisture from; make dry. Laundry dried by the sun. To …
dry | Dictionaries and vocabulary tools for English ... - Wordsmyth
free from wetness, dampness, or moisture. When the laundry is dry, I'll show you how to fold everything. lacking in rainfall. We had a dry summer this year. Arizona has a dry climate. …
DRY | definition in the Cambridge Learner’s Dictionary
DRY meaning: 1. Something that is dry does not have water or liquid in it or on its surface: 2. with no or not…. Learn more.
DRY | English meaning - Cambridge Essential American
DRY definition: 1. without water or liquid on the surface: 2. without rain: 3. Dry wine is not sweet.. Learn more.
Drybar Shops - Want us to send a link to the Drybar app directly …
Drybar Shops offers professional blowouts, styling services, and more at various locations.
DRY | definition in the Cambridge English Dictionary - Cambridge …
DRY meaning: 1. used to describe something that has no water or other liquid in, on, or around it: 2. used to…. Learn more.